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We consider a quantum multicomponent plasma made with S species of point charged particles interacting via
the Coulomb potential. We derive the screened activity series for the pressure in the grand-canonical ensemble
within the Feynman-Kac path integral representation of the system in terms of a classical gas of loops. This
series is useful for computing equations of state for it is nonperturbative with respect to the strength of the
interaction and it involves relatively few diagrams at a given order. The known screened activity series for the
particle densities can be recovered by differentiation. The particle densities satisfy local charge neutrality because
of a Debye-dressing mechanism of the diagrams in these series. We introduce a new general neutralization

prescription, based on this mechanism, for deriving approximate equations of state where consistency with

electroneutrality is automatically ensured. This prescription is compared to other ones, including a neutralization
scheme inspired by the Lieb-Lebowitz theorem and based on the introduction of (S — 1) suitable independent
combinations of the activities. Eventually, we briefly argue how the activity series for the pressure, combined with
the Debye-dressing prescription, can be used for deriving approximate equations of state at moderate densities,
which include the contributions of recombined entities made with three or more particles.
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I. INTRODUCTION

The thermodynamic properties of hydrogen (H) and helium
(He) gases enter as a basic and key ingredient in the study of
the structure and evolution of dense astrophysical bodies like
stars, brown dwarfs, and giant planets, for these objects are
mostly made of a mixture of H and He. Many works have been
performed to determine the equation of state of H-He mixtures
and to address the related question of the helium solubility
in hydrogen, which is important for a correct description of
planetary interiors [1-3]. The H-He mixture is fundamentally
a quantum plasma made of electrons and nuclei interacting
via the Coulomb potential. Numerical simulation techniques,
like density-functional theory molecular dynamics [3-7], path
integral Monte Carlo [8—10], and quantum Monte Carlo [11],
have been used to calculate, with good precision, some ther-
modynamical properties of H-He mixtures in strongly inter-
acting regimes. Besides simulations, analytical calculations,
in particular asymptotic expansions, are useful to provide
theoretical insights and to complement the simulation data
with reliable results in asymptotic regimes, like at low density
or at high density or high temperature [12,13]. Such expan-
sions have been derived using various analytical tools: the
effective potential method [14—16], many-body perturbation
theory [17-19], and two different path-integral formalisms:
Mayer diagrammatical expansions in the ring-polymer rep-
resentation [19-22] and an effective field theory [23]. It has
been checked explicitly that these quite different theoretical
frameworks all lead to the same expansion at low densities
[24]. Beyond asymptotic expansions at low or high densities,
analytical theories can also provide insights at intermediate
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densities via the introduction of suitable approximations (see,
e.g., Refs. [25-28]).

In this article, we derive two general results that enable
easier (fully or partially) analytical calculations of the equa-
tion of state of H-He mixtures, and also other plasmas, in the
low and moderate density regimes. First, we obtain a new
exact representation for all terms in the activity expansion
of the grand potential 2 = —PA (A denotes the volume) of
a quantum multicomponent plasma. This so-called screened
Mayer activity series for €2, or equivalently for the pressure
P, complements the activity series for distribution functions
derived in Ref. [22], and provides a much more direct route
for computing the equation of state: fewer diagrams need to be
computed, and no term-by-term integration of contributions
to distribution functions needs to be performed. Since €2 is
a thermodynamic potential, all thermodynamic properties can
furthermore be deduced from it via standard thermodynamic
relations. The screened Mayer series are not perturbative
with respect to the strength of the interaction, in contrast to
the expressions of standard many-body perturbation theory
(thermodynamic Green function formalism [18]), and allow
therefore calculations not only in the fully ionized regimes, at
low or high densities, but also in moderately dense regimes
where the particles are bound into atoms and/or molecules.

In the grand-canonical ensemble, the particle densities are
deduced from the pressure via the standard thermodynamical
relation p, = dP/du,. If charge neutrality is automatically
satisfied for the exact expression of P, it is not necessarily
the case for an approximate expression Py of P. We introduce
therefore, and this constitutes our second main result, general
procedures for making any approximation P, automatically
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consistent with electroneutrality. In these procedures, either
dressed or neutral-group activities, are introduced based on
general properties of quantum plasmas at equilibrium. We
then deduce directly from Pa, without any equation to solve,
an associated thermodynamical potential that is compatible
with electroneutrality. We show that the various neutralization
prescriptions do not lead in general to identical results for the
equation of state [29]. The choice of a particular prescription
is hence worthy of attention since it is not inconsequential.

The paper is organized as follows. In Sec. II we define
the model and recall that electroneutrality always holds in
the bulk of a plasma, whatever the activities {z,} are. This
implies that one can impose the pseudoneutrality condition
Zle eqxz¢ = 0 with S the number of species, without loss
of generality and that the average bulk properties necessarily
depend only on the temperature and on (S — 1) independent
variables {y;}, called neutral-group activities. An approximate
expression Pa(T;{z,}) of the pressure, which is not neces-
sarily compatible with electroneutrality, can then be made
compatible by adjusting it so that it depends on the activities
only through (S — 1) neutral-group activities. This defines the
neutral-group neutralization prescription, which is new to our
knowledge. This prescription is not unique for a plasma with
three or more components because there are several ways,
when S > 3, of grouping particles together such that each
group is charge neutral.

The screened activity series for P(T';{z,}) is derived in
Sec. III. This series is obtained within the path integral rep-
resentation of the quantum system in terms of an equivalent
classical gas of loops. This allows one to apply two standard
classical techniques: Mayer diagrammatical expansions and
Abe-Meeron summations [30-32]. The known screened dia-
grammatic series for the particle densities [33] are recovered,
as they should, by differentiating the present series for the
pressure. The z series for the particle densities do satisfy the
local charge neutrality order by order, thanks to the combina-
tion of the pseudoneutrality condition with a Debye-dressing
mechanism. We show how the well-known virial expansion
of the EOS up to order p? can be recovered by keeping a few
simple diagrams.

In Sec. IV we introduce a Debye-dressing prescription
which automatically ensures that the particle densities in-
ferred from any approximate function Pa(T'; {z,}) do satisfy
local charge neutrality. This prescription is directly inspired
by the Debye-dressing mechanism at work in the screened
Mayer diagrammatic series. This method is compared to
other procedures for ensuring electroneutrality, like the
neutral-group procedure (Sec. II) and the enforced-neutrality
method [34].

In Sec. V we show how approximate equations of state
at moderate densities can be constructed by using the dia-
grammatic series for P(T';{z,}), together with densities de-
duced via simple derivatives in which either the neutral-
group activities (Sec. II) or the Debye-dressing activities
(Sec. IV) are used to ensure that electroneutrality is satisfied.
We point out that important physical mechanisms, like the
recombination of nuclei and electrons into chemical species
and atom-charge interactions, can be taken into account by
retaining a few selected diagrams, in the spirit of the ACTEX

method introduced by Rogers [35-38], which underlie the
OPAL thermodynamic tables [39,40]. Some conclusions and
perspectives are given in Sec. VI.

II. NEUTRALITY IN THE
GRAND-CANONICAL ENSEMBLE

A. Quantum multicomponent Coulomb systems and the
thermodynamic limit

We consider a quantum multicomponent plasma made of
S species of charged point particles enclosed in a box with
volume A. The species index is denoted by « € {1, ..., S}.
Each particle of species « has a mass m,, while it carries a
charge e, and a spin s,. Each of them obeys either Bose or
Fermi statistics, according to the integer or half-integer value
of s,, respectively. In order to ensure thermodynamic stability,
at least one species needs to be fermions, and there must
be both positively and negatively charged species [41]. The
species « and the position x of a given particle is denoted by
the single notation X = («, x). The total interaction potential

U(Xq,...,Xy) of N particles is the sum of pairwise pure
Coulomb interactions,
Ui, ..o Xn) = Y Ve(xi, X)), 0]
i<j
with
Ve(Xi, Xj) = eq,q;vc(|X; — X;]) 2

and vc(r) = 1/r. The corresponding nonrelativistic Coulomb
Hamiltonian reads

h
HN:_ZZm

i=1

A +UXy, ... Xn), 3)

o

where A; is the Laplacian with respect to position x;. The
nucleo-electronic plasma is an example of such multicompo-
nent system, where the negative point charges are electrons
(species @ = S), while all positive point charges are nuclei
(speciesa =1,..., 5 —1).

