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Waves and instabilities of viscoelastic fluid film flowing down an inclined wavy bottom
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Evolution of waves and hydrodynamic instabilities of a thin viscoelastic fluid film flowing down an inclined
wavy bottom of moderate steepness have been analyzed analytically and numerically. The classical long-wave
expansion method has been used to formulate a nonlinear evolution equation for the development of the free
surface. A normal-mode approach has been adopted to discuss the linear stability analysis from the viewpoint of
the spatial and temporal study. The method of multiple scales is used to derive a Ginzburg-Landau-type nonlinear
equation for studying the weakly nonlinear stability solutions. Two significant wave families, viz., γ1 and γ2, are
found and discussed in detail along with the traveling wave solution of the evolution system. A time-dependent
numerical study is performed with Scikit-FDif. The entire investigation is conducted primarily for a general
periodic bottom, and the detailed results of a particular case study of sinusoidal topography are then discussed.
The case study reveals that the bottom steepness ζ plays a dual role in the linear regime. Increasing ζ has a
stabilizing effect in the uphill region, and the opposite occurs in the downhill region. While the viscoelastic
parameter � has a destabilizing effect throughout the domain in both the linear and the nonlinear regime. Both
supercritical and subcritical solutions are possible through a weakly nonlinear analysis. It is interesting to note
that the unconditional zone decreases and the explosive zone increases in the downhill region rather than the
uphill region for a fixed � and ζ . The same phenomena occur in a particular region if we increase � and keep
ζ fixed. The traveling wave solution reveals the fact that to get the γ1 family of waves we need to increase
the Reynolds number a bit more than the value at which the γ2 family of waves is found. The spatiotemporal
evolution of the nonlinear surface equation indicates that different kinds of finite-amplitude permanent waves
exist.
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I. INTRODUCTION

Investigations of thin liquid films are one of the most
important hydrodynamic problems, as they are ubiquitous
in nature and technology; this has attracted much attention
from a number of researchers over the last six decades. A
simple and obvious example is the flow of rainwater down
a windowpane under the action of gravity. It has extensive
use in various industrial and technological applications such
as evaporators, condensers, heat exchangers [1,2], canisters
for nuclear waste disposal, nuclear reactor cooling systems,
material processing, food and chemical industries, biomedical
engineering, and geothermal reservoirs. A typical thin-film
flow consists of an expanse of a liquid partially bounded by
solid substrates with an interface where the liquid is exposed
to another fluid, usually gas and most often air in applications.
The solid substrates may be planners or undulated. It is well
known that the waves on the surface of a thin film enhance the
transport of heat mass and momentum across the liquid-gas
and liquid-solid interface. In some applications, the presence
of surface waves may be a desirable feature, as in the case
of cooling films, where they enhance heat and mass transfer
[3,4]. On the other hand, it is undesirable in the coating films
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to increase the glossy texture of the finished product [5]. So to
model improved devices, it is desirable to know details about
the film flow and its finite-amplitude behavior.

Wave evolution on falling liquid film has been extensively
studied over the last few decades, starting from the pioneering
work by Kapitza [6] and Kapitza and Kapitza [7], in which
a vast variety of wavy regimes, like a rolling wave with a
capillary hill and a series of nearly solitary waves or almost-
harmonic waves of falling liquid films, was observed. In this
situation, we need to understand the stability and its criteria
for falling films. In 1957 Benjamin [8] and in 1963 Yih
[9] were reportedly the first to investigate theoretically the
long-wave instability of falling film over an inclined plane.
They determined the phase velocity of the waves and critical
Reynolds number for the transition, respectively. In 1966
Benney [10] derived a wave evolution equation governing
the flow by regular perturbation technique in terms of flow
depth, by expanding the variables in powers of the long-wave
parameter. Extensive reviews of the literature for the film flow
over flat inclined or vertical substrates with various effects are
reported by Fulford [11], Hanratty [12], Chang and Demekhin
[12], Lin and Wang [13], and Chang [14].

The corresponding problem of falling film for non-
Newtonian fluid has also been studied extensively, since the
simple model of considering the linear law of viscous flu-
ids is not a reasonable approximation to the real physical
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situation. For many real fluids, the resistance of the flow
changes with the intensity of the shear rate. This change of
viscosity can be large and cannot be ignored in such fluids.
There are many approaches that deviate from Newtonian to
non-Newtonian that exhibit some or many aspects of the real
physical situation. Some of these fluids exhibit shear thinning
or thickening, while some others possess elastic properties
or something else. There are many examples of fluids which
possess the characteristic of elastic properties and so-called
cross-viscosity. When such a fluid is in motion, the flow
energy is partially reserved as strain energy and partially
incorporated by internal viscous forces and dissipated as heat
to the environment; these types of fluids are known as vis-
coelastic fluids. The elastic properties of these types of fluids
can create shear on an element of the fluid to be regressed, and
the elastic stresses cannot be relaxed at a certain frequency
as the flow moves down a vertical wall. There are various
models suggested in the literature to describe viscoelastic
fluids, such as the second-order model, the Oldroyd B model,
and Walters’ B′′ model. The rheological behavior of the fluids
characterized by each and every model is completely different,
and almost every one has some limitations, but almost every
one satisfactorily describes a particular type of fluid. For
example, the second-order fluid model describes very suc-
cessfully fluids with gradually fading memory, while Walters’
B′′ fluid model is valid for short or rapidly fading memory
liquids (weakly elastic) where the resulting flow should be
considered a perturbation of Newtonian viscous flow [15]. To
get some perception of the flow behavior of viscoelastic fluids,
it is preferable to restrict oneself to a model with a minimum
number of parameters in the constitutive equations. We chose
Walters’ B′′ [16] viscoelastic fluid model for our study, as it
requires only one non-Newtonian parameter.

Since the trailblazing work by Gupta [17] in 1967 many
researchers have carried out their work on falling films by
considering different models of viscoelastic fluids to inves-
tigate waves and instabilities over a flat surface [18–23]. Most
relevant to this present work, Cheng et al. [24] conducted a
stability analysis of thin viscoelastic Walters’ B′′ fluid flowing
down a vertical wall by using the long-wave perturbation
method. Recently, Uma and Usha [25] investigated linearized
instability for permanent waves on a thin viscoelastic Walters’
B′′ fluid layer flowing down an inclined plane. They also
categorized the eigenvalue properties of the fixed points in
various parametric regimes.

Nonetheless, the above studies are focused only on the film
flows down flat inclined or vertical substrates, but in most of
the applications, the film does not flow over a perfectly flat
substrate. During the last few decades, a lot of advancements
have been made in the use of renewable energy, for example,
solar energy, wind energy, and waste heat from industrial
wastage. For solar energy, utilized in solar refrigeration, solar
heat storage, and transportation of heat or cooling over a large
distance, the process of absorption or desorption is widely
used. In most cases, the apparatus is built purposefully with a
wavy surface, while in other applications corrugation simply
cannot be avoided. Thus, in either case, it is of interest to us
to investigate how the alterations from the ideal condition of
a flat incline affect the gravity-driven film flow with various
physical effects. Tougou [26] investigated theoretically the

influence of a weakly wavy bottom on the stability of steady
film flow. The hydrodynamics of a liquid film falling down an
undulated surface has gained a lot of attention since the work
of Pozrikidis [27], who studied the free surface Stokes flow
along with the sinusoidal topography. Later, Wierschem et al.
[28] studied experimentally the linear stability of film flow
over modulations of moderate steepness, which has long been
compared to the film thickness. They found that the critical
Reynolds number for the onset of surface waves is higher
than that for a flat bottom. Investigation of a viscous film
flowing down a harmonic vertical substrate was done by Tri-
fonov [29,30]. He contemplated the effect of surface tension,
viscosity, and inertia. Mogilevskiy and Shkadov [31] used the
integral boundary layer approach to model the problem of
a thin film flow on a weakly wavy wall. They showed that,
depending on the corrugation period and the inclination angle
of the plane, the topography can both stabilize and destabilize
the flow. Veremieiev and Wacks [32] developed an extension
of the weighted residual model proposed by Ruyer-Quil and
Manneville [33] and D’alessio et al. [34] and included third
and fourth terms in the long-wavelength expansion to enlarge
the new modeling strategy for flow on an inclined corrugated
substrate.

