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Stability of surfactant-laden liquid film flow over a cylindrical rod
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The stability of surfactant-laden liquid film flow over a cylindrical rod is examined in creeping flow limit using
standard temporal linear stability analysis. The clean film flow configuration (i.e., in absence of surfactant) is
well-known to become unstable owing to Rayleigh-Plateau instability of cylindrical liquid interfaces. Previous
studies demonstrated that for a static liquid film (i.e., zero basic flow) coating a rod, the presence of interfacial
surfactant decrease the growth of Rayleigh-Plateau instability, but is unable to suppress it completely. Further,
the presence of interfacial surfactant is known to introduce an additional mode, referred to as surfactant mode
in the present work. To the best of our knowledge, the stability of surfactant mode has not been analyzed in
the context of cylindrical film flows. Thus, we reexamined the stability of surfactant-laden cylindrical liquid
film flow to analyze the stability behavior of the above said two modes when the basic flow is turned on.
The present study reveals that the incorporation of basic flow in stability analysis leads to the complete
suppression of Rayleigh-Plateau instability due to the presence of interfacial surfactants as compared to the
partial suppression obtained for a stationary liquid film. Three nondimensional parameters appear for this
problem: Bond number (denoted as Bo) which characterizes the strength of basic flow, Marangoni number
(denoted as Ma) which signifies the presence of surfactant, and ratio of rod radius to film thickness denoted
as S. In creeping flow limit, the characteristic equation is quadratic with one root belonging to Rayleigh-Plateau
mode and the other to surfactant mode. We first carried out an asymptotic analysis to independently capture the
eigenvalues corresponding to both the modes in limit of long-wave disturbances. The long-wave results show that
the Rayleigh-Plateau instability is completely suppressed on increasing the Marangoni number above a critical
value while the surfactant mode always remains stable in low wave-number limit. The continuation of long-wave
results to arbitrary wavelength disturbances show that the suppression of Rayleigh-Plateau instability mode still
holds, however, the surfactant mode becomes unstable at sufficiently high values of Marangoni number. Further,
this surfactant mode instability shifts toward low wave numbers with critical Marangoni number for instability
scaling with wave number in a particular fashion. We used this scaling and carried out an asymptotic analysis
to capture this instability in low wave-number limit. Depending on S and Bo, we observed the existence of a
stable gap in terms of Ma where both the eigen-modes remain stable. Our results indicate that for a given Bond
number, the width of stable gap in terms of Ma decreases with decrease in S and the stable gap vanishes when S
is sufficiently small. The effect of increasing Bond number (or equivalently, the strength of basic flow) is found
to be stabilizing for the film flow configuration.
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I. INTRODUCTION

The flow of a liquid film down a vertical cylindrical rod
is important in several technological applications. Goren [1]
carried out the linear stability analysis for a stationary liq-
uid film coating a wire and demonstrated the presence of
a surface-tension driven capillary instability similar to the
classical Rayleigh-Plateau (RP) instability of a cylindrical
liquid jet. Subsequent studies [2–4] incorporating the gravity-
induced flow in the film demonstrated the appearance of an
additional mechanism of instability due to the presence of
free-surface. This free-surface instability is also present for
a planar gravity-driven liquid film flow [5]; however, inertia
is always required to trigger this free-surface instability (both
for planar and cylindrical films). In contrast, the capillary in-
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stability exhibited by cylindrical films exist even for stationary
film and/or in Stokes’ flow limit. In the present work, we are
interested in examining the effect of interfacial surfactant on
the capillary instability of a liquid film flow over a cylindrical
rod, and thus, we analyze the problem in creeping flow limit
to eliminate the possibility of free-surface instability.

There are lot of theoretical and experimental studies ex-
ploring the nonlinear dynamics and evolution of film once the
Rayleigh-Plateau or capillary instability sets in for a liquid
film coating a cylindrical rod [6–18]. However, relatively less
attention is paid to study the effect of presence of surfac-
tant at air-liquid interface on cylindrical film stability. Even
among those, most of the efforts have been directed toward
understanding the effect of surfactant on the stability of liquid
film lining the inside of a tube because of the relevance of
this inside configuration to lung airway closure mechanism.
For the inside film configuration, the presence of surfactant
reduces the growth rate of RP instability but cannot suppress
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it completely [19–22]. A similar conclusion regarding the
reduced growth rate has also been made by Carroll and
Lucassen [23] for surfactant-laden liquid film coated outside
of a cylindrical fiber. In fact, the growth rate reduces by a
maximum factor of 4 for both inside [19] and outside [23]
surfactant-laden film as compared with the growth rate for a
clean film.