As proved by Lieb and Lebowitz [41], the present quantum
multicomponent plasma has a well-behaved thermodynamic
limit (TL), and all statistical ensembles become equivalent
in this limit. In the grand-canonical ensemble the TL is
defined by fixing the chemical potentials ,, of each species as
well as the inverse temperature § = 1/(kg7T ), and letting the
volume A — oo. The grand-partition function E 5 of the finite
system reads

S
Epr = Trexp |:—ﬂ (H — Z“"‘N"‘>j|’ 4)
a=1

where the trace runs over all particle numbers, not only on
neutral configurations. The grand canonical pressure

kBTlH EA

PA(T 5 {ua}) = — )

has a well-defined thermodynamic limit

. In
P(T: (o)) = ko lim (©)
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As a consequence of elementary electrostatics, for non-
neutral configurations associated with Zle eoNy = Q #0,
the excess charges are expelled to the surface [41], so the
system maintains charge neutrality in the bulk. Moreover,
the Coulomb energy associated with these excess charges
is of order Q?/(2R) for a spherical box of radius R. Non-
neutral configurations with a macroscopic charge proportional
to the volume A do not contribute to E, since their weights
involve the factor exp(—BQ?/R), which vanishes faster than
exp(—CA'*€) with C,e > 0. In fact, (Q)s.gc remains of
order R in the TL whatever the chemical potentials are, so
the average charge density vanishes in the TL,

i (Q)a.6c

im ——
TL A

while the total surface charge-density carried by the walls

of the box also vanishes in the TL [41]. Hence the average
densities defined by

=0, 7)

(Na)a,GC @)

= lim
Pa an

satisfy the overall charge neutrality

S
D> eapa =0. ©)
a=1

Moreover, they coincide with the local bulk densities in the
TL in a fluid phase. Using the thermodynamic identity

P T; 10
3 T ), (10)

charge neutrality (9) can be recast as

Po =

S e =0 (an
a=1 aa'ua , !

The identity (11) is valid for any set {j,}. Because of this
identity, the bulk properties do not depend independently on
all S chemical potentials: there is necessarily a combination
of these chemical potentials that is irrelevant. This remarkable
property allows one to introduce (S — 1) independent neutral-
group chemical potentials, as well as the pseudoneutrality
condition (20), as detailed in the next two sections.

B. Introduction of (S — 1) independent neutral-group
chemical potentials

We start with the simplest case of a two-component system
(S = 2) made with nuclei (¢« = 1 = n) carrying a charge ¢; =
Ze and electrons (¢ = 2 = e) carrying a charge e, = —e. Due
to the identity (11), there is one relevant combination of chem-
ical potentials which entirely determines the equilibrium state
in the TL. As discussed previously, the leading configurations
which contribute to the grand-canonical trace (4) are almost
neutral; i.e., the numbers (,, N.) of nuclei and electrons are
such that N, >~ N,Z. Accordingly, (inNy + (eNy) is close to
N, with

W= fin + Zpte, (12)

which can be viewed as the chemical potential of an el-
ementary neutral group made with a single nuclei and Z

electrons. Such a linear combination, together with 7', en-
tirely determines the pressure, i.e., P(T; iy, ite) = P(T; ),
in agreement with the Lieb-Lebowitz theorem [21,41]. The
particle densities (10) can then be recast as

aP(T )au BP(T N
pn=—T;n =—(T:p),
o Opn O
P au P
Pe=—(T,u)—,=Z—(T;u). (13)
ou 0 ke au

and they obviously satisfy local charge neutrality.

For multicomponent systems with three or more compo-
nents, we can determine in a similar way (S — 1) relevant
combinations of the chemical potentials. Let us consider that
species (¢ = 1, ..., S — 1) are nuclei with charges Z, e, while
species @ = S = e are electrons with charges —e. Elementary
neutral groups can be constructed by associating Z, electrons
to a single given nuclei with species «. The associated neutral-
group (NG) chemical potentials are the (S — 1) combinations

:u“aNGZMa‘i‘ZaMe, a=1,....,8-1, (14)

which, together with the temperature, entirely determine the
equilibrium state. Of course, when S > 3, there are several
ways to constitute (S — 1) elementary neutral groups [42].
This freedom of choice for the set of independent relevant
variables {N} is, however, inconsequential in an exact cal-
culation as it would not affect any physical prediction. This
arbitrariness is due to the fact that there are several ways of
grouping particles together such that each group is charge-
neutral.

C. Neutral-group activities

It is useful to translate the previous considerations in terms
of the particle activities
eﬁ//«a

Za:(zsa+l)—v (15)
(2m22)*?

where A, = (Bh*/mg)"/? is the de Broglie thermal wave-
length of the particles of species «. Let us consider the
neutral-group chemical potentials (14). They provide (S — 1)
neutral-group activities

y; = [Zizg]l/(HZ;)’ (16)

where the exponent 1/(1 4 Z;) has been introduced in the
definition of y; so that it has the dimension of an activity,
i.e.,, a density. The pressure depends solely on the (S —
1) neutral-group activities y; and on the temperature, i.e.,
P(T;{ue}) = P(T; {ud%}) = P(T; {y;}). The thermodynam-
ical identity (10) which provides the particle densities is then

rewritten as
I app i
o — 2o _— T, ; —l . 17
P =20 ) 9y, (T D51 (17)

i=1

The total local charge density reads

SN 9pP dy;
Sean =3 %(T;{y,});eazaiazy}), (18)

i=1
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and it indeed always vanishes since

ayi a i 3)’1
ala 7 =Zi i
Xa:e . 02y () ¢ 8z,~ e 0Ze
— Zi Z_\_o. (19)
9N Z 1zt

Since the particle densities are determined solely by the
(S — 1) neutral-group activities y; and by the temperature,
different sets of activities can lead to the same set of densities
{py}. It is common to break this redundancy by imposing,
without any loss of generality as far as bulk properties are
concerned, the so-called pseudoneutrality (or bare-neutrality)
condition [21,23]

Z ewzoa = 0. (20)

Notice that fixing the electrons’ activity in terms of the
(S — 1) nuclei’s activities via this relation does not affect the
range of variations [0, oo] of each y; variable. The choice
(20) is particularly useful for various purposes, in particular
it simplifies the derivation of the low-density expansion of the
EOS as explained in Sec. III.

D. Neutral-group neutralization scheme
1. NG neutralization prescription

A given approximate theory, that is a given function for the
pressure Pa(T';{z}) in the TL, is not necessarily compatible
with neutrality, i.e., the particle densities inferred via the
standard identities

P =Za8£(T;{Z)/}) 2n
0Zo
do not satisfy the local charge neutrality (9) in general. In
other words, it is not possible to express Pa(T; {z,}) solely in
terms of the neutral-group activities {y;} and the temperature,
as it can be done for the exact pressure. However, one can
modify the approximate theory via the following general
procedure to make it compatible with neutrality.

Let us introduce the associated approximation

PYO(Bi{za}) = Pa(B; {23 i ({za ). - - - vs—1({za D)),
(22)

where each z, in Pa(f;{z,}) is replaced by a neutral-group
function zNS[y1({z4}), - - -, ¥s—1({z¢})] which depends on the
genuine activities {z,} through the neutral-group activities {y;}
[Eq. (16)]. The dependence of the NG functions {zgc}azl
on the variables {y;}; i
of equations

.....

[NOENGZ] A i=1, S — 1

vi =12 (23a)

(23b)

S

NG
E e, =
a=1

which combines the definitions (16) of the neutral-group
variables [where z; is replaced by zNG] with pseudoneutrality.
Hence, for the specific set of genuine activities {z,} which
satisfy pseudoneutrality, each function {zSG({yi})} takes the

value {z,}. Notice that the variations of the functions {zNG}
with the {z,}’s treated as independent variables, are entirely
defined by the choice of neutral groups. The neutral-group
functions do not depend in particular on the considered ap-
proximate theory. The present “back-and-forth” conversion,
from the S genuine activities to (S — 1) neutral-group ac-
tivities {y;} to S activity functions {z)%(z,)}, ensures that
the associated approximation PYC depends on the activities
only via the neutral-group activities, and therefore that QNG =
—PNS(T, {z4})A is a thermodynamic potential compatible
with electroneutrality.

By construction, the associated pressure PEG (B;{z4}) only
depends on the activities {z,} via the relevant neutral-group
activities, so it leads to particle densities that satisfy local
charge neutrality. The particle densities can be computed by
applying the general rules for partial derivatives of composite
functions, which provides

NG

JaP
Pa = Zaﬁ(T; {Zy})

d
= 8—PA(T; {2 Uzs). - -

S
—uY

§=1 i=l

,ys—1(zsD1})

s 0z NG ay;

ay; 3Za.

OPa
0zs

(T:{°))

(24)

The partial derivatives 0Pa/dz,, with z, treated as an in-
dependent variable, have to be evaluated at the end for
the set {zl;lG(yl, ..., ¥s—1)} that satisfies the pseudoneutrality
condition (20). It is convenient to consider that the set of
genuine activities {z, } already satisfy this condition since each
function zyG (1, ..., ys—1) then exactly coincides with z,, at
the end.