Other research work, by Vlachogiannis and Bontozoglou
[35], Wierschem and Aksel [36], Wierschem et al. [37],
Davalos-Orozco [38], Häcker and Uecker [39], Heining and
Aksel [40], Pollak and Aksel [41], Trifonov [42], etc., is also
dedicated to the study of the effect of bottom topography in
the flow of falling films for several physical problems. An
excellent review of the film flow over different topographies
is given by Aksel and Schörner [43].

In 2010 a remarkable work on power-law fluid flowing
down a wavy incline was done by Heining and Aksel [44],
who investigated the effects of inertia and surface tension on
bottom undulation. They found a resonant interaction of the
free surface with the wavy bottom under the assumption of
periodic undulation with weak steepness and concluded that
“high surface tension requires [a] higher Reynolds number to
achieve resonance.” Prior to that, Wierschem et al. [45] and
Heining et al. [46] explained in detail the surface amplification
phenomenon (called resonance in the literature) for viscous
film on an inclined wavy bottom.

In the present study, we present an analysis of finite-
amplitude long-wave instabilities and the evolution of a thin
viscoelastic film falling down over inclined generalized peri-
odic wavy bottoms. The flow over a wavy bottom may change
the dominant mode of instability due to the viscoelastic prop-
erty of the fluid. As far as we are aware, the evolution of waves
and hydrodynamic instabilities of a viscoelastic film falling
through a general undulated surface has not been studied
intensively so far. Our study will help to explore a broader
gateway to handle many industrial and natural phenomena.

II. PROBLEM FORMULATION

Let us consider a thin viscoelastic fluid, represented by
Walters’ B′′, a fluid film of density ρ, dynamic viscosity μ,
and surface tension s0 flowing down an incline wavy bottom
profile b̂. The fluid is assumed to be non-Newtonian. The
Cartesian coordinate system ex̂, eŷ is inclined at an angle β
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FIG. 1. Diagrammatic picture.

with respect to the horizontal, and the bottom profile b̂(x̂) is
periodic with wavelength λ̂ and amplitude â, where x̂ is in the
direction of the main flow. For an undulated bottom profile
it is useful and appropriate to introduce a local curvilinear
coordinate system, since the Nusselt solution is no longer a
stationary solution, and for the flow of thin films that are
thinner than the radius of curvature of the bottom, the flow
(u, v) is still mainly parallel to the bottom (see Fig. 1). Thus,
at every point of the bottom x̂ex̂ + b̂(x̂)eŷ we define a local
coordinate system ex, ey, with ex tangential and ey normal to
the bottom. Thus, for an arbitrary point P within the fluid,
the arc length x of the bottom and the distance y along ey

to the bottom are now taken as curvilinear coordinates. So
in ex̂, eŷ coordinates P ≡ (x̂ − sin θy, b̂(x̂) + cos θy), where
θ = θ (x̂) = arctan(∂ b̂(x̂)/∂ x̂) is the local inclination angle
between ex̂ and ex. This relation is always unique, as we
considered the film flow over undulated bottoms of moder-
ate steepness, which have long been compared to the film
thickness. To transform gradients, we also need the bottom
curvature κ , which is defined by

κ (x̂) = −∂2b̂(x̂)

∂ x̂2

⎡
⎣1 +

(
∂ b̂(x̂)

∂ x̂

)2
⎤
⎦

−3/2

. (1)

For further details regarding the transformation to curvilinear
coordinates, we refer to Wierschem et al. [28].

A. Governing equation

The governing equations consist of the conservation of
mass and momentum. In dimensional form they can be written
as

∇ · V = 0, (2)

ρ
DV
Dt

= ρg + ∇ · τ, (3)

where ∇ = 1
1+κy ex̂

∂
∂x + eŷ

∂
∂y , �V = uex̂ + veŷ, and D

Dt ≡ ∂
∂t +

V · ∇ is the material derivative. g is the acceleration due to
gravity. The Cauchy stress tensor τ is given by Beard and
Walters [16] as

τ = −pI + 2μσ − 2γ0
δσ

δt
, (4)

where p is the isotropic pressure, μ is the dynamic viscosity
of the fluid at low rates of shear, and γ0 is the short memory
coefficient or viselastic coefficient of the fluid. The rate of
strain tensor σ is defined by σ = (∇V + ∇V T )/2 and δ

δt
denotes the convected (or Oldroyd) derivative given by

δσ

δt
= ∂σ

∂t
+ V · ∇σ − σ · ∇V − (∇V )T · σ. (5)

The pertinent boundary conditions include the usual no-slip
condition at the bottom:

V = 0 at y = 0. (6)

At the free surface, y = h(x, t ) dynamic and kinematic condi-
tions are

n · τ · t = 0, (7)

pa + n · τ · n = −s0∇ · n, (8)

ht + V · ∇(h − y) = 0, (9)

where pa is the pressure of the ambient gas and s0 is the
surface tension coefficient.

n = eŷ − 1
1+κh hxex̂√

1 + (
1

1+κh hx
)2

, t = ex̂ + 1
1+κh hxeŷ√

1 + (
1

1+κh hx
)2

are the normal and tangential unit vectors pointing outwards
to the interface, respectively.

To investigate the effect of waviness of the bottom on
the flow we use the thin film flow over a flat bottom as
reference. Thus, the Nusselt velocity of the mean flow 〈u〉 =
g sin βĥ2/3ν, where ν = μ/ρ is the kinematic viscosity and
ĥ is the constant film thickness, is taken as the characteristic
velocity and λ̂ as the characteristic longitudinal length scale,
whose order may be considered the same as the wavelength of
the free surface wave, which is very long compared to the film
thickness.