All the above cited studies related to reduction of growth
rate of RP capillary instability due to the presence of sur-
factant assumed a static liquid film, and ignored the effect
of presence of gravity-driven basic flow. To the best of our
knowledge (and surprisingly), we could not find any study
which evaluates the role of surfactants for liquid film coating a
cylindrical rod while taking into account of the presence of ba-
sic flow. The role of basic flow in suppressing the free-surface
instability due to the presence of interfacial surfactants for a
planar liquid film has been highlighted by Wei [24]. There
are other instances as well where a flow-induced stabilization
of interfacial instabilities has been achieved, for example,
in core-annular flows in rigid [25] and flexible tubes [26].
Thus, we carry out a careful, standard temporal linear stability
analysis for surfactant-laden film flow coating on the exterior
of a cylindrical rod by taking into account of the presence
of basic flow. We show that while complete suppression is
not possible for a stationary film, the RP capillary instability
completely vanishes due to the presence of surfactant when
basic flow is turned on.

Another point worth mentioning is the introduction of a
mode of instability in addition to already present capillary
instability mode due to the presence of an interfacial surfac-
tant. Halpern and Frenkel [27,28] were the first to uncover
the instability of this surfactant induced additional mode in
long-wave disturbance limit for two-layer channel flow (even)
in Stokes’ flow limit. This surfactant induced mode is referred
to as Marangoni/surfactant mode in literature. Blyth and
Pozrikidis [29] demonstrated that the Marangoni mode re-
mains stable for surfactant-laden liquid film flowing down an
incline plane for all wave numbers. The Marangoni mode was
also never observed to become unstable for cylindrical fluid-
fluid interfaces, for example in core-annular or rod-annular
flow configurations [30–32] or for simple liquid thread. In di-
rect relevance to the present work, Carroll and Lucassen [23]
examined the stability of surfactant-laden stationary liquid
film coating a vertical fiber. However, they focused on the
effect of surfactant on Rayleigh-Plateau instability, and did
not make any mention of the stability of surfactant mode.
Probably due to Marangoni mode remaining stable for flow
configurations involving cylindrical fluid-fluid interfaces and
for planar-free surface flows, the stability of Marangoni mode
for film coating a rod has not received any attention. Here,
we examined the stability of Marangoni mode for film flow
over a vertical rod, and show that this mode remains stable
in long-wave disturbance limit, however, when the results
corresponding to Marangoni mode are continued from long-
wave (or low-wave-number) limit to finite wave numbers,
we observe that a band of wave numbers become unstable
at sufficiently high Marangoni number. This observation is
in contrast to earlier studies related to free surface flows
where the Marangoni mode in low-wave-number limit and
its continuation to finite wave numbers was always found to

FIG. 1. Surfactant-laden Newtonian liquid film flowing outside a
rigid vertical cylinder.

be stable. However, we show in the end that the instability
observed here at higher Marangoni number is not the true
surfactant/Marangoni mode because it requires fluctuations in
both surfactant concentration and gas-liquid interfacial loca-
tion for its existence. In contrast to this, earlier studies related
to film flows [29,33] identified Marangoni/surfactant mode
on the basis of presence of disturbances only in surfactant
concentration without necessarily having fluctuations in gas-
liquid interfacial location. We further show that this instability
observed at high Marangoni number shows connection with
RP capillary instability in the limit of zero basic flow. In
context of the above discussion, it is also important to note
that the presence of surfactant was also found to have a desta-
bilizing effect on capillary mode for the core-annular flow in
a horizontal pipe [30]. Also, these previous studies related
to core-annular or rod-annular flows [30–32] used Marangoni
number values as unity or less than unity in presenting their
results.