With this neutralization prescription, the pressure is left
unchanged for a pseudoneutral set {z,}, i.e., P\¢ = Pa for
such a set, and the theory is internally consistent since the
densities are deduced from the pressure via the standard
thermodynamic relation p, = z, ai, PYS(T, {z,}).

2. Explicit neutralization formulas

Using the definition (16) of the neutral-group activities, the
densities (24) can be recast as

S

aP yi  0z)¢ .
=> == fi =1,....8—1,
— 9z {ZV})Z+1 oy, !
iV 0zY6
§ T; § 2 9% 25
( iz D) 711 0y, (25)

Taking the logarithm of the definitions (16), we obtain

S—1
(26)

Zi+Dny, =Inz+Z1n )9, i=1,...,

The partial derivatives 9z)C/dy; can be calculated by differ-
entiating each side of Eq. (26) with respect to y; in a first step,
and then with respect to y; for j # i in a second step. Inserting
the resulting expressions for 9z, NG /3y; into the formula (25),
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we eventually find
S
OPA
; = Ciozg —(T;{z for i=1,...,8—-1,
p ;,ehm({m

S—1
pe=Y_Zipj, 27)
j=1

with coefficients

Z,Z;% . .
_—2z3+z,-(z,11)z, if 0£iand0 #£8
_ 72z . .
25 if #=S(e,0=e)

2ze+Zi(Zi— 1)z

By construction, the particle densities generated by the
neutral-group prescription (27)—(28) do satisfy the local
charge neutrality (9), whatever the partial derivatives 0P, /0z,
are. We recall that such derivatives must be calculated for a set
{z, } which fulfills the pseudoneutrality condition (20).

As a first check, we verify that if the approximate pressure
P, is consistent with local charge neutrality, namely, if

-1

then formula (27) for each density p; does reduce to z;0Pa /0z;
by virtue of the identities

Z;Ci.+C;j=0 for j=1....,8—-1, j#Ii,
ZiCi.+Cii=1 (30)

Moreover, if the approximate pressure is the ideal Maxwell-
Boltzmann expression, i.e., if

S—1

,BPA=5PMB=Ze+ZZj, €2))
=1

each density p; given by formula (27) does reduce to z; as a
consequence of Z}Sz_ll Cijzj + Cicze = zi.

3. Explicit formulas for two- and three-component plasmas

Let us consider a two-component plasma, S =2 with
(1 =n,Z; = Z). The nuclei and electron densities (27) then
become

JP JP,
z [ ALy Aj|’

=z oz Tz
(32)
N VA4 |:8PA 8PA]
Pe=ZxD| 0z oz |

where 0Pa/0z, and dPa/0z. are calculated for the set (z, =
Z, Ze = Zz). Note that for the hydrogen plasma, the nuclei are
protons with Z = 1, while for the helium plasma the nuclei
are alpha particles with Z = 2.

For three-component systems, S = 3, the nuclei densities
(27) read
(Z1z21 +22322)z oP,
_ 121 222)21 _A(T;{Zy})
Zi(Zy+ Dz + 2220 074
2127122 0PA
- - — (T {z, )
Z\(Zy 4+ Dzi + 2220 022
Z121(Z121 + Zpz)  OPa

— T.
Z\(Zy + Dz1 + 2725 9ze (T;{z,})  (33)

P1

and
_ QZin+2Zz0)zs P
T 20+ Z(Z+ Do 3z
VAV/ Y4V
22+ 2% + Do

Zr20(Z Z P
Zzzzz( 121 + Z222) 3_A(T; ), (34)
121 + Z(Zr + Dz 9z
with the electron density p. = Z;p1 + Z>0,. These formulas
can be applied to the case of the hydrogen-helium mixture
made with protons (1 =p,Z; = 1) and alpha nuclei (2 =
alpha, Z, = 2). The proton and alpha-particle activities z, and
Zalpha Can take arbitrary values, while the electron activity is
setto ze = Zp + 2Zalpha- The nuclei densities depend on the two
independent activities z, and zZapha. Note that the relative con-
centrations of hydrogen and helium, determined by the ratio
Op/ Paipha> do not depend only on the ratio zp/Zapha in general.

02 (T {zy D)

0Py
3_Z1(T’ {zy D)

4. Comments

The present neutral-group neutralization prescription if
quite appealing because (1) It is general and straightforward
to implement since no equation needs to be solved; (2) it
is based on exact properties of the system, namely that it
maintains neutrality in the bulk and that the dependence of
the pressure on the activities occurs only via (S — 1) neutral-
group activities {y;} which have a clear physical interpre-
tation; (3) the associated electroneutrality-compatible theory
PYS(T, {z,}) is internally consistent since the densities are
deduced from this function via the standard thermodynamic
relation; and (4) the original value of the pressure is left
unchanged after neutralization PN = P, if the genuine z,
satisfy the pseudoneutrality condition.

The neutral-group neutralization prescription is not unique
in a plasma with three or more components. Indeed, when
S > 3, other choices of the neutral groups would lead to
expressions of the particle densities similar to Egs. (27) but
with coefficients different from Eqs. (28). However, the for-
mulas for these coefficients in terms of the particle activities
are expected to be much more complicated than the rational
fractions (28). In fact, the choice (16) ensures that dy;/dz; = 0
for j # i, which greatly simplifies the calculations of the C; 5.

III. ACTIVITY EXPANSION OF THE PRESSURE

Mayer diagrams have been introduced while ago [30] in
order to derive low-density expansions of equilibrium quanti-
ties for classical systems with short-range pair interactions.
For charged fluids, every Mayer diagram diverges because
of the long range of Coulomb interactions. Abe [31] and
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Meeron [32] showed that such divergences can be removed via
systematic summations of convolution chains built with the
Coulomb interaction. The whole Mayer series is then exactly
transformed into a series of so-called prototype graphs, with
the same topological structure as the Mayer diagrams, but
with effective bonds built with the familiar Debye potential
in place of the bare Coulomb interaction. The contribution
of each prototype graph is finite because of the collective
screening effect embedded in the Debye potential.

A. The equivalent classical gas of loops

The trace (4) defining E, can be expressed in position
and spin space, where the corresponding states have to be
symmetrized according to Bose or Fermi statistics. The corre-
sponding sum involves both diagonal and off-diagonal matrix
elements of exp(—BHy) in position space. Diagonal matrix
elements account for Maxwell-Boltzmann statistics, while
off-diagonal matrix elements describe exchange contribu-
tions. Within the Feynman-Kac representation, all the matrix
elements of exp(—BHy) in position space can be rewritten as
functional integrals over paths followed by the particles. The
off-diagonal matrix elements generate open paths. However
all the open paths followed by the particles exchanged in
a given cyclic permutation, can be collected into a closed
filamentous object, called a loop £, or sometimes a ring
polymer, in the literature. Each contribution of a given spatial
matrix element of exp(—pBHy) for a given set of particles
can be related to that of a classical Boltzmann factor for a
set of loops. In a last nontrivial step, the sum of all these
contributions, namely E,, is recast as the grand-partition
function of a classical gas of loops [43—45]

Bp = EA,Loop
[e9) 1 N
=Zm[l_[ / D(L-)z(c,-)}e—"mlﬁz ~~~~~ 0, (35)
N=0"' ~Li=174

thereby establishing a mapping, at equilibrium, between the
quantum gas and a classical gas of loops. The loop phase-
space measure D(L), loop fugacity z(L£), and total interaction
potential U (Ly, Lo, ..., Ly) are defined as follows.

A loop L located at x containing g particles of species
o, is a closed path X(s) = x + A, X (s), parametrized by an
imaginary time s running from 0 to g where X (s), the shape
of the loop, is a Brownian bridge subjected to the constraints
X (0) = X(q) =0 (Fig. 1). The state of a loop, collectively
denoted by £ = {x, x}, is defined by its position x together
with an internal degree of freedom x = {«, g, X'}, which
includes its shape X as well as the number ¢ of exchanged
particles of species «. The loop phase-space measure D(L)
means summation over all these degrees of freedom,

S o
/D(ﬁ)---:ZZ/dx/Dq(X)m. (36)
A a=1 g=1 A

The functional integration over the loop shape D,(X) is the
normalized Gaussian measure for the Brownian bridge X (s)

FIG. 1. A loop made with the paths of three particles exchanged
in a permutation cycle (1 - 2 — 3 — 1).

entirely defined by its covariance

/ Dy(X) X (1) (52) = 8,00 [min (S—‘ s—z) - S—‘S—z]

q9 9 q 49
(37
The loop activity reads
q-1 Biaq
o € _ X
L) = (@0 + DT e e (38
4 (2mg)l)
where the factor n, = 1 for bosons and 1, = —1 for fermions.