B. Scaling and nondimensionalization

Before solving the problem, we want to rewrite it precisely
in dimensionless format. We define the dimensionless quanti-
ties as

x∗ = 2π

λ̂
x, y∗ = 1

ĥ
y, h∗ = 1

ĥ
h, u∗ = 1

〈u〉u,

v∗ = λ̂

2π ĥ〈u〉v, t∗ = 2π〈u〉
λ̂

t, κ∗ = λ̂2

4π2â
κ,

p∗ = 1

ρ〈u〉2 p, (τ ∗
xx, τ

∗
yy) = λ

2πμ〈u〉 (τxx, τyy),

x̂∗(x∗) = 2π

λ̂
x̂(x), (τ ∗

xy, τ
∗
yx ) = ĥ

μ〈u〉 (τxy, τyx ),

b̂∗(x̂∗) = 1

â
b̂

(
λ̂

2π
x̂∗

)
, θ∗ = arctan

(
ζ

∂ b̂∗

∂ x̂∗

)
, (10)

where ζ = 2π â/λ̂ is the bottom steepness and ε = 2π ĥ/λ̂ is
the aspect ratio.
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Using the dimensionless quantities, (10), in the governing
equations, (2)–(9), we arrive, after dropping the asterisk, at

1

1 + εζκy

(
∂u

∂x
+ εζκv

)
+ ∂v

∂y
= 0, (11)

εRe

[
∂u

∂t
+ 1

1 + εζκy
u

(
∂u

∂x
+ εζκv

)
+ v

∂u

∂y

]

= 3SS +
[

ε2

1 + εζκy

∂τxx

∂x
+ ∂τxy

∂y
+ 2εζκ

1 + εζκy
τxy

]
, (12)

ε2Re

[
∂v

∂t
+ 1

1 + εζκy
u

(
∂v

∂x
− 1

ε
ζκu

)
+ v

∂v

∂y

]

= −3CS + ε

[
1

1 + εζκy

∂τyx

∂x
+ ∂τyy

∂y

+ εζκ

1 + εζκy
(τyy − τxx )

]
, (13)

where SS = sin(β−θ )
sin β

and CS = cos(β−θ )
sin β

,

u = 0, v = 0 at y = 0. (14)

At the free surface y = h(x, t ),(
1 − ε2h2

x

)
τyx + ε2(τyy − τxx )hx = 0, (15)

pa + ε

Re

[
ε2τxxh2

x − 2τyxhx + τyy
]

= ε2We(hxx − ζε−1κ + 2ζ 2κ2h)
(
1 + ε2h2

x

)− 1
2 , (16)

ht + 1

1 + εζκh
uhx = v. (17)

In the dimensionless form the component of stress tensor
given in (4) can be written as

τxx =
[
−Re

ε
p + 2

1 + εζκy

(
∂u

∂x
+ εζκv

)]

− 2εRe�

[
1

1 + εζκy

∂

∂t

(
∂u

∂x
+ εζκv

)

+
(

1

1 + εζκy
u

∂

∂x
+ v

∂

∂y

)

×
{

1

1 + εζκy

(
∂u

∂x
+ εζκv

)}

− 2

(1 + εζκy)2

(
∂u

∂x
+ εζκv

)2

− 1

ε2

∂u

∂y

×
{

1

1 + εζκy

(
ε2 ∂v

∂x
− εζκu

)
+ ∂u

∂y

}]
, (18)

τxy = τyx =
[

1

1 + εζκy

(
ε2 ∂v

∂x
− εζκu

)
+ ∂u

∂y

]

− εRe�

[
∂

∂t

{
1

1 + εζκy

(
ε2 ∂v

∂x
− εζκu

)
+ ∂u

∂y

}

+
(

1

1 + εζκy
u

∂

∂x
+ v

∂

∂y

)

×
{

1

1 + εζκy

(
ε2 ∂v

∂x
− εζκu

)
+ ∂u

∂y

}

− 2

(1 + εζκy)2

(
ε2 ∂v

∂x
− εζκu

)

×
(

∂u

∂x
+ εζκv

)
− 2

∂v

∂y

∂u

∂y

]
, (19)

τyy =
[
−Re

ε
p + 2

∂v

∂y

]
− 2εRe�

[
∂2v

∂t∂y
+ 1

1 + εζκy

×
(

u
∂2v

∂x∂y
+ v

∂2v

∂y2

)
− 1

ε2

1

1 + εζκy

(
ε2 ∂v

∂x
− εζκu

)

×
{

1 + εζκy

(
ε2 ∂v

∂x
− εζκu

)
+ ∂u

∂y

}
− 2

(
∂v

∂y

)2
]
,

(20)

where Re (≡〈u〉ĥ/ν) is the Reynolds number, which is of
O(1), We (≡s0/ρ〈u〉2ĥ) is the Weber number, which is of
O(1/ε2), and � (≡γ0/ρĥ2) is the viscoelastic parameter O(1).
Also, it is assumed that the order of ζ is 1 or smaller with the
thin-film parameter ε.

Using Eqs. (18)–(20) in Eqs. (11)–(17) and retaining the
terms up to O(ε) we have the following.

1. Reduced governing equations

∂u

∂x
+ ∂v

∂y
+ εζκ

(
v + y

∂v

∂y

)
= 0, (21)

εRe

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −εRe
∂ p

∂x
+ 3SS + ∂2u

∂y2

+ εκζ
∂u

∂y
− εRe�

[
∂3u

∂t∂y2
+ u

∂3u

∂x∂y2
+ v

∂3u

∂y3

+ ∂u

∂x

∂2u

∂y2
− ∂u

∂y

∂2u

∂x∂y

]
+ O(ε2), (22)

−εReζκu2 = −Re
∂ p

∂y
− 3CS + ε

∂2v

∂y2
+ O(ε2). (23)

2. Reduced boundary conditions

u = 0, v = 0 at y = 0, (24)

∂u

∂y
+ εζκ

(
2h

∂u

∂y
− u

)

= εRe�

[
∂2u

∂t∂y
+ u

∂2u

∂x∂y
+ v

∂2u

∂y2
− 2

∂u

∂y

∂v

∂y

+ 2

(
∂u

∂y

)2

hx

]
+ O(ε2), (25)

p = pa + 2ε

Re

(
∂v

∂y
+ ∂u

∂y
hx

)
− ε2We(hxx − ζε−1κ

+ 2ζ 2κ2h) + O(ε2), (26)

∂h

∂t
+ u

∂h

∂x
− v − εζκhu

∂h

∂x
+ O(ε2) = 0. (27)
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III. LONG-WAVE APPROXIMATION

We are interested in constructing a nonlinear evolution
equation in terms of a nondimensional film thickness h(x, t ),
depending on the dimensionless spatial and temporal variables
x and t . Expanding the physical quantities u, v, and p as a
power series of the long-wave parameter ε,

u = u0 + εu1 + ...,

v = v0 + εv1 + ...,

p = p0 + εp1 + ..., (28)

and substituting the above into the governing equations (21)–
(23) and the boundary conditions (24)–(27) and then collect-
ing the coefficients of like powers of ε, the zeroth- and the
first-order equations are obtained as reported below.

1. Zeroth-order equations
∂u0

∂x
+ ∂v0

∂y
= 0, (29)

3SS + ∂2u0

∂y2
= 0, (30)

−Re
∂ p0

∂y
− 3CS = 0. (31)

At y = 0

u0 = 0, v0 = 0. (32)

At y = h
∂h

∂t
+ u0

∂h

∂x
= v0, (33)

∂u0

∂y
= 0, (34)

p0 = pa − ε2We(hxx − ζε−1κ + 2ζ 2κ2h). (35)

2. First-order equations

∂u1

∂x
+ ∂v1

∂y
+ ζκv0 + ζκy

∂v0

∂y
= 0, (36)

Re

(
∂u0

∂t
+ u0

∂u0

∂x
+ v0

∂u0

∂y

)

= −Re
∂ p0

∂x
+ ζκ

∂u0

∂y
+ ∂2u1

∂y2
− Re�

[
∂3u0

∂t∂y2

+ u0
∂3u0

∂x∂y2
+ v0

∂3u0

∂y3
+ ∂u0

∂x

∂2u0

∂y2
− ∂u0

∂y

∂2u0

∂x∂y

]
, (37)

−Reζκu0
2 = −Re

∂ p1

∂y
+ ∂2v0

∂y2
. (38)

At y = 0

u1 = 0, v1 = 0, (39)

At y = h

u1
∂h

∂x
− v1 − ζκhu0

∂h

∂x
= 0, (40)

∂u1

∂y
+ ζκ

(
2h

∂u0

∂y
− u0

)
= Re�

[
∂2u0

∂t∂y
+ u0

∂2u0

∂x∂y
v0

∂2u0

∂y2

+ 2
∂u0

∂x

∂u0

∂y
+ 2

(
∂u0

∂y

)2
∂h

∂x

]
,

(41)

p1 = 2

Re

(
∂v0

∂y
+ ∂u0

∂y

∂h

∂x

)
. (42)

Now solving Eqs. (29)–(42) we obtain the zeroth- and first-
order velocities and corresponding depth average velocities as
reported below.