Based on the literature, in the present work, we carry
out a careful examination of both RP and Marangoni mode
instabilities for surfactant-laden film flow coating on a vertical
cylindrical rod. The rest of the paper is organized as follows:
Section II describes the flow configuration and presents the
equations governing the linear stability of the film flow prob-
lem. Section III discusses the solution procedure, and more
importantly, explains the procedure that we follow to identify
the eigenvalues as either belonging to RP or surfactant mode.
Section IV presents the long-wave asymptotic analysis to cap-
ture the eigenvalues corresponding to both RP and surfactant
modes. The results for arbitrary wavelength disturbances are
discussed in Sec. V, and finally we summarize our finding in
Sec. VI.

II. PROBLEM FORMULATION

We consider a Newtonian liquid film (of density ρ, and
viscosity μ) falling down a vertical cylindrical rod/fiber (of
radius R0) under the action of gravity (Fig. 1). The unper-
turbed thickness of the liquid film is h0, and the film is
in contact with a passive gas. The gas-liquid interface is
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covered with a monolayer of insoluble surfactant with local
surface concentration of surfactant denoted by �∗(z∗, t∗). The
surfactant can convect and diffuse along the gas-liquid (GL)
interface to locally alter the surface tension according to the
simple linear relationship: γ ∗(z∗, t∗) = γ ∗

0 − E (�∗(z∗, t∗) −
�∗

0 ), where �∗
0 is the surfactant concentration in unperturbed

state, γ ∗
0 is the interfacial tension corresponding to undis-

turbed surfactant concentration �∗
0 , and E = −( ∂γ ∗

∂�∗ )
�∗

0
is sur-

face elasticity. Further, we assume negligible diffusion of
surfactant along the GL interface and fix diffusion coefficient
Ds = 0 in the present study. As mentioned in the Introduction
we are interested in analyzing the problem in creeping flow
limit, therefore, the governing equations for the flow in liquid
film are

∇∗ · v∗ = 0, ∇∗ · T∗ + ρg∗ = 0, (1)

where, T∗ = −p∗I + μ[∇∗v∗ + (∇∗v∗)T ] is the total stress
tensor, v∗ and p∗ are, respectively, the velocity and pressure
fields. The GL interface in perturbed state is located at r∗ =
h∗(z∗, t∗) = h0 + h′(z∗, t∗). The stress balance equation at GL
interface in the presence of surfactant is [34]

(n · T∗) = ∇s
∗γ ∗ − γ ∗n(∇∗ · n), (2)

where, n is the unit normal vector pointing from liquid to
gas phase, and ∇s

∗ = ∇∗ − n(n · ∇∗) is the surface gradient
operator. The normal stress balance is obtained by taking
an inner product of Eq. (2) with n and this gives: (n · T∗ ·
n) = −γ ∗(∇∗ · n). This condition implies that the normal
component of stress is balanced by the surface tension force,
and in the limiting case of static liquid film, it reduces to
Young-Laplace pressure jump condition [34]. The tangential
component of stress is obtained by taking a dot product of
Eq. (2) with tangent vector t. The tangential stress balance is
then written as (n · T∗ · t) = (∇s

∗γ ∗) · t. This equation shows
that the Marangoni stress induced by gradient of surface
tension (right-hand-side term) is balanced by tangential stress
in liquid film. Note that the surface tension gradient can occur
because of the variation in surfactant concentration along the
GL interface, and hence, the Marangoni stresses are expected
to affect the stability of the present film flow configuration.
The equation governing the transport of surfactant species
at GL interface under the assumption of negligible diffu-
sion coefficient, Ds = 0, is ∂�∗

∂t∗ + ∇s
∗ · v∗ = 0 [34–36]. On

expressing v∗ in terms of component of velocity along the
interface [i.e., vs

∗ = v∗ − (v∗ · n)n], we obtain the surfactant
transport equation as

∂�∗

∂t∗ + ∇s
∗ · (�∗vs

∗) + �∗(∇s
∗ · n)(v∗ · n) = 0. (3)

The above equation shows that there are two contributions
that change the local surfactant concentration [first term in
Eq. (3)]: convection of surfactant species with interface ve-
locity vs

∗ represented by second term in above equation, and
third term representing the change in �∗ due to local change
in interfacial area. The kinematic condition for the evolution
of GL interface is ∂t∗h∗ + v∗

z ∂z∗h∗ = v∗
r . Finally, the velocity

field satisfies no-slip and no-penetration conditions (v = 0) at
r∗ = R0.