Moreover, U (L) is the self-energy of the loop which is
generated by the interactions between the exchanged particles,

ez 4 “ _
Vi) = / ds / ds' (1 — 835 — § e (e X (5)
0 0

— 2 X(5)), (39)
with the Dirac comb
oo [0.9]
Ss—sh= ) Ss—s—n= Y ™D (40
n=-—0o n=-—00

The Dirac comb ensures that particles only interact at equal
times s along their paths, as required by the Feynman-Kac
formula, while the term (1 — §j4¢7) removes the contributions
of self-interactions ([s] denotes the integer part of s).

Eventually, the total interaction potential U (L, L, ...,
Ly) is a sum of pairwise interactions,

1
ULy, Loy, Lyn) = EZV(L,»,EJ-), 41)
i#j
with

qi qj ~
V(E,', E]) =eaieaj / ds,-/ de(S(S,' — Sj)
0 0

X UC(Xi + )»m)(i(s,-) —Xj — )\a,-Xj(sj))- (42)

The loop-loop interaction V (£;, £;) is generated by the inter-
actions between any particle inside £; and any particle inside
L;. Like in formula (39), the Dirac comb (40) guarantees that
interactions are taken at equal times along particle paths.

The introduction of the gas of loops is particularly useful
at low densities, because the standard Mayer diagrammatic
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expansions, valid for classical systems with pairwise interac-
tions, can be straightforwardly applied by merely replacing
points by loops. However, as in the case of classical Coulomb
systems, the Mayer diagrams for the loop gas are plagued with
divergences arising from the large-distance behavior

gi€q; qjeaj

V(Li, Lj) ~
’ |X,‘ — X

when [x; — x;| — oo. 43)
Note that such behavior is nothing but the Coulomb interac-
tion between point charges, because the finite spatial extents
of loops £; and L; can be neglected with respect to their
large relative distance |x; — X;|. It has been shown that all
these long-range divergences can be removed within a suitable
extension of the Abe-Meeron summation process introduced
long ago for classical Coulomb fluids. The method has been
applied for both the one- and two-body distribution functions
[33,44]. In the next section, we derive the corresponding
Abe-Meeron series for the pressure.

B. Abe-Meeron-like summations for the pressure

The Mayer diagrammatical expansion of the pressure,

1
P = Xg: G / [[Tew:=o|[IT bM]g, (44)

involves simply connected diagrams G made with N =
1,2, ...field (black) points, representing loops with statistical
weight z(£), and Mayer bonds by defined by

bm(Li, L;) = exp[—BV (L;, L))] — 1. (45)

The contribution of a given G is calculated by labeling arbi-
trarily the N field points (loops). S(G) denotes the symmetry
factor, which is the number of permutations of those labeled
field loops that leave the product of bonds and weights un-
changed. An integration (36) is performed over the degrees of
freedom of each field loop. Because of translation invariance,
once the integration over (N — 1) black loops have been
performed in P, the result no longer depends on the position
of the remaining black loop. The 1/A factor in the definition
(5) of the pressure of the finite system can then be absorbed in
the thermodynamic limit by keeping the position of one loop
fixed, i.e., by integrating only over (N — 1) loops and on the
internal degrees of freedom of the fixed loop.

Due to the large-distance behavior (43), any Mayer di-
agram G involving more than one loop is divergent in the
thermodynamic limit. Let us eliminate these divergences
systematically by summing diagrams in classes, as in the
classical case [31,32]. Since exactly the same counting and
combinatorics formulas intervene in these summations as in
the classical case, we won’t detail them. Note that simplified
presentations of the summation process for the one-body loop
density are given in Refs. [33,44]. The key starting point is the
decomposition of the Mayer bond (45) into

bm(Li, L)) = br(Li, L) + bi(L;, L)), (46)
with the interaction bond

bi(Li, Lj) = =BV (L, L)) 47

>0 Mayer bond: by =e PV — 1
OO br=e V145V

Truncated Mayer bond

bt = e BV 1 +ﬁV — %([3‘/)2
Truncated Mayer ending bond

CTeD

O—O
O=—=0 3l

by = —pV (interaction bond)
(two interaction bonds in parallel)

FIG. 2. The bonds before summations. The last four bonds are
generated by decomposing the original Mayer bond.

and the truncated bond
br(Li, L) =exp[—BV(Li, LH] — 1+ BV (L, L)). (48)

Graphical representations for these bonds are given in
Fig. 2. A loop £; which is singly connected to a loop L;
is called an ending loop (Fig. 3). A Mayer bond by(Li, £;)
connected to such a loop is decomposed as

bw(Li, L) = bre(Li, £;) + bi(Li, L) + [bi(Li, L) /2,
(49)
with the truncated ending bond

bre(Li, L) = exp[-BV (L, L)N] =1+ BV (Li, L))

—[BV (L, LT /2. (50)
These two decompositions can be represented graphically:
OO0 = T0 + O0—O (51)

C0O = OJEOD + O—0O + =0

(52)

After inserting these decompositions into every diagram
G, a pair of loops £; and £; can be connected either by by
or br (if none of the two loops is an ending loop) or by
b, %b% or brg (if at least one of the two loops is an ending
loop). We proceed then to systematic summations of all chain
convolutions by * by 1 xb; made with arbitrary numbers p of
interaction bonds by. Such a convolution chain can link a loop
L; to another loop L; or to itself (£; = £;), in which case we
call this convolution chain a ring. The sumof p=1,2,...00

3 4

1 2

FIG. 3. Diagram with an ending loop (point 4).
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single convolution chains between two fixed loops £; and L},

O’VV\/\NO =
U

generates the Debye bond
bp(Li, L}) = —Bey,eq;9(Li, L)), (54)

where ¢(L;, L;) is the quantum analog of the Debye potential,
which reads [22]

qi qj
$(Lir L)) = / ds, / d5; Yooy (X) + 1, X 1(5,)
0 0

—X; — g Xi(8), Si — Sj), (55)
with
oo
Yioop(r, 8) = Y expimns)Pioop(r,n)  (56)
n=—0oo
and

~ d’k ) 4
Yloop (T, 1) = / any exp(ik - r)m~ (57

fPr= @—@ + +

which provide the contribution SPg. In such diagrams made
with p black points, the symmetry factor is 1/(2p), in contrast
to the single chain diagrams in Eq. (53) where the symmetry
factor is 1 for any p. After expressing each bare interaction V
in Fourier space, we find that the contribution to the pressure
of a single ring made with p black loops and p bonds b; =
— BV reduces to

1 & &Pk 1[—k2k, )]’
2 _Z /(2n)37a[ 2 } ' ©0

The calculation is similar to that involved in the convolution
chain and gives again rise to the screening factors «2(k, n).
Now, the summation over p of all ring contributions leads to
a logarithmic function instead of the rational fraction 1/[k* +
«2(k, n)] for the chain contributions:

1 A’k [ k2(k, n) K2k, n)
P b Bl

(61)

The summations for all the remaining diagrams are carried
out as for the one-body density [22]. They generate the same
screened bonds and dressed activities (see further Fig. 5).
Besides the Debye bond (54), the so-called Abe-Meeron

o—0O + O—8—0O + O—@—@—0O +

(53)

(

Note that 1510013 (r, n) has a structure analogous to the classical
Debye form, except that an infinite number of frequency-
dependent screening factors «2(k, n) occur,

k>(k,n) =4n B Z qui /q ds exp(Zinns)/Dq(X)

a g=l1 0

x explik - Ao X (8)]z(x).- (58)

The collective effects are embedded in these screening factors
k2(k, n), while the frequencies 2mn are the analogues of the
familiar Matsubara frequencies in the standard many-body
perturbative series.

Similarly to the case of the Mayer diagrams for the one-
body loop density, the summation of all convolution chains in
the Mayer diagrams for the pressure can be expressed in terms
of ¢, except in the single ring diagrams built with arbitrary
numbers p > 2 of interaction bonds by,

(59)

[
bond

bam(Li, L) = explbp(Li, L)l —1—=bp(Li, L) (62)

is generated by summing more complex structures connecting
the fixed pair £; and £; (see Fig. 4). If £; is an ending loop, a
similar summation provides the Abe-Meeron ending bond

bame(Li, Lj) = exp[bp(L;, £;)] — 1 — bp(L;, L)
— [bo(Li, L)) /2. (63)

WO@+Q?@+O€?}+@+W
+O?O+W+W+m

FIG. 4. Examples of diagrams contributing to the bond
bam(L;, L;). Since the truncated Mayer bond by can be interpreted
asthe sumof n = 2, 3, ..., oo direct interaction bonds b; in parallel,
the summed diagrams involve arbitrary number of links, either direct

or via convolution chains of b; bonds, between the two fixed loops
['i and £ Je
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Bonds
O

SV
CED

bp = —f¢

bam = e P? — 14 3¢

bame = e P — 1+ B — (8¢)?