3. Zeroth-order solutions

u0 = −3SS

(
1

2
y2 − hy

)
, (43)

v0 = −3SS
y2

2
hx, (44)

p0 = pa − 3

Re
CS(y − h) − ε2We(hxx − ζε−1κ + 2ζ 2κ2h),

(45)

q0 =
∫ h

0
u0dy = SSh3. (46)

4. First-order solutions

u1 = 1

2
ReSS(y3 − 3yh2)ht + 3

8
ReSS2[(y3 − 4h3)hy]hx

− 3

2
�ReSSy[−2ht + 3SSh(y − 4h)hx]

+ Re

(
y2

2
− hy

)[
3CS

Re
hx − ε2We

(
hxxx − ζε−1 ∂κ

∂x

+ 2ζ 2κ2hx + 4ζ 2κh
∂κ

∂x

)]

+ ζκSS

(
1

2
y3 − 3

2
hy2 + 3h2y

)
. (47)

Now from the continuity equation we have

∂t h = −3SSh2hx. (48)

Putting this in (47) we get

u1 = ReSS2

(
3

8
hy4 − 3

2
h2y3 + 3h4y

)
hx

− 9

2
Re�SS2yh(y − 2h)hx + Re

(
y2

2
− hy

)

×
[

3CS

Re
hx − ε2We

(
hxxx − ζε−1 ∂κ

∂x
+ 2ζ 2κ2hx

+ 4ζ 2κh
∂κ

∂x

)]
+ ζκSS

(
1

2
y3 − 3

2
hy2 + 3h2y

)
, (49)

q1 =
∫ h

0
u1dy

= 6

5
ReSS2h6hx + 3ReSS2�h4hx

− 1

3
Reh3

[
3CS

Re
hx − ε2We

(
hxxx − ζε−1 ∂κ

∂x

+ 2ζ 2κ2hx + 4ζ 2κh
∂κ

∂x

)]
+ 9

8
ζκSSh4. (50)

Integrating the continuity equation, (21), with respect to y
from 0 to h by using Leibniz’s rule and boundary conditions
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(24) and (27), we have

∂h

∂t
+ (1 − εζκh)

(
∂q0

∂x
+ ε

∂q1

∂x

)
+ O(ε2) = 0. (51)

Substituting the values of q0 and q1 from (46) and (50) we get

ht + A(h)hx + ε(B(h)hx + ε2C(h)hxxx )x = 0, (52)

where the suffix denotes the differentiation with respect to the
corresponding variables and

A(h) = 3

(
SS − Boζ

∂κ

∂x

)
h2 + εζκ

[
3

2
SS + 16Boζ

∂κ

∂x

]
h3,

(53)

B(h) =
[

6

5
ReSS2h3 + 3ReSS2�h − CS + 2Boζ 2κ2

]
h3,

(54)

C(h) = 1

3
WeReh3, (55)

where Bo(≡ 4π2s0/ρgλ̂2 sin β ) is the inverse Bond number
and is connected by the relation ε2ReWe = 3Bo.

We would like to introduce a nondimensional parameter,
Fi(≡s3

0/ρ
3g sin βν4), which is called the film number by

Alekseenko et al. [2] for a vertical film. We revisit here the
definition of the Weber number as We(≡3Fi/Re5)1/3.

IV. LINEAR STABILITY ANALYSIS

Our interest in this section is to discuss the linear stability
analysis from two important perspectives. First we discuss
the instability localized in space, i.e., spatial instability. This
kind of instability occurs in most natural flows, laboratory
experiments, and technical and industrial applications, where
the instability is triggered at a certain point in the space and
advance spatially.

On the other hand, we discuss the temporal progression
of disturbances, keeping the periodicity of the spatial flow
fixed, i.e., temporal instability. This kind of study is important
in analytical modeling of instability and study of weakly
nonlinear analysis.

A. Spatial instability

Using the expression of u1 from (47) and computing q1 in
the same way as before, we may substitute in (51) in order to
get the first-order surface equation as

ht + A(h)hx + ε
[
ReSS

(
3
2�h2 − 5

8 h4)ht

−ReSS2
(− 9

2�h4 + 15
8 h6

)
hx + B(h)hx + ε2C(h)hxxx

]
x.

(56)

We now intend to use the normal-mode solution at h = 1. We
may write

h(x, t ) = 1 + � exp [ik(x − ct )] + c.c., (57)

where c, k ∈ C are the wave speed and wave number, respec-
tively, � ∈ C is the amplitude of the disturbance (� 
 1),
and c.c. stands for complex conjugate.

After making the transformation t → εt and x → εx, sub-
stituting (57) in the transformed form of (56), and using a
Taylor-series expansion about h = 1, the linearized equation
can be written as

i(c − ck ) + kReSS
(

5
8 − 3

2�
)
(c − cd ) = 0, (58)

where

ck = A1, (59)

cd = 1

ReSS
(

5
8 − 3

2�
) [−B1 − ReSS2

(
9
2� − 15

8

) + C1k2
]
,

(60)

where A1, B1, and C1 are, respectively, the values of A, B, and
C evaluated at h = 1.

Equation (58) is a combination of two wave equations.
Whitham [47] introduced this kind of wave structure first. One
of them represents higher-order waves dispersive in nature,
moving at speed cd ; these are called dynamic waves. This kind
of wave is not associated with the transport in the fluid, and its
velocity is dependent on the fluid inertia, gravity, and surface
tension. On the contrary, the other family of waves involved in
(58) is kinematic waves. These are lower-order waves moving
at a speed ck and responsible for transport in the fluid. In our
case the kinematic wave is nondispersive in nature and are
expected to be a low-frequency distribution [48].

The localized initial perturbation originates a wave packet
which supplies energy to the mean flow. The energy is then
supplied to the kinematic wave through the higher-order wave
mechanism from mean flow and this process is controlled with
a small Reynolds number. Next this energy is transferred to the
dynamic wave with a higher Reynolds number mechanism.
The condition for the surface wave to be stable, neutral, or
unstable comes from the intersection, i.e.,

ck <=> cd , (61)

i.e.,

A1 <=>
1

ReSS
(

5
8 − 3

2�
) [−B1 + ReSS2

(
9
2� − 15

8

) + C1k2
]
.

(62)

Condition (61) is derived from the evolution of the wave
packet. The tendency of the kinematic wave is to turn out from
the wave packet at long times, whereas the dynamic wave
dominates the mechanism with a short-term gesture. So, the
only possibility for stability is when the dynamic wave makes
the back and the front of the wave packet. In practice, when
ck = cd instability arises.