We use the following scales to nondimensionalize differ-
ent variables: h0 for lengths, γ ∗

0 /μ for velocities, γ ∗
0 /h0 for

stresses and pressure, �∗
0 for surfactant concentration, and

γ ∗
0 for surface tension. As a result of nondimensionalization,

three dimensionless parameters appear in the problem:

S = R0

h0
, Bo = ρgh2

0

γ ∗
0

, Ma = E�∗
0

γ ∗
0

. (4)

Here, S is the ratio of rod radius to film thickness, Bo is Bond
number, and Ma is the Marangoni number. Note that Ma = 0
recovers the clean film case, i.e., when the film is devoid of
surfactant species.

The basic flow consists of one-dimensional, laminar,
steady state solution of Navier-Stokes equation when the gas-
liquid interface remains perfectly cylindrical and free of any
interfacial perturbations. The nonzero component of velocity,
under the above mentioned assumptions, is vz

∗ which depends
only on radial coordinate r∗. The expression of vz

∗ is obtained
by solving the simplified z-component of Navier-Stokes equa-
tion along with appropriate boundary conditions [37]:

μ

r∗
d

dr∗ (r∗ dvz
∗

dr∗ ) + ρg = 0, vz
∗(r∗ = R0) = 0,

μ
dvz

∗

dr∗ = 0 @ r∗ = R0 + h0. (5)

The pressure profile is obtained from simplified r-component
Navier-Stokes equation ( d p∗

dr∗ = 0) along with normal stress

balance at gas-liquid interface (p∗ − pg
∗ = γ0

∗
R0+h0

). Here, pg
∗

is constant pressure in passive gas region. The velocity pro-
file and pressure distribution thus obtained is then made
dimensionless using the above mentioned scales. Finally, the
dimensionless basic velocity profile and pressure distribution
are given as

vz(r) = Bo

4

[
S2 − r2 + 2(S + 1)2ln

( r

S

)]
,

p(z) = pg + 1

S + 1
. (6)

A standard temporal linear stability analysis is carried out
in which all the dynamical variables (interfacial location, ve-
locities, pressure, and surfactant concentration) are perturbed
about their basic state value: g = g + g′, where g represents
any dynamical variable. g is the base state value, and g′ is
the axisymmetric disturbance which is represented in terms
of Fourier modes as: g′ = g̃(r) exp[ik(z − ct )]. Here, g̃(r) is
the complex amplitude of the disturbance, k is the real wave
number of perturbations, and c = cr + ici is the complex wave
speed. If ci > 0 (or ci < 0), then flow will be unstable (or
stable). On substitution of above form of perturbed variables
in governing equations and retaining linear terms in perturba-
tion variables, we obtain the linearized stability equations for
liquid film falling down a cylindrical rod:

dr ṽr + ṽr

r
+ ikṽz = 0, (7)

−dr p̃ + [
d2

r + r−1dr − r−2 − k2
]
ṽr = 0, (8)

−ik p̃ + [
d2

r + r−1dr − k2
]
ṽz = 0, (9)
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where, dr = d
dr . The linearized kinematic condition, tangen-

tial stress balance, normal stress balance, and surfactant trans-
port equation at unperturbed GL interface (r = S + 1) are

ik[vz − c]h̃ = ṽr, (10)

ikṽr + dr ṽz + h̃(d2
r vz ) + ikMa�̃ = 0, (11)

p̃ − 2dr ṽr + h̃

(
1

(S + 1)2
− k2

)
+ Ma�̃

S + 1
= 0, (12)

[ik{vz − c}]�̃ = dr ṽr . (13)

Finally, the no-slip and no-penetration conditions at r = S are

ṽz = 0, ṽr = 0. (14)

III. SOLUTION PROCEDURE AND MODE
IDENTIFICATION

The linear stability of the flow configuration is governed
by Eqs. (7)–(14). These equations are solved to determine the
dispersion relation: c = F (S, Bo, Ma, k). Equations (7)–(9)
can be recast into a single fourth-order ordinary differential
equation (ODE) in terms of ṽr by substituting ṽz from Eq. (7)
and p̃ from Eq. (9) in Eq. (8). The general solution of this
fourth-order ODE is