Debye bond
Abe-Meeron bond

Abe-Meeron ending bond

The bond bame can only be used to connect an ending bare field loop to the rest of the diagram.

Weights of points
O  wl) =)@ -1

Dressed activity

This weight is forbidden for an ending field point connected by the bond bamE.

O z(£)

Bare activity

This weight is forbidden for an intermediate field point in a convolution bp * bp
and for an ending field loop connected by a bond bawm

When both weights are allowed, their sum provides the total weight

QL) = ()

Total activity (bare + dressed)

FIG. 5. Bonds and weights in the screened Mayer expansions for the pressure and for loop distribution functions. In the expansion of P,
the diagrams made with only one or two loops need a special treatment; see Eq. (68) and the comment after Eq. (71).

The sum of all convolution rings involving p > 1 loops and (p + 1) bonds b attached to a loop £; that is connected by more

than two bonds by (or that is a root loop),

IR(L;)) = O—@ + ©<I +

provides the ring sum

e
(64)

IR(L:) = 5[bp(Li, Li) — bi(Li, L)) (65)

Notice that the symmetry factor of each of these rings is 1/2 because of the particular role of the attaching loop L;.
The sum of n > 1 such rings attached to loop L; generates the ring dressing factor (exp (Ir(L£;) — 1)) in the definition
of the dressed activity

(L) = z(L)(expUr (L)) — 1). (66)

The ring dressing factor exp(Ir(L;)) accounts for the interaction energy of loop £; with the surrounding polarization cloud of

loops within a (nonlinear) mean-field description.
The final screened Mayer series of the pressure reads

BP = /D(X)Z(»C)+/3PR + /D(X)Z(ﬁ)[el“w) -1

where b* and z* are generic notations for the bonds and
weights listed in Fig. 5. We recall that £ = {x, x} where
x ={a,q, X}, so [D(x) means ), Z:‘;, [ D(X). The
loop activity z(L£) = z(x) [see Eq. (38)] depends on the
shape X(-) of the loop via the self-energy (39). In all
diagrams, sums over the internal degrees of freedom yx
of all loops and integrations over all relative distances
between loops must be performed. Note that each dia-

.+<;}+m+...z{§}

— (L) + ; %f [HD(C)Z*(ﬁ)] []‘[ b*]p’ (67)

(

gram contains an infinite number of contributions with
arbitrary high orders in the activities since z(L£) is of
order z9.

The diagram made with a single field point, which is
treated separately, provides the three first terms in Eq. (67):
the ideal term, the ring pressure (61), and the contribution of
a single black loop to which are attached at least two rings,
represented graphically by

(68)
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The ring term S PR reduces in the classical limit to the familiar
Debye mean-field correction «*/(127), while the diagrams
with two rings or more in Eq. (68) accounts for corrections
beyond mean field to the interaction energy of a loop with
its surrounding polarization cloud [46]. We recall that the
position of an arbitrarily chosen loop in each diagram P is
kept fixed because of translational invariance. For instance, in
the contribution of the graphs (68), it is understood that the
integration D(L) is carried out over all the degrees of freedom
of loop L except its position.

The sum in the second line is carried over all unlabelled
topologically different prototype graphs P made with N >
2 black points. These diagrams have the same topological
structure as the genuine Mayer diagrams. They are simply
connected and may contain articulation points. Each point
carries a statistical weight z*(£) which is either

zZ(L) (bareloop) or zp(L) (dressed loop). (69)

When both weights are allowed for a point, the two possibili-
ties can be added together to form the weight

R(L) =z2(L) + zp(L) = (L) exp(R(L)).  (70)

There exists three possible bonds b* = bp, bam, and baye.
The bond bamg can be used only to connect an ending bare
field loop to the rest of the diagram (this rest can consist in a
single bare or dressed loop in the particular case of a diagram
made with two loops). In general, the two weights (69) are
possible, except in the following cases:

(a) If £ is an ending field loop connected by a bond bam
or bamg, its weight is

vy J2(L) if D* = bave
Z0 = {zD(c) if b = bay

(b) If £ is an intermediate field loop in a convolution by *
bp of two Debye bonds, its weight is zp(L).

Moreover, the case of a diagram made with only two loops
is special, because both loops are then ending. The case b* =
bamg in rule (71) is then modified to allow not only the case
where both field loops are bare, but also the case where one
loop is bare and one loop is dressed (see Fig. 6).

These diagrammatic ingredients and rules are summarized
in Fig. 5. These rules are valid not only for diagrams with
N > 2 points in the screened Mayer series of the pressure, but
also for all diagrams in the screened Mayer series of any loop
distribution function p™(Ly, ..., £,). In the latter case, each
diagram contains n root points and an arbitrary number of field
points. Figure 6 shows all diagrams in the screened Mayer
series of the pressure made with one, two, or three loops.

The central quantity is the Debye bond bp(L;, L;) =
—ﬂea[ea/.qb(ﬁi, L;). As shown in Ref. [22], ¢ decays as 1/73
at large distances r between two loops. Thus bonds bam
and bavp decay, respectively, as 1/r° and 1/7°, and they
are integrable. The bond bp decays as ¢ itself, i.e., as 1/ r,
which is at the border line for integrability. Accordingly,
the graphs with ending loops connected to the rest of the
diagram by bonds bp have to be dealt with some care. In
fact, since the corresponding weight of the ending loop,
zr(L), is an even function of the loop shape X(s), if we
proceed first to functional integrations over the shape, then the
1/r3-algebraic tails vanish, because their amplitudes are odd

(71)

1 loop

\

<=

@® ete

\
4
*
-~
\
~
\
4
1@,
v,
-
': ': N,
| \ )
* * A

2 loops

3 loops

FIG. 6. All diagrams involving one, two, or three loops in the
screened Mayer series of the pressure.

functions of X (s) and every prototype graph provides a finite
contribution [22].

C. Link with the activity series for the particle densities

The screened activity expansion of the loop density can
be readily inferred from the expansion (67) of the pressure
by using

3BP

82(La)
The activity expansion of the particle densities follows
then from

p(Ly) =z(Ly)

(72)

o= Y00 [ D 9L 3)

Qazl

Notice that P = kg7 In E/A is viewed in Eq. (72) as a func-
tional of the loop activity z(£), which is present in Eq. (35)
and in bonds and weights of the resummed diagrammatics.
We consider momentarily that the function z(£) can also
vary with the root position x of the loop £, as it does in an
inhomogeneous system. The rules of functional derivatives
generate then straightforwardly the expressions for the poten-
tially space-dependent loop density p(L£). When computing
the particle density p, in a homogeneous plasma, as in Secs.
IID 2 and IV, the functional derivative can be replaced by an
ordinary partial derivative with respect to the one-dimensional
variable z,.

The functional derivative of each prototype diagram P is
calculated by either whitening a black loop £ with weight
z(L) into the root loop £, with weight z(L£,) or by taking
the functional derivative with respect to z(L,) of SPr and

023203-10



SCREENED ACTIVITY EXPANSION FOR THE ...

PHYSICAL REVIEW E 102, 023203 (2020)

bD(L:,', Cj)i
SBPR
z2(Ly) 52(Ly) Z(LDIR(Ly) (74)
and
Sbp(Li, L)) A A
Z(ﬁa)—3z(£a) = 2(La)bp(Li, L)bp(Ly, L)).  (75)

Note that the functional derivatives of the dressed activities
and of the other bonds, which can be all expressed in terms
of bp, are then obtained by using Eq. (75). In particular,
the derivative of the ring factor Igr(L;) generates the bond

%b% (L4, L;). This calculation provides

1 * *
P =L 55 [[Mewzw][1#],. o

which can be also obtained by a direct Abe-Meeron summa-
tion of the Mayer diagrammatic series for the loop density
[22]. In obtaining Eq. (76), we have used that each bond
103 (Ly, L;) can be added to the bond bame(Lq, £;) in dia-
grams with the same topological structure to provide the bond
bAM~

The prototype diagrams P, have one root (white) point
with weight zr(L,), N =0, 1,2, ... field (black) points and
obey the diagrammatical rules summarized in Fig. 5. The first
few diagrams in the series (76) are

|
p(L) =0 + Opi@ + CE® + C@® + -

It can be checked that there are 16 topologically different
diagrams made with three loops.