We have used the continuation software AUTO07p [49] to
numerically solve the dispersion relation, (58), and the results
are presented as a case study in Sec. IX.

B. Temporal instability

Here we follow the standard linear stability analysis for
the temporal case [48,50,51]. We give an initial sinusoidal
perturbation of the form h(x, t ) = 1 + � exp[i(kx − ωt )] +
c.c., where � ∈ C is the amplitude of the disturbance and c.c.
stands for the complex conjugate. The wave number k ∈ R
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and the frequency ω ∈ C. After making the transformation
t → εt and x → εx the linearized part of the transformed
form of Eq. (52) can be written in the form

Disp(ω, k) ≡ i (ω − A1k) + B1k2 − C1k4 = 0. (63)

Equating the real and the imaginary parts of (63) we get

ωr = A1k and ωi = B1k2 − C1k4. (64)

So, the linear phase velocity is

cr = ωr

k
= A1. (65)

In this case it appears that the linear phase velocity in
the temporal case is equal to the kinematic wave speed in
the spatial case. Again, the wave is nondispersive in nature,
as the linear phase velocity is also independent of k. The
imaginary part of c is given by

ci = ωi

k
= B1k − C1k3. (66)

The flow will be linearly stable if ωi < 0 (or ci < 0). From
here we get the critical Reynolds number as

Rec = CS − 2Boζ 2κ2

3
5 SS2(2 + 5�)

. (67)

For Newtonian fluid flow over a wavy bottom � → 0 we get
the result found by Mukhopadhyay and Mukhopadhyay [48]:

Rec = CS − 2Boζ 2κ2

6
5 SS2

. (68)

It is to be noted here that when ζ → 0, θ → 0, i.e., for
viscoelastic film flowing over a flat surface we retrieve

Rec = 5
6 cot β

(
1 + 5

2�
)−1

,

which is the same as the result derived by Mukhopadhyay and
Haldar [52] if we consider Mn → 0 as in their paper.

Again, as ζ → 0, θ → 0, and � → 0, i.e., for a Newtonian
film over a flat surface, Rec = 5

6 cot β, which is the established
result of Benjamin [8] and Yih [9]. The cutoff wave number
can be found as

kc =
(

B1

C1

)1/2

. (69)

Now for a moderately small steepness, we can write

κ = κ0 + ζ 2κ2 + O(ζ 4), θ = ζθ1 + O(ζ 3), (70)

where θ1 = ∂ b̂(x)/∂ x̂, κ0 = −∂2b̂(x)/∂ x̂2, and

cos(β − θ )

sin β
= cot β + ζθ1 − 1

2
ζ 2θ2

1 cot β + O(ζ 3),

sin(β − θ )

sin β
= 1 − ζθ1 cot β − 1

2
ζ 2θ2

1 + O(ζ 3). (71)

For details about the above expansion we refer the reader to
Häcker et al. [39] Then relation (68) approximates to

Rec = 5
6

[
cot β + ζ (1 + 2 cot2 β )θ1

+ ζ 2
((

5
2 + 3 cot2 β

)
cot βθ2

1 − Boκ2
0

)]
. (72)

Relation (72) is in fairly very good agreement with Eq. (61)
of Wierschem et al. [28] [with our scaling and assumptions up
to O(ζ 2)].

The term ζ 2κ2Bo in Eq. (67) is of order ε2 and has a
negligible impact. This term can be neglected, but we retain
the term in our expression, only to compare the result with
Wierschem et al. [28].

V. WEAKLY NONLINEAR ANALYSIS

We need the weakly nonlinear analysis for a small but finite
amplitude of disturbance, because the linear theory can no
longer predict the behavior of the flow correctly. The role
of the weakly nonlinear analysis is to investigate whether
a finite amplitude disturbance can cause instability in the
linearly stable region (subcritical instability), or the nonlinear
evolution of a finite amplitude disturbance can develop a new
equilibrium state in a linearly unstable region (supercritical
instability), or the disturbance grows towards instability.

Before proceeding to the main discussion we would like
to elaborate on the discussion about normal-mode analy-
sis. Equation (52) has a normal-mode solution of the form
h(x, t ) = 1 + η(x, t ) for a parallel shear flow, where η(x, t ) ∈
C is the disturbance and η(x, t ) 
 1. After taking the trans-
formation t → εt and x → εx using a Taylor-series expansion
about h = 1, Eq. (52) can be written as

ηt + A1ηx + B1ηxx + C1ηxxx +
[

A′
1η + A′′

1

2
η2

]
ηx

+
[

B′
1η + B′′

1

2
η2

]
ηxx +

[
C′

1η + C′′
1

2
η2

]
ηxxxx

+ (B′
1 + B′′

1η)η2
x + (C′

1 + C′′
1 η)ηxηxxx + O(η4) = 0, (73)

where A1, B1, and C1 and their corresponding derivatives with
respect to h, which are denoted by primes, are evaluated at
h = 1.

We now use the method of multiple scale [53] to derive
the complex Ginzburg-Landau-type equation from (73). In
the vicinity of criticality, the slow independent variables are
defined as

X = αx, T1 = αt, T2 = α2t, (74)

where α is the weakness of the nonlinearity. Now

∂

∂t
→ ∂

∂t
+ α

∂

∂T1
+ α2 ∂

∂T2
, (75)

∂

∂x
→ ∂

∂x
+ α

∂

∂X
. (76)

The solution of (73) is expanded in power series of α as

η(x, X, t, T1, T2) =
∞∑

i=1

αiηi(x, X, t, T1, T2). (77)

Substituting (74) and (77) in (52) we get

(L0 + αL1 + α2L2)(αη1 + α2η2 + α3η3)

= −α2N2 − α3N3 − . . . , (78)
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where L0, L1, and L2 are the operators given by

L0 = ∂

∂t
+ A1

∂

∂x
+ B1

∂2

∂x2
+ C1

∂4

∂x4
,

L1 = ∂

∂T1
+ A1

∂

∂X
+ 2B1

∂2

∂x∂X
+ 4C1

∂4

∂x3∂X
, (79)

L2 = ∂

∂T2
+ B1

∂2

∂X 2
+ 6C1

∂4

∂x2∂X 2
,

and N2 and N3 are the nonlinear terms given by

N2 = A′
1η1η1x + B′

1η1η1xx + C′
1η1η1xxxx

+ B′
1η

2
1x + C′

1η1xη1xxx, (80)

N3 = A′
1(η1η2x + η1η1X + η2η1x ) + A′′

1

2
η2

1η1x

+ B′
1(η1η2xx + 2η1η1xX + η2η1xx )

+C′
1(η1η2xxxx + 4η1η1xxxX + η2η1xxxx )

× B′
1(2η1xη2x + 2η1xη1X )

+C′
1(η2xxxη1x + 3η1xxX η1x + η1xxxη2x + η1xxxη1X )

+ B′′
1

2
η2

1η1xx + C′′
1

2
η2

1η1xxxxB1c3′′η1η
2
1x

+C′′
1 η1η1xη1xxx. (81)

The disturbance η(x, t ) is decomposed as η(x, t ) =
� exp[i(kx − ωt )] + c.c., where � ∈ C is the amplitude
of the disturbance and c.c. stands for complex conjugate.
We solved the equations order by order using the solvability
condition up to O(α3). We obtain an equation related to
the complex Ginzburg-Landau equation of the perturbation
amplitude,

∂�

∂T2
+ i V

∂�

∂X
+ J1

∂2�

∂X 2
− ω′

i� + (J2 + i J4)|�|2� = 0,

(82)
where

ω′
i = α−2ωi,

V = 2k(B1 − 2C1k2)α−1,

J1 = B1 − 6C1k2, (83)

J2 = 7k4erC
′
1 − k2erB′

1 − k2

2
B′′

1 + k4

2
C′′

1 − keiA
′
1,

J4 = 7k4eiC
′
1 − k2eiB

′
1 + kerA′

1 + k
A′′

1

2
,

where

er = 2(B′
1 − k2C′

1)

(−4B1 + 16k2C1)
, ei = −A′

1

k(−4B1 + 16k2C1)
.