ṽr = C1rI0(kr) + C2I1(kr) + C3rK0(kr) + C4K1(kr). (15)

Here, coefficients {C1,C2,C3,C4} are integration constants, Iα
and Kα are the modified Bessel function of first and second
kind, respectively. The variables ṽz and p̃ are evaluated using
Eqs. (7) and (9). The interfacial deflection h̃ is calculated
using Eq. (10), and surfactant concentration �̃ is calculated
from Eq. (13) using the expression of ṽr . All the expres-
sions (ṽr, p̃, ṽz, h̃, �̃) are substituted in boundary conditions
Eqs. (11), (12), and (14) to obtain a set of four linear homoge-
neous algebraic equations containing four unknown constant
coefficients {C1,C2,C3,C4}. The determinant of coefficient
matrix is equated to zero which yields a quadratic charac-
teristic equation in eigenvalue c. Thus, we obtain two roots
for c, say root-1 and root-2. It is important to mention here
that the characteristic equation remains quadratic for both
a surfactant-free film (Ma = 0), and a surfactant-laden film
(Ma �= 0). We used symbolic package MATHEMATICA to
carry out the analytical calculations outlined above. Further, a
multivariable Newton-Raphson method is used to evaluate the
neutral stability curves in Ma versus k plane. We next discuss
the procedure followed to identify and label the two roots as
RP or surfactant mode.

It is well known that a surfactant-free cylindrical film
is unstable due to a surface tension driven RP instabil-
ity [4], and the presence of interfacial surfactant introduces
a surfactant/Marangoni mode [27] in addition to already
present RP mode. Both of these modes (RP and surfactant
modes) can be captured and identified in long-wave dis-
turbance regime by carrying out an asymptotic analysis in
k << 1 limit. Thus, we examine the behavior of root-1 and
root-2 in long-wave (or low-wave-number) limit to identify
which among the two roots correspond to RP or surfactant
mode. We observed that for Ma = 0, one of the root (say
root-1) is a complex number while the second root (root-2)

is purely real. The real root-2 found to be equal to the base
velocity at GL interface, i.e., vz@r=S+1 for k << 1. Since this
root is real, it represents a pseudostable mode present for
the surfactant-free film. However, the real part of root-1 is
found to be equal to 2vz@r=S+1, and the imaginary part is always
found to be positive in low-k limit. Thus, this root-1 represents
a traveling wave perturbation with positive growth rate, or
equivalently, an unstable root for the surfactant-free film flow
configuration. Since a surfactant-free film is known to become
unstable due to RP instability mechanism, therefore, this
root-1 is referred to as RP instability mode while root-2 is
simply a pseudostable mode for Ma = 0 case. We next track
the progress of these two roots as Ma is gradually increased
above zero. For small and Ma �= 0 (e.g., Ma = 10−3, 10−2

etc.), we observe that real part of root-1 (which corresponds
to RP mode when Ma = 0) is still equal to 2vz@r=S+1, while the
imaginary part modifies slightly indicating a dependence on
nonzero Marangoni number. The imaginary part of root-1 is
still positive implying that root-1 is still an unstable root of
the characteristic equation (for small Ma). These observations
suggest that root-1 still corresponds to RP instability mode for
surfactant-laden cylindrical films. Interestingly, an imaginary
part starts to appear for root-2 at small and nonzero Marangoni
numbers. Thus, root-2 becomes a complex quantity for Ma �=
0 and the real part is still observed to remain identical to
Ma = 0 case (i.e., = vz@r=S+1). As the presence of surfactant is
known to introduce an additional normal mode referred to as
surfactant/Marangoni mode [27,28], we identify this root-2 as
surfactant/Marangoni mode. The imaginary part of this root
is observed to be negative, and hence, this root-2 or surfactant
mode remains a stable eigenmode in low-wave-number limit.
As mentioned above that both RP and surfactant modes can
be captured in long-wave disturbance limit, thus, we carry
out a low-wave-number asymptotic analysis in next section
to capture these two eigenmodes. A comparison of results
obtained from the low-k analysis and the two roots obtained
using the general characteristic equation again confirms that
root-1 corresponds to RP mode and root-2 corresponds to
Marangoni mode.