D. Neutrality and low-density expansion of the EOS
1. Neutrality, pseudoneutrality, and Debye dressing

The collective electrostatic effects in a finite box which
enforce charge neutrality in the grand-canonical ensemble
(see Sec. II) do not show in each individual term of the
activity series, where only a finite number of particles inter-
vene. This is particularly striking for the ideal contribution
in the series (76) for the particle density, whose Maxwell-
Boltzmann (weak-degeneracy) limit involves a single particle.
The pseudoneutrality condition, Za eqyZy = 0, which can be
safely imposed as argued in Sec. II, restores the previous col-
lective electrostatic effects at this lowest order in the particle
activities. Such effects might otherwise be erased in the series
(67) and (76) since the boundaries have been sent to infin-
ity without worrying about surface effects. Importantly, the
pseudoneutrality condition ensures moreover that, at a given
order in the small activities z, the expansions (67) and (76)
for the pressure and the particle densities can be calculated
by keeping only a finite number of diagrams. We show first
this point, and demonstrate then that local charge neutrality is
always ensured due to the structure of these series.

Let us consider the series (67) for the pressure. For any
given graph P, there exists a Debye-dressed graph PP ob-
tained by adding a black loop £ with weight z(£) connected
to P via a single bond bp(L, L) where L is a black loop
inside P, that is

PP =
L
(78)

In the low-activity limit, the potential ¢ reduces to its classical
Debye counterpart [22], so
exp(—#;|x — x’
bD(‘Cv ‘C/) ~ _ﬁqaeaqwea’w (79)

x — x|

(77)

(

and where we have used

K7(0,0) ~ 2 =47B Y ez, (80)
Y

At leading order in the small activities, the contribution of
the graph PP is obtained by keeping only the loop £ made
with a single particle, i.e., g, = 1, while the bond bp(L, L)
is replaced by its classical Debye expression (79). The lead-
ing contribution of PP reduces hence to that of graph P
multiplied by

[ D@y o £ ~ ~paves Y e

5 /dxexp(—mx —x/)

Ix — x|

- —Mﬁ—qzo“wzeaza. 1)

i -
At leading order, the contribution of PP has obviously the
same order as that of P for arbitrary sets {z,} of particle
activities. In other words, in order to compute the pressure
at a given order for such sets, one would have to keep an
infinite number of graphs in the series (67), since the dressing
of a given P can be repeated an arbitrary number of times.
This infinite sum might actually not converge, meaning that
the screened Mayer series (67) and (76) in an unbounded
volume might make sense only when the pseudoneutrality
condition is imposed. The pseudoneutrality condition (20)
greatly simplifies the calculations at a given order. Indeed, the
graph PP contributes then at a higher order than graph P.
Only a finite number of graphs P in the series (67) and (76)
need then to be kept.

The property of a quantum plasma to be locally charge
neutral at equilibrium can be proved by combining Eq. (73)
for the particle density with the Mayer series (76) for the
density of loops. This proof is based on a simple Debye-
dressing mechanism at work in the resulting series for the
particle densities.
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FIG. 7. A diagram P, € C, and its Debye-dressed companion
diagram PP. In diagram P,, loop £, cannot be a bare loop con-
nected only by a bond bp, whereas L, is precisely such a loop in
diagram PP.

Remembering that each loop in a prototype diagram is
either bare or dressed, we classify the diagrams into two
groups: the class CP of diagrams where the root loop L,
is an ending bare loop connected only by a Debye bond
bp, and the class C, containing all other diagrams. For any
diagram P, in the class C,, including the most simple diagram
made with only one single bare loop, there exists a unique
corresponding diagram PP in the class CP where £, is a
bare loop connected by a (single) bond bp to a subdiagram
identical to P, but where the root point is replaced by a
field point, which we label £; (see Fig. 7). This establishes
a one-to-one correspondence between the diagrams in the two
classes because no convolution bp * bp with an intermediate
bare field loop is allowed in the prototype diagrams. The
diagram PP is said to be the Debye-dressed companion of
diagram P,.

The contribution of diagram PP to the density p, ,

loaa [Pili)]
_ _dmben 5 2 [ DAL Y e pul P
= KZ(O, 0) %:1‘13 Ta a a ~ a1 Pay L7115
(82)

is easily calculated with the frequency decomposition (56) of
¢(L,, L£1) and translation invariance. Notice that this contri-

J

bution has the same order, when z — 0, as the one of diagram
Pa,[Pa] because z(L) « z and k%(0,0) o z. Using expression
(58) for «2(0, 0), this contribution to the local charge density

reduces to
Sewnnl?

The contribution to the local charge density of any diagram P,
is thus exactly compensated by the contribution of its compan-
ion diagram PP. The local charge density therefore vanishes.
Notice that this proof does not require the pseudoneutrality
condition to be satisfied. If pseudoneutrality does not hold,
there is an infinite number of diagrams contributing at the
same order, rendering the proof only formal, whereas there is
only a finite number of diagrams contributing at a given order
when the pseudoneutrality condition holds.

Zeadpad [Pal. (83)

2. Expansion of the EOS at order p*

The low-density expansion of the EOS has been computed
up to order p>/? by various methods [15,17,23,47,48], which
all provide eventually identical physical predictions [24]. Our
purpose in this section is to illustrate the efficiency of the
method based on the screened activity expansion (67) of the
pressure by outlining how all terms up to order p? in the EOS
can be computed.

Since at low densities, z ~ p, in order to obtain the EOS
at order p2, we need to start with the z expansion of SP at
the order z2. We assume that the pseudoneutrality condition
holds. Then, at this order, one only needs to consider the
diagrams made with one or two loops, i.e., the first five
diagrams in Fig. 6. In the first diagram made with two loops
in this figure, we can discard the cases where one or both
loops are bare because their contributions are o(z%) because
of pseudoneutrality. Since zp o z¥/2, the next diagram and the
last one made with two loops are of order z>/? and can hence
also be discarded. Only three diagrams remain,

6P = {& + @@ + e + ofz"). (84)

Significantly more diagrams contribute to the density at the same order,

Pa =

(@,+@w@+@:€w§o+of::©+£© @;%0 diz;l

+ 7 Debye-dressed companion diagrams (85)

Since Eq. (85) includes all Debye-dressed companion diagrams, it leads to particle densities that satisfy the charge neutrality
Y o €aPo = 0, as shown in the previous section. In the last five drawn diagrams, the dressed weight zp of the root point has been

discarded into the o(z?) remainder.
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The seven DD companion diagrams in Eq. (85) are

At the considered order O(z%), the root point is a single
particule of species «, i.e., a loop with g = 1, with weight z,,
and the wavy and dotted bond represents the classical Debye
screened bond given by Eq. (55) where v140p (7, 5) is replaced
by exp(—«.r)/r with r = |r| while Kzz is defined in Eq. (80).
The contribution of a companion diagram PP to the density
Pu» 18 given by the general formula (82) with o, = «, which
then reduces to

4 oasa
palPP] = —% Y ey [P (87)

< Y

discarding terms of order o(z?). Since the contributions oy [P]
of the seven diagrams (85) are obtained by merely taking the
partial derivative z,9d(8P)/dz, of the retained pressure dia-
grams at the same order 0(z%), we see that the contributions
0«[PP] of their companions at the same order O(z?) are also
fully determined by the pressure diagrams (84).

After computing the pressure at order z2, denoted P® and
the density at the same order, denoted péz)({zy}), one deter-
mines the equation of state P(T, {p, }). The S pseudoneutral
activities {z,} up to order p* included, denoted {2}, are first
obtained as function of the physical densities {p, } by inverting
perturbatively the S independent relations

p (50 = pur =1, 8 -1
S e, =0. (88)

Y

The required EOS up at order p? included follows from
inserting {z{*'} into Eq. (84):

BP(B:{pa}) = PP[B: {7 ({paD}] + 00®).  (89)

It can be checked that the known density expansion of the
pressure is indeed recovered.

This calculation illustrates the usefulness of the activity
series for the pressure which considerably reduces the number
of diagrams to be computed. A similar scheme can be repeated
at the next orders. However, even if the number of diagrams
which need to be computed is reduced with respect to other
methods, it remains a formidable task to obtain the terms of
order p3. In particular, one has to take into account quantum
effects embedded in ¢ and Ig, so a classical treatment of the
dressing mechanism is no longer sufficient.