We now investigate the weakly nonlinear behavior of the flow
from Eq. (82). The assumption to solve (82) has been taken as
the wave is filtered, i.e., there is no spatial modulation so the
diffusion term vanishes.

For a filtered wave the solution of Eq. (82) may be written
as

� = �0(T2) exp[−i b(T2)T2]. (84)

Substituting the above relation in Eq. (82) we get

∂�0

∂T2
= (

α−2ωi − J2�
2
0

)
�0 (85)

and

∂ (b(T2)T2)

∂T2
= J4�

2
0. (86)

Due to the nonlinearity, the term (J2�
2
0)�0 appears on the

right-hand side of Eq. (85). This term may accelerate or
decelerate the exponential growth of the linear disturbance.

The threshold amplitude is given by

α�0 =
[
ωi

J2

] 1
2

. (87)

The nonlinear wave speed will be

Ncr = cr + ci
J4

J2
. (88)

Here the nonlinear wave speed given in (88) is dispersive in
nature, contrary to the linear wave speed discussed earlier.

Here J2 plays an important role in the study of weakly
nonlinear analysis, because if J2 = 0, Eq. (85) becomes a
linear partial differential equation of the filtered waves and
the amplitude grows and decays exponentially when ωi < 0
or ωi > 0. When J2 
= 0 the nonlinear stability depends on the
sign of J2. The bifurcation is supercritical when J2 > 0 and
subcritical when J2 < 0, i.e., anyway J2 predicts the ultimate
behavior of the system.

VI. TRAVELING WAVE SOLUTION

We are now interested in traveling waves. These periodic
waves are computed as a stationary solution in a moving
reference frame χ = x − ct , where c is the speed of the wave
as well as the speed of the frame. First using the transfor-
mation t → εt and x → εx, then making the transformation
χ = x − ct in (52), we get a fourth-order ordinary differential
equation (ODE). Integrating once, finally, we achieve a third-
order ODE as

−ch + P(h) + B(h)h′ + C(h)h′′′ − q0 = 0, (89)

where P(h) = ∫
A(h)h′dχ , primes denote the derivatives with

respect to χ , and q0 is the integration constant, which corre-
sponds to the rate of flow of the fluid under the wave in the
moving frame. As the wave moves faster than the flow, q0 is
negative.

The differential equation, (89), is solved iteratively with the
continuation software AUTO07p by recasting it into a three-
dimensional dynamical system. The continuation starts from
the Hopf bifurcation point, and we have taken the sinusoidal
initial perturbation of the form 1 − Ã sin(2 f πx/l ), where Ã
is the amplitude of the linear perturbation, f is the harmonic
parameter, and l = 2π/k is the period of the wave. We have
mapped the domain to a domain of length unity via the
transformation x → x/L for our convenience.
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VII. NUMERICAL SIMULATIONS

We are interested in solving (52) numerically in a periodic
domain to understand the evolution of finite-amplitude pertur-
bation. This mechanism is responsible for the energy transfer
from the basic state to the disturbance. We use Scikit-FDif
[54], a tool written in PYTHON which uses the finite-difference
method to discretize the spatial derivative and the method
of lines to transform the original partial differential equation
into a high-dimension ODE that can be solved simply by
standard numerical integration of the ODE. These provide
fast computation of the Jacobian matrix and the temporal
evolution vector.

Initially, we impose a finite-amplitude monochromatic dis-
turbance as

h(x, 0) = 1 + 0.1 cos(2πx/L). (90)

As we know from Joo et al. [55], the finite state of disturbance
is insensitive to the amplitude of the primary disturbance.
L = 2π/k is the length of the periodic domain and k is the
wave number. We examine the structure of the wave in the
variable length domain L as the wave number k varies so
it is more convenient to map this domain to a domain of
length unity via x → x/L. The computation is performed on
a uniform grid, with the number of spatial grid points varying
between N = 600 and N = 800 (�x = 1/N ∼ 1.2 × 10−3 −
1.6 × 10−3) and between � t = 0.05 − 0.5 and �t = 0.5. We
discuss the authenticity of the results of our case studies in
detail in Sec. IX.

VIII. CASE STUDY

So far to discuss the problem we have used a general wavy
bottom profile b̂. The specific form of the bottom topography
does not enter into the problem yet; the approach as discussed
so far is applicable to other periodic contours as well.

Now for a case study we choose a sinusoidal bottom
profile,

b̂(x̂) = â cos(2π x̂/λ̂), (91)

where λ̂ is the wavelength and â is the amplitude of the wavy
bottom profile. Furthermore, for the numerical investigation
afterward we take λ̂ = 300 mm, â = 15 mm, and the downhill
portion is 0.0 mm < â < 150 mm whereas the uphill por-
tion is 150 mm < â < 300 mm. x̂ = 0.0 mm is the crest and
x̂ = 150 mm is the “trough.” We refer to Fig. 1 for better
understanding. Finally, we would like to mention here that the
bottom steepness is taken as moderately small, yet it enters
as a fixed quantity and not as a perturbation parameter. Since
both the bottom curvature κ (x̂) and the local inclination θ (x̂)
are functions of x̂, Rec will also be a function of x̂ that is
Rec(x̂).

To specify the properties of the viscoelastic fluid we have
chosen fluids having three different viscoelastic parameter �

values (� = 0.06, 0.2, and 0.4) depending upon the properties
of the fluids. One of them is the mixture of polymethyl
methacrylate and pyridine at 25 ◦C, containing 30.5 g of
polymer per liter, which behaves very close to our model. The
physical properties with such a fluid constitute its density ρ =
0.98 × 10−3 kg/m3, limiting viscosity μ = 0.79 N s/m2, sur-

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

kr

−0.01

0.00

0.01

0.02

0.03

0.04

-k
i

Γ = 0.06, U

Γ = 0.2, U

Γ = 0.4, U

Γ = 0.06, D

Γ = 0.2, D

Γ = 0.4, D

FIG. 2. Spatial growth rate curve for different viscoelastic pa-
rameters at a point in the uphill (U; x = 4.71) and at a point in the
downhill (D; x = 1.57) region for ζ = 0.1π , Re = 1.5.

face tension s0 = 40 × 10−3N/m, and viscoelastic coefficient
γ0 = 0.04 N s2/m2. Unless stated otherwise, the film number
is taken as Fi = 3.7 × 1011 and ε = 0.01.