IV. LOW-WAVE-NUMBER ASYMPTOTIC ANALYSIS

In this section, we present a low-wave-number (or long-
wavelength) asymptotic analysis to capture the eigenvalues
corresponding to RP and surfactant mode in k << 1 limit.
Specifically, we focus on two aspects: (i) how the presence
of surfactant affects the stability of RP mode in presence
of flow, and (ii) whether the surfactant/Marangoni mode
become unstable or not in low-k limit? The complex wave
speed is expanded as: c = c(0) + kc(1) + · · · for k << 1. Here
c(0) and c(1) are leading-order and first correction to wave
speed, respectively. All the dimensionless parameters S, Ma,
and Bo are assumed to be O(1) quantity which implies that
these parameters do not show any scaling with wave number.
Further, the basic velocity profile is written as

vz(r) = Bo

4
f (r), where f (r) =

[
S2− r2+ 2(S+ 1)2ln

( r

S

)]
.

(16)

If we set ṽr ∼ O(1), then this implies ṽz ∼ O(1/k) and
p̃ ∼ O(1/k2) from Eqs. (7) and (9), respectively. Similarly,
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h̃ ∼ O(1/k) and �̃ ∼ O(1/k) from Eqs. (10) and (13), respec-
tively. All the variables are then expanded according to their
respective scaling:

{ṽr, ṽz, p̃, h̃, �̃, }

=
{
ṽ(0)

r ,
1

k
ṽ(0)

z ,
1

k2
p̃(0),

1

k
h̃(0),

1

k
�̃(0),

}

+ k

{
ṽ(1)

r ,
1

k
ṽ(1)

z ,
1

k2
p̃(1),

1

k
h̃(1),

1

k
�̃(1)

}
+ · · · (17)

These expansions in Eq. (17) are substituted in governing
equations and boundary conditions Eqs. (7)–(14), and the
resulting set of equations are solved at each order in k. The
equations at leading order are

dr ṽ
(0)
r + 1

r
ṽ(0)

r + iṽ(0)
z = 0, (18)

dr p̃(0) = 0, (19)

i p̃(0) − d2
r ṽ(0)

z − 1

r
dr ṽ

(0)
z = 0. (20)

The above equations can be recast into a single fourth order
differential equation in ṽ(0)

r :

d4
r ṽ(0)

r + 2

r
d3

r ṽ(0)
r − 3

r2
d2

r ṽ(0)
r + 3

r3
dr ṽ

(0)
r − 3

r4
ṽ(0)

r = 0.

(21)
The tangential stress balance, normal stress balance, kine-
matic condition, and surfactant transport equations at leading
order (at r = S + 1) are

dr ṽ
(0)
z + h̃(0)(d2

r vz ) = 0, (22a)

p̃(0) = 0, (22b)

ṽ(0)
r − i(vz − c(0) )h̃(0) = 0, (22c)

dr ṽ
(0)
r − i(vz − c(0) )�̃(0) = 0. (22d)

The leading-order velocity field satisfies no-slip conditions
at rigid solid boundary:

ṽ(0)
z = 0, ṽ(0)

r = 0. (23)

The solution to Eq. (21) satisfying conditions
Eqs. (22a), (22b), and (23) is

ṽ(0)
r = ih̃(0)

4

(1 + S)

r

[
S2 − r2 + 2r2 ln

r

S

]
v′′

z , (24)

where, v′′
z = d2

r vz |r=S+1. Substituting leading-order velocity
field [Eq. (24)] in kinematic condition [Eq. (22c)] and surfac-
tant transport Eq. (22d), we obtain

i

4
h̃(0) f v′′

z − i(vz |r=S+1 −c(0) )h̃(0) = 0, (25)

i

4
h̃(0) A1

(S + 1)
v′′

z − i(vz |r=S+1 −c(0) )�̃(0) = 0, (26)

where, f = f (r) |r=S+1. The above set of equations [Eqs. (25)
and (26)] admits two solutions for leading-order wave speed:
one for h̃(0) �= 0, and second for h̃(0) = 0 but with �̃(0) �= 0.
When h̃(0) �= 0, the kinematic Eq. (25) yields the value of c(0)

for RP mode and the surfactant transport Eq. (26) gives the

relationship between surfactant concentration and interfacial
deflection,

c(0)
RP = vz@r=S+1 − f

4
v′′

z = 2vz@r=S+1, (27)