3. Computation of the densities by differentiation of the pressure
with Debye-dressed activities

It is instructive to interpret the previous results in terms
of Debye-dressed activities. Firstly, we note that the seven
companion diagrams (86) in the density series arise from other
diagrams in the pressure series which do not contribute at
order z* by virtue of the pseudoneutrality condition. In fact,
the pseudoneutrality condition must be applied only after the

(86)

derivative z,d(8P)/0z, has been taken, whereas it has already
been applied in an expression like (84). Since a contribution
to the pressure that vanishes by pseudoneutrality can have
a nonvanishing derivative with respect to z, and hence a
nonvanishing contribution to the density p,, one needs to
consider also such contributions in the pressure series. These
contributions can be seen as decorations of the diagrams that
do not increase their order. The Debye-dressing (DD) of a
loop in a diagram is an example of such a contribution (recall
Eq. (78)). Adding DD decorations successively to each points
in the three diagrams of Eq. (84) provides a set of diagrams
which generate, after differentiation, the corresponding den-
sity diagrams in Eq. (85) except for the last four companion
diagrams in Eq. (86). In fact, these four diagrams arise from
other diagrams in the pressure series which are nothing but
the same diagrams where the root white point is transformed
into a black point. Nevertheless, we will show that all the 14
diagrams can be computed by direct partial differentiation of
only the three pressure diagrams (84) when Debye-dressed
activities are used.
Let us define the Debye-dressed activity

47 Be,
ZBD = Za (1 — K—Zz Z eyzy> , (90)

14

where the second term in Eq. (90) is the classical DD factor
(81). Let us replace, in the three pressure diagrams (84), the
weights z, of the black points by zPP. This amounts to deco-
rate the considered diagrams and it provides after differentia-
tion the first 10 diagrams in Eq. (85). Since the remaining four
companion diagrams in Eq. (86) are associated with diagrams
obtained by taking the derivative of the ring factor /g and of
the bond bp, we see that if we also replace z, by zPP in both
Ir and bp in the three pressure diagrams (84), the standard
rules of partial derivatives of composite functions generate
the last four companion diagrams in Eq. (86), because of the
expression (97) of the partial derivative dz5°/dz,. Again, and
as mentioned above, this partial derivative has to be calculated
for any set of independent activities, while the pseudoneutral
condition is applied afterward. Hence, if we replace all the
activities z, by the functions z2 in the weights and bonds of
the three pressure diagrams (84), the corresponding function
PPP is such that the derivative z,3(8PPP)/dz, generates
automatically the values of all the 14 diagrams in Eq. (85)
at order z? included.

IV. DEBYE-DRESSING NEUTRALIZATION
PRESCRIPTION

Let us consider a given approximation Px (8; {z;}) obtained
by selecting specific diagrams in the series (67). As discussed
in Sec. II D for any approximation, the densities inferred from
Pa(B; {z;}) via the standard identities (21) do not necessarily
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satisfy the local charge neutrality. We introduced a general
prescription, based on the neutral-group activities, which sys-
tematically circumvents this drawback. Here we propose a
different, but closely related, general method inspired by the
Debye-dressing mechanism described and applied to the first
terms of the pressure and density series up to order z2.

A. Debye-dressing neutralization prescription

The Debye-dressed diagrams (see Fig. 7) in the series
for the particle densities are crucial for ensuring the local
charge neutrality. If a given diagram contributes to the particle
densities in a way that breaks the local charge neutrality,
adding the contribution of its DD companion diagram is
sufficient to restore electroneutrality. Inspired by this simple
mechanism, one can define the following heuristic Debye-
dressing neutralization prescription

0Py 477,3601201
Pa = Zay - ZeyZy 8 (91)

The two terms in this equation are the analogs of the two
diagrams in Fig. 7. The classical expression for the Debye-
dressing factor is used in Eq. (91), as in Sec. III D for exact
calculations at order z2, because it is sufficient to ensure
electroneutrality. We stress that the partial derivatives in the
dressed expression (91) are calculated as usual, namely for
independent activities z,. However, at the end, their values
are determined for a set {z,} satisfying the pseudoneutral-
ity condition (20). The local charge neutrality is automati-
cally satisfied by the dressed densities (91). If the undressed
densities

0P
Lo aza

92)

carry a nonzero net charge gex, the dressed density p, (91) is
shifted from its undressed counterpart by a term proportional
t0 egZaqexc- As it should, this shift vanishes if gexe = 0,
namely if the undressed densities (92) already satisfy local
charge neutrality.

In Sec. IIID 3, DD activities {zED} have been introduced
to take into account systematically, at any order in the par-
ticle activities, the classical Debye screening effect when
determining the particle densities associated with some di-
agrams in the pressure series (67). The DD activities can
therefore also be used to determine, from an approximate
expression Pa(B;{z;}) for the pressure, particle densities that
satisfy electroneutrality, and also a grand potential from which
these densities derive. Let us show that this way of ensuring
electroneutrality, which is exact at order Z2, leads to the same
particle densities as the prescription (91). In that approach, to
any approximation P, (8; {z;}) for the pressure, we introduce
the associated approximation

PP (B {za}) = Pa(B: {z5"}). (93)

where each z, in P, is replaced by the Debye-dressing
function (90) of the activities. The particle densities inferred

from PED,

DD
(T3 {zy })s (94)

Pa = Za

can be calculated by applying the rules of composition of
partial derivatives,

S DD
=3 2 (1 (2P}, L 95)

The partial derivatives dz5°/dz, calculated by using expres-
sions (90) are

8zED _,bDg 4 Beyeozao

g e T g

Za

(471,3) e eeZaZQ Z Z (96)
€yZy>

where §, ¢ is the Kronecker symbol. For any set {z, } satisfying
the pseudoneutrality condition (20), these expressions become
dzpP 4 BeyesZazo

= Za9a,0 —
024 K2

Za , 97)

while the Debye-dressing functions z2P reduce to z, . Inserting
these results into Eq. (95), we exactly recover the expressions
(91) for the dressed densities.

B. Comparison with other prescriptions ensuring
electroneutrality

In order to compare the Debye-dressing neutralization
prescription (91) with that of the neutral groups, it is useful to
rewrite Eq. (91) in a way similar to expressions (27), namely,

ZDMS (T {zyh) for i=1,...,8—1,
pe=7) Zip; (98)
with coefficients
1 Zizz,- if i .
- ZE+Z,E:T]Z,ZZ1 =t
R B /AL - P — _ P L
D; ;= e for j=1,...,8—1, j#i.
Zizi e : P —
m if ]—S(].e.,]—e)
99)
For two-component systems, like the hydrogen or the he-
lium plasmas for instance, it turns out that D;; =C; | =

1/(Z+1)and Dy =C1. =Z/(Z+ 1), so both recipes are
equivalent. For systems with three or more components, like
the hydrogen-helium mixture, these methods are no longer
equivalent, at least for the choice (16) of the neutral-group
activities. Nevertheless it is worthy to note that both prescrip-
tions become equivalent if the approximate pressure Py is
consistent with local charge neutrality, i.e., if the undressed
densities (92) do not carry a net charge gexc = 0. Of course,
they become exact for an exact expression of the pressure.
Let us mention that yet another neutralization prescrip-
tion has been used in the literature [34], which we call the
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enforced-neutrality prescription. Contrarily to the previous
neutral-group or Debye-dressing procedures, it does not rely
on a general transformation valid for any approximate pres-
sure P, . For a given set of nuclei activities {z;;i =1,...,5 —
1}, it consists in choosing the electron activity z. in such a
way that the local charge neutrality for the densities directly
calculated within the standard formulas is indeed observed.
The particular value of z. if found by solving a nonlinear
equation that is specific to the considered model. Notice that
this prescription disregards the pseudoneutrality condition
(20).

Eventually, let us illustrate the various neutralization meth-
ods for a two-component system in the case of the following
simple approximation for the pressure

3

BPA(Bsz1,2e) =21 + 2o + L

127

with «, = [47 Be*(Z%z1 + z.)]'/?. The first two terms are

nothing but the ideal Maxwell-Botzmann contributions, while

the last term is the classical mean-field (or ring) contribution.

The neutral-group and Debye-dressing methods provide the
same densities

oo = 2[1 + Be*Zk, /2]

where the subscript “n” refers to nuclei (z; =z, = 2,2 =
Z7). These expressions also coincide with the exact small-
activity expansion of p, and p. up to order z3/? included,
which can be calculated within the diagrammatic series
(76). Hence, the approximate EOS associated with (100)
are identical in both methods, namely, PEG(ﬂ;pn, Pe) =

PR (B pu, o).
Within the enforced-neutrality procedure, since

(100)

and  p. = Zpn, (101

dBP dBP
Zi PP _ 21+ Be’Z%./2 and z PPa _ Ze + B’k /2,
8Z1 aZe
(102)
if we set z; = z, the electron activity zEN is such that
Z[z + B*Z%k, /2] = 2N + Bek, /2 with
K, = [4n B (222 + 222, (103)

which can be recast as a cubic polynomial equation for zEN.
For Z # 1, zEN is different from the electron activity Zz
satisfying the pseudoneutrality condition, and the resulting
EOS ﬂPEN(,B;pn, pe) is different from the previous EOS
PYC (B pn, pe) = PRP(B; pn, pe)- If Z =1, i.e., for the hy-
drogen plasma, zEN = z so the enforced-neutrality procedure
is equivalent to the previous methods for the specific model
(100). However, as soon as quantum corrections are added
to the model, this equivalence no longer holds, even in the
hydrogen plasma, because quantum effects involve particle
masses m. and m, which are not identical.