IX. RESULTS AND DISCUSSION

We now discuss the results part by part taking the reference
stated in Sec. VIII. Our main focus in this study is to analyze
the effect of bottom topography as well as the non-Newtonian
property of a viscoelastic fluid in the hydrodynamics of flow.
We have formulated the problem by transforming the gov-
erning equations and the associated boundary conditions in
the curvilinear coordinate system. This kind of transformation
is important for discussing easily the problems containing a
curvy topography. Our basic assumption for the entire study
is that the film is thin, the bottom profile is periodic, and
the bottom steepness is moderate. But notwithstanding this,
the dependence of the surface on the local inclination angle
(β − θ ) strongly restricts the maximum steepness for a given
inclination angle β [28]. After critical numerical observations
we have chosen the range of the bottom steepness ζ from
0.0 to 0.4 for the inclination angle β = π/3 to make the
model physically and geometrically consistent. A surface
evolution equation is then derived using the classical long-

2.335

2.340

c r

Γ = 0.4, U

0.00 0.05 0.10 0.15 0.20 0.25 0.30

kr

3.3

3.4

c r

Γ = 0.4, D

FIG. 3. Phase speed along the growth rate curve at a point in the
uphill (U; x = 4.71) and at a point in the downhill (D; x = 1.57)
region for � = 0.4, ζ = 0.1π , Re = 1.5.
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FIG. 4. Marginal stability curve (a) for different viscoelastic parameters keeping ζ the same and (b) for different bottom steepnesses
keeping � the same, at a point in the uphill (U; x = 4.71) and at a point in the downhill (D; x = 1.57) region.

wave expansion method accounting for the basic physical
properties of the fluid, the topographic nature of the bot-
tom, and other important characteristics such as gravity and
mean surface tension in terms of different nondimensional
numbers.

A. Results of the linear stability analysis

In this section, we discuss the results of the linear stability
analysis in two subsections. First, we discuss the spatial case
and then the temporal case.

1. Spatial case

From the discussion in Sec. IV A, we analyze some im-
portant results in this section for the sinusoidal bottom to-
pography, (91). Figure 2 represents the spatial growth rate
−ki versus the wave number kr for Re = 1.5 for different
viscoelastic parameters � at a point in the uphill and at a
point in the downhill region for a moderate bottom steepness
(ζ = 0.1π ). The spatial growth rate −ki determines how the

system will react to a harmonic perturbation with a real angu-
lar frequency ω at the inlet. −ki > 0 indicates that the pertur-
bation is amplified downstream with a contrary of −ki < 0,
which indicates that the perturbation is damped and hence the
system is stable. As we can see, in both the downhill and the
uphill regions an increasing � increases −ki in the positive
direction, i.e., the greater value of the viscoelastic parameter
�, the more unstable the flow. But one interesting thing is
that the uphill region gives a comparatively more stable effect
than the downhill region for a fixed �. The reason for this
is supported by Fig. 3, where we have compared the phase
speed of the wave along the growth rate curve at a point in the
uphill and at a point in the downhill region for a fixed � = 0.4
and Re = 1.5. The phase speed ck is more for the downhill
region. Figure 4(a) shows the marginal stability curve in the
Re-k plane for different � values at a point in the uphill and
at a point in the downhill region. Again, the critical Reynolds
number increases with decreasing � for both the uphill and
the downhill regions, but the variation of the critical Re with
� is more prominent in the uphill region than the downhill
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portion. We can conclude for the linear stability analysis that
the effect of the bottom topography is more prominent than the
effect of the viscoelasticity of the fluid. Figure 4(b) shows the
variation of marginal stability with the bottom steepness ζ for
a fixed � at a point in the uphill and at a point in the downhill
region. A dual effect of ζ is found here. In the uphill region,
an increasing ζ gives stability and the opposite occurs for the
downhill region. This is a very interesting phenomenon, and
we explain it in detail later.

2. Temporal case

Figure 5(a) shows the temporal growth rate for different �

values at a point in the uphill and at a point in the downhill
region for Re = 2, and Fig. 5(b) shows the same but for a
fixed � with a variation of the bottom steepness ζ . In the case
of the temporal stability analysis we see the same trend of
results as seen in the spatial case. Increasing � destabilizes
the system and ζ plays a dual role for the uphill and downhill
regions. In support of this argument we have plotted the
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critical Reynolds number Rec as a function of ζ keeping �

to some fixed values in Fig. 6(a) and Rec as a function of �

keeping ζ to some fixed values in Fig. 6(b). Both in the uphill
and in the downhill regions increasing � decreases the Rec.

When ζ = 0 and � → 0 in Fig. 6(b) we retrieve the result for
a Newtonian film flowing over a flat plate, and in that case
we found the same results as Benjamin [8] and Yih [9], i.e.,
Rec = (5/6) cot β ∼ 0.48 (as β = π/3).
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B. Results of the weakly nonlinear analysis

We start with Fig. 7, which shows a stability diagram in the
Re-k plane for different � values at a point in the uphill and
at a point in the downhill region. Different zones indicated in
the graphs by I, II, III, and IV represent the following.

(1) Zone I: Unconditional stable region. Here ωi < 0
and J2 > 0. In this region, finite-amplitude disturbances are
unconditionally stable.

(2) Zone II: Supercritical stable region. Here ωi > 0 and
J2 > 0. In this linear unstable region, subsequent nonlinear
growth of the disturbance will configure a new equilibrium
state with a finite amplitude.

(3) Zone III: Subcritical unstable region. Here ωi < 0
and J2 < 0. In the linear stable region, a finite-amplitude
disturbance can create instability.

(4) Zone IV: Explosive region. Here ωi > 0 and J2 < 0.
In this region, instability increases and makes the system
unstable.

In this problem with our case study, we found all four zones
properly. We can see that fixing a � value, the unconditional
stable zone increases and the explosive zone decreases in
the uphill region more than in the downhill region. Once
again it is proved that considering even the weak nonlinearity
the uphill portion has a stabilizing effect for a particular
bottom steepness. Another important result is shown in Fig. 7;
with a fixed bottom region (uphill/downhill) increasing �

increases the supercritical stable region. This phenomenon
is more prominent for the downhill region than the uphill,
i.e., the bottom topography has more impact on the flow than
the viscoelastic property of the fluid. Figure 8(a) shows the
threshold amplitude in the supercritical region, while Fig. 8(b)
is the same for the subcritical region with � varied at a
point in the uphill and at a point in the downhill region.
In the supercritical stable region increasing � increases the
amplitude of the nonlinear waves. The amplitude is more
in the downhill portion than the uphill, while in the sub-
critical unstable region the opposite occurs. In this region,
the nonlinear amplification rate is positive, while the linear
amplification rate is negative, i.e., even if the linear theory
predicts stability in this region, but actually if the disturbance
is larger than the threshold amplitude, then the amplitude will
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increase. Figure 9 shows the nonlinear wave speed Ncr as a
function of the wave number k for different � values at a
point in the uphill and at a point in the downhill region for
the supercritical stable and subcritical unstable regions. Both
in the supercritical and in the subcritical region increasing
� increases the nonlinear wave speed, which agrees with
the result found by Mukhopadhyay and Halder [52] in the
limiting case of the flat bottom. Also, in the downhill region
the nonlinear speed is higher than in the uphill region, which
agrees with the results of Mukhopadhyay and Mukhopadhyay
[48] in the limiting case of a Newtonian fluid over a wavy
bottom.