�̃(0) = h̃(0)

[
A1

(S + 1) f

]
, (28)

where A1 is a function of S given in Appendix B. It is
important to point out here that while evaluating �̃(0) using
Eq. (26), there occurs a cancellation of term v′′

z (= −Bo)
from numerator and denominator. Thus, the expression of �̃(0)

given above is valid only for nonzero Bond numbers. Since,
�̃(0) is used in further calculations, the analysis that follow
is strictly valid for Bo �= 0. Note that the terms proportional
to Ma in tangential and normal stress balances [Eqs. (11)
and (12)], which accounts for the presence of surfactant, are
absent in leading-order stress balance equations [Eqs. (22a)
and (22b)]. Thus, the leading-order wave speed is exactly
identical to the leading-order wave speed obtained for a clean
film flowing down a rigid rod [29,33]. However, the interfacial
deflection at GL interface causes a fluctuation in surfactant
concentration at leading order as shown by Eq. (28). This
leading-order surfactant concentration disturbance creates a
surface tension gradient at GL interface, and hence, it is
expected that the first correction to wave speed for RP mode
could be modified by the presence of surfactant.

The second mode which exists purely because of fluctua-
tion in surfactant concentration without necessarily having a
perturbation in GL interfacial location (�̃(0) �= 0 and h̃(0) = 0)
is referred to as Marangoni/Surfactant mode. The leading-
order wave speed from surfactant transport Eq. (26) for this
mode is

c(0)
Ma = vz@r=S+1. (29)

Note that since h̃(0) = 0, the liquid layer admits a zero flow
solution at leading order for Marangoni mode. Since, the
leading-order wave speeds for both the modes are real, there-
fore, we cannot determine the stability of the system at this
order and it is required to carry out calculations for next order
in k.

The continuity and momentum equations can be written at
O(k) and can be combined into a single fourth-order ODE in
ṽ(1)

r . This fourth-order ODE and boundary conditions at O(k)
are

d4
r ṽ(1)

r + 2

r
d3

r ṽ(1)
r − 3

r2
d2

r ṽ(1)
r + 3

r3
dr ṽ

(1)
r − 3

r4
ṽ(1)

r = 0,

(30)

dr ṽ
(1)
z + (d2

r vz )h̃(1) + iMa�̃(0) = 0, (31a)

p̃(1) + 1

(S + 1)2
h̃(0) + 1

(S + 1)
Ma�̃(0) = 0, (31b)

ṽ(1)
z = 0, ṽ(1)

r = 0, (31c)

ṽ(1)
r − i(vz − c(0) )h̃(1) + ic(1)h̃(0) = 0, (31d)

dr ṽ
(1)
r − i(vz − c(0) )�̃(1) + ic(1)�̃(0) = 0. (31e)

The above system of equations is solved for first correction to
wave speed for both RP and Marangoni mode.
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A. The Marangoni/surfactant mode

The leading-order velocity field is absent for h̃(0) = 0 and
�̃(0) �= 0. This gives c(0)

Ma = vz@r=S+1 from leading-order surfac-
tant transport equation [Eq. (22d)]. The first correction to ve-
locity field is then obtained by integrating Eq. (30) and using
conditions given in Eqs. (31a)–(31c). The kinematic condition
[Eq. (31d)] reduces to ṽ(1)

r |S+1= 0 and this equation is used
to determine the expression of �̃(0). This expression of �̃(0) is
utilized in surfactant transport equation at O(k) to determine
the first correction to wave speed for Marangoni mode. The
eigenvalue for surfactant/Marangoni mode is then given as

cMa = vz@r=S+1 − ikζMa, (32)

where ζ is a positive-valued function of S given in
Appendix B. We have verified that the above equation
shows excellent match with root-2 discussed in Sec. III. This
expression for cMa shows that the Marangoni mode remains
stable in low-k limit. This observation is consistent with
several previous studies which state that shear stress exerted
at fluid-fluid interface due to basic flow is required to trigger
Marangoni mode instability [27,33]. Since the gas-liquid
interface in the present film flow configuration remains stress
free, the Marangoni mode does not become unstable.