V. DERIVATION OF APPROXIMATE
EQUATIONS OF STATE

The screened activity expansion for the pressure appears
to be quite useful for constructing approximate expressions
PA(B; {z;}) at moderate densities. In such regimes, recombina-
tion processes into chemical species made with three or more

particles become important. The contributions of the relevant
chemical species, including their interactions, are included in
cluster functions. In a first step, the graphs which are expected
to provide the main contributions are selected on the basis
of physical arguments. In a second step, their contributions
can be numerically computed by using simplified versions
of ¢ [46], while the functional integrations over loop shapes
require the introduction of suitable quantum Monte Carlo
techniques [49].

A. Cluster functions associated with a given number of particles

The contributions of familiar chemical species can be
easily identified in terms of specific diagrams in the screened
activity expansion (67) of the pressure, following the method
first introduced for the particle densities [33]. It consists in
rewriting the phase space measure of each loop £, as a sum
over the number g of elementary particles (nuclei or electrons)
which are contained in £. Each graph P then generates
an infinite number of graphs P[Ny, ..., Ns] with the same
topological structure. Each N, is the total number of particles
of species «, obtained by summing the particle numbers in all
the loops of species «. The corresponding loop phase-space
integration becomes

/D(L) N /dx/Dq(X(-)).

Similarly to what occurs for the screened representation of
particle densities [33], ideal-like contributions of familiar
chemical species E[Ny, ..., Ns] made with N, particles of
species o, « = 1, ..., S, are contained in the sum of all the
contributions of graphs P[Ny, ..., Ns].

Within the present formalism, the contributions of
E[Ny, ..., Ng] are dressed by the collective effects embedded
in the screened potential ¢ as well as in the ring sum Ig.
The sum of the contributions of all graphs P[Ny, ..., Ns]
for a given set (Nj,...,Ns) defines a cluster function
Z[Ni,...,Ng]. It includes ideal-like contribution for the
dressed chemical species E[Ny, ..., Ng], as well as interac-
tions between the chemical species resulting from the dissoci-
ation of £[Ny, ..., Ns].

Let us consider the case of the hydrogen-helium mixture
S = 3, made with protons (¢ = 1), alpha nuclei (¢« = 2), and
electrons (¢ = 3 = e). Hydrogen atoms are associated with
graphs P[1, 0, 1] made with one proton and one electron,
helium atoms with graphs P[0, 1, 2] made with one alpha par-
ticle and two electrons, etc. For instance, Z[0, 1, 2] accounts
for a dressed atom He as well as interactions between (1) one
ion He™ and one electron and (2) one alpha nucleus and one
electron. Also, Z[2,0, 2] describes a dressed molecule H,,
interactions between two dressed atoms H, etc.

In the zero-density limit, the cluster functions can be
related to suitably defined bare partition functions of the
chemical species in the vacuum [33]. We stress that the
systematic prescriptions defining these cluster functions avoid
double counting problems. Moreover, they properly account
for the collective screening effects which ensure the finiteness
of the bare partition functions, without introducing ad hoc
regularizations as in the phenomenological Planck-Larkin
partition functions (see, e.g., Refs. [50,51]). For instance, in

(104)
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the case of the hydrogen plasma made with protons (o« = 1)
and electrons (o = 2), the zero-density limit of Z[1, 1] gives
rise to the bare partition function Zy of the hydrogen atom in
the vacuum, which is close to the virial second-order function
Q first introduced by Ebeling [15]. Similar partition functions
Zys, Zy- and Zy, for ions and molecules can be defined.
They control the systematic corrections to Saha theory for a
partially ionized atomic gas [52].

B. Simple scheme using the Debye-dressing
neutralization prescription

In order to calculate the particle densities associated with
a given Pa(B;{z:}), use of the DD prescription is particularly
attractive. First, it is based on an important physical mecha-
nism related to Debye screening. Second, the dressed densities
(91) are given by a general expression which does not depend
on the form of P5(8;{z;}). Eventually, the resulting EOS can
be determined within the following scheme which is simple
to implement in practice. For fixing ideas, we illustrate this
scheme for a three-component system like, for instance, the
hydrogen-helium mixture:

(1) Consider various sets (zj,22,2e) that satisfy the
pseudoneutrality condition (20), i.e., ze = Z;21 + Z2,. For
each set, compute

(a) The pressure Pa(B, 21, 22, Ze)
(b) The DD particle densities (91) through numerical
partial differentiations of Py.

(2) From the pressures and the associated densi-
ties computed at the previous step, determine the EOS
BPRP(B: p1. p2)-

This scheme avoids having to invert the relation between
the pseudoneutral sets (zy, 22, Z1z1 + Z»z2) and the nuclei
densities (pi, p2) for computing BPY(B; p1, p2). Other ap-
proximate EOS would be obtained by using either the neutral-
group method or the enforced-neutrality procedure. However,
for approximate functions Ps(f;{z;}) obtained within the
diagrammatic series (67), the Debye-dressing recipe is more
directly related to a crucial mechanism at work than these
other methods. Hence, it can be reasonably expected to pro-
vide better EOS than the neutral-group or enforced-neutrality
procedures.

VI. CONCLUSIONS AND PERSPECTIVES

We have derived the screened activity series (67) of the
pressure of a quantum multicomponent plasma, which pro-
vides a convenient route for computing the equation of state
of such systems at low and moderate densities. We have
demonstrated that this new series simplifies significantly the
calculation of the EOS by reducing drastically the number of
diagrams to be computed and by being more efficient for a
numerical perspective since it avoids integrating term-by-term
diagrams contributing to the particle densities. This represen-
tation is also quite promising for deriving approximate EOS
for moderately dense plasmas. In particular it accounts, in
a nonperturbative way, for the emergence of any chemical
species, atoms, molecules, ions, which are formed through
recombination processes of nuclei and electrons. Use of the
screened activity expansion of the pressure offers a wide

flexibility for various approximations, through the selection
of relevant graphs associated with crucial mechanisms at
work. Accurate approximations for the screening potential ¢,
which simplify the task of computing such graphs, are also
available [46].

When devising an approximate theory, it is crucial to
ensure that it is compatible with the local charge neutrality.
We have devised two schemes for enforcing electroneutral-
ity in approximate theories. The first scheme, the neutral-
group (NG) neutralization prescription, is based on the Lieb-
Lebowitz theorem which implies that the exact pressure
depends on the activities only via neutral-group activities,
which are variables with a clear physical interpretation. This
prescription is very general and several implementations of
this scheme are possible in plasmas with three or more com-
ponents. It is straightforward to use since the corresponding
densities are given by fully explicit formulas. The second
neutralization scheme, the Debye-dressing (DD) prescription,
is also new and uses the Debye screening effect to enforce
electroneutrality. More specifically, the appearance of a neu-
tralizing polarization cloud around each particle is accounted
for in that scheme at all orders in the particle activities at
a mean-field classical (Debye-Hiickel) level. The choice of
a particular scheme is worthy of attention because it can
affect the computed equation of state, as shown on a simple
example. Contrary to the enforced-neutrality scheme which
has been used previously, the NG and DD schemes do not
break the pseudoneutrality condition, which is often employed
in EOS calculations in the grand-canonical ensemble. The
latter two schemes being fully explicit, they do not require
solving any equation specific to the studied system. The DD
prescription is closely related to the NG scheme. Whether the
DD prescription is a special case of a NG prescription for a
specific choice of basis for the neutral groups remains on open
question. When calculating an approximate equation of state
by using the new diagrammatical series (67) for the pressure,
the DD prescription should be preferred because it is based
on a physical phenomenon and because double counting of
screening effects can be avoided by a proper selection of the
retained diagrams in the pressure series.

Eventually, the methods presented in this paper will be
applied to derive accurate approximate equations of state for
hydrogen and hydrogen-helium mixtures at moderate densi-
ties. The EOS of such plasmas can be studied by computing
the screened Mayer diagrams using analytical and numer-
ical techniques. The cluster functions for fixed number of
particles, defined by summing Mayer diagrams with a con-
straint on the total number of particles, play a central role in
such calculations [26,46,52]. A partial account of calculations
along the Sun adiabat is given in Refs. [53,54]. A more
systematic study including denser regimes will be published
elsewhere.
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