C. Results of the traveling wave solution

For this section we have used the periodic boundary con-
dition for closed flow, i.e., the liquid which is flowing out of
the domain is injected at the inlet periodically. Figures 10 and
11 represent bifurcation diagrams for different bottom steep-
nesses ζ and viscoelastic parameters � at different Reynolds
numbers in terms of the maximum wave thickness hmax and
phase speed c as a function of the wave number k. We
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have found that for viscoelastic flow down an inclined wavy
bottom, starting from the critical wave number kc as given
in (69), if we gradually decrease k, different branches of
traveling wave solutions (γ1,2) bifurcate supercritically from
neutral stability conditions through a Hopf bifurcation. The
existence of two families, γ1 and γ2, results from an imperfect
pitchfork bifurcation [56], as identified earlier by Chang et al.
[57] for a Newtonian fluid film flowing down a flat bottom.
The existence of the γ2 family can be seen for relatively small
Reynolds numbers but in our case we found the γ1 family for
a moderate Re. It also is dependent on the values of � and ζ .
This can be explained by the fact that the γ1 waves normally
have a lower traveling speed than the linear marginal waves.
Again, the speed depends on the bottom topography as well.
The uphill portion of the wall slows down the travel speed of
the waves more than a flat film so to compensate for this fact
we need a competitively high Re value in order to maintain
the flow of the γ1 family. A similar argument is found: as
we decrease the bottom steepness ζ we need to increase Re
slightly more in order to capture the characteristics of both
the γ1 and the γ2 families. The γ2 wave family consists of
faster-moving waves starts from the Hopf bifurcation point.
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Next, we present the shape of the γ1 and γ2 waves for different
�, ζ , and Re and for a moderate k in Fig. 12. For a fixed set of
parameters we can easily see that ζ has a destabilizing effect
for both the γ1 and the γ2 family. In Fig. 13 we have computed
a portrait of the film evolution in the phase plane (h′-h). From
here we see that the character of the film dynamic is time
periodic.

The next three figures, Figs. 14, 15, and 16, are dedicated to
understanding well the effects of Re, ζ , and � on the flow for
the γ2 wave family. Changing parameter set combinations our
results show that, unlike Re, both ζ and � have destabilizing
effects.

D. Results of the numerical simulation

Figure 17 is dedicated to the long-time simulation of the
evolution equation, (52). The various graphs indicate the long-
time free surface evolution for different �, ζ , and Re. Panel
(1, 1) shows final permanent waves over long-term simulation
of our model for a Newtonian film over a flat surface (� =
ζ = 0) at an inclination of β = π/4. We have used Re =
3.53 and We = 500 with a time increment �t = 0.05. This
study shows a good match with the final permanent waveform
predicted by Joo et al. in their Fig. 7 [55]. Panel (1, 2) shows
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FIG. 17. Free surface configuration for various �, ζ , and Re from time-dependent simulations.

the results for a Newtonian film over a wavy bottom. We
have chosen Re = 2, We = 400, β = π/3, and �t = 0.1 in
order to compare our results with those of Mukhopadhyay and
Mukhopadhyay [48] and found a very good match between
the two simulations. Panels (2,1), (2,2), and (3, 1) shows
final permanent steady waves for Re = 2.5, β = π/3, We =
45000, � = 0.05, and ζ = 0.1π for different � values. The
amplitude of the disturbances increases as � increases. The
last panel, (3,2), shows the same result for � = 0.4 and ζ =
0.02π (the rest of the parameters remain the same). Compared
with panel (2, 2) we conclude that in the nonlinear regime an
increasing ζ increases the amplitude of the disturbances.

X. CONCLUSION

We have investigated the flow of viscoelastic fluid over an
undulated periodic bottom with moderate steepness. We have
chosen Walters’ B′′ viscoelastic fluid model for our study, as
it requires only one non-Newtonian parameter. This model

represents an approximation to first order in elasticity, i.e., it
is valid for short or rapidly fading memory liquids (weakly
elastic). Depending upon the relaxation time we have chosen
a set of three values, 0.06, 0.2, and 0.4, for the viscoleastic
parameter �. We performed the entire study primarily for a
general periodic bottom profile, then to discuss the results we
chose a sinusoidal bottom of moderate steepness. A Benney-
type nonlinear evolution equation is derived for long wave-
lengths considering the effect of waviness of the bottom and
the characteristics of the viscoelastic fluid. The linear stability
has been analyzed from the spatial and temporal viewpoints.
The spatial case is discussed on the basis of Whitham’s [47]
wave hierarchy.

The weakly nonlinear analysis has been performed with
the derivation of a complex Ginzburg-Landau equation using
the method of multiple scales. In our study we found both the
supercritical stable and the subcritical unstable regions. We
have discussed in detail the threshold amplitude and nonlinear
wave speed in these two regions.
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The results show that the viscoelastic parameter � always
plays a destabilizing role, while the bottom steepness ζ has
a dual effect on the uphill and downhill regions in linear and
weakly nonlinear analyses. The physical reason behind this
can be analyzed thus: we have taken the wavelength of the
sinusoidal bottom as λ. Now, we have considered the uphill
portion from λ/2 to λ, which can be viewed as an inclined
plane, and the flow is in disfavor of gravity in this region. As
ζ → 0, θ → 0, which gives cos(β − θ )/ sin β → cot β and
sin(β − θ )/ sin β → 1, i.e., we retrieve a flat inclined plane
with inclination angle β and we lose the effect of waviness of
the bottom. So, in this region an increasing ζ has a stabilizing
effect. On the contrary, the downhill portion is from 0 to
λ/2, which can again be viewed as an inclined plane, and
the flow is in favor of gravity in this region. Now, as we
increase the steepness in the downhill region, cos(β − θ ) → 0
and sin(β − θ ) → 1 with β − θ → 90◦ as ζ → 0.588, i.e.,
it behaves like a vertical plane (though it is mathematically
true, we geometrically lose the structure of the assumption
of waviness). This is the reason that increasing ζ in the
downhill portion has a destabilizing effect. Thus to get a
perfect reflection of the impact of the steepness parameter ζ

on the waviness of the (sinusoidal) bottom profile, we have to
restrict ourselves to small values of the parameter ζ , though
the theory is valid for moderate steepnesses as well.

Moving forward we have performed a traveling wave so-
lution of the nonlinear evolution equation, (52). By applying
a forcing frequency signal at the inlet the traveling waves can
be observed in the experiments. These periodic waves remain
stationary in a moving frame of reference χ = x − ct , where
c is the speed of the frame and hence the speed of the wave.
Under this moving reference frame the evolution equation,
(52), is recast into a three-dimensional dynamical system. Two
wave branches are found, as the family of the slow waves γ1

and the family of the faster-growing waves γ2. Along with the
Reynolds number Re, the viscoelastic parameter � and the
bottom steepness ζ values increase, and all have destabilizing
effects by amplifying the wave amplitudes.

Finally, a time-dependent numerical simulation has been
performed to solve the evolution equation, (52), with Scikit-
FDif. The presence of bottom corrugation and the effect of
the fluid property have a good impact on the time-independent
waves of permanent form. As stated earlier, � and ζ both have
destabilizing effects in the nonlinear regime.

Several research works have been performed so far on
the topic of viscoelastic fluid flow as well as accounting for
the bottom topography using different modeling techniques.
However, most of them have studied specific bottom struc-
tures. Our study has been performed using a general periodic
bottom; also, we have discussed a particular form of the
bottom as a case study. We expect that our study will motivate
researchers in future to explore these kinds problems from
different aspects and points of view.
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