B. Rayleigh-plateau instability mode

The governing Eq. (30) is solved for ṽ(1)
r using conditions

Eqs. (31a)–(31c), leading-order wave speed c(0)
RP [Eq. (27)],

and relation between h̃(0) and �̃(0) [Eq. (28)]. The first correc-
tion to wave speed (c(1)

RP) is then determined using kinematic
condition at O(k) [Eq. (31d)]. The c(1)

RP is found to be imagi-
nary, and hence, the stability of RP mode can be established at
O(k). The above procedure gives the eigenvalue for RP mode
correct up to O(k):

cRP = c(0)
RP + kc(1)

RP = 2vz@r=S+1 + ik[q − nMa], (33)

where q and n are positive valued functions of S(= R/h0)
and their expressions are given in Appendix B. We have
verified that q → 0 and n → 1 as S → ∞ in the Eq. (33)
which recovers the case of surfactant-laden planar film flow in
creeping flow limit [29,33,38]. The circumferential curvature
[1/(S + 1)] decreases with increase in S, and approaches zero
for large enough values of S, thus, recovering the planar
film flow limit at large S. Also, the RP instability caused
due to surface tension mainly arise from the circumferential
curvature of the gas-liquid interface [39,40]. Since, this cir-
cumferential curvature is nonexistent for planar film flows, the
RP capillary instability remains absent (i.e., q → 0) for (clean
or surfactant-laden) planar film flow past an inclined/vertical
plane. The expression of cRP matches very well with root-1
(refer Sec. III) in the limit of long-wave disturbances.

The first term in the imaginary part of eigenvalue cRP (i.e.,
q) corresponds to the RP capillary instability exhibited by a
clean stationary liquid film (i.e., for Ma = 0, and Bo = 0).
This point can be verified by looking at the expression of
RP mode eigenvalue obtained from a low-k zero-flow analysis
given below [refer to Eq. (34)]. The second term proportional
to Ma represents the effect of surfactant on RP instability. The

second term appears with a negative sign demonstrating the
stabilizing effect of surfactant on RP instability mode. The
above expression shows that the capillary instability is sup-
pressed above a critical Marangoni number given by: Macrit =
q/n. This finding is in stark contrast with the following
general observation made in several previous studies: Even
though partial stabilization of RP capillary mode is possible
in presence of surfactants, a complete suppression of capillary
instability using a mono-layer of surfactant is not possible
for cylindrical liquid film flows [19,23]. As mentioned in the
Introduction, these previous works calculated the growth rates
(or equivalently eigenvalues) in the limit of thin stationary
liquid coating. Thus, the basic flow was absent in these earlier
studies. In contrast, the expression of cRP given above is
obtained when the base flow is nonzero. Thus, we anticipate
that the complete stabilization observed above is a result of
inclusion of the basic flow in the analysis. Recall that we have
mentioned previously that the eigenvalue obtained above in
Eq. (33) is not valid for Bo = 0 or in absence of flow. At
this point, it is worth noting that both q and n are functions
of S only, and are independent of strength of basic flow
(characterized by Bo), thus, the nondimensional growth rate
(kci = k2c(1)

RP) and Macrit do not depend on Bond number. Such
nondependence of growth-rate on Bond number has also been
mentioned previously by Halpern and Wei [41] who examined
the dynamics of clean liquid film falling down a vertical
fiber. Zhou [42] also demonstrated that the growth-rate does
not depend on Bond number for surfactant-laden liquid film
flow inside of a tube. While the expression of c(1)

RP does not
numerically depend on the strength of basic flow, the way
the terms appear (i.e., q and term proportional to Ma) in
the expression of c(1)

RP (or imaginary part of eigenvalue) does
depend on whether the basic flow is present or not.

C. The stationary film (Bo = 0) case

To show this difference in the way of appearance of terms
(particularly, terms proportional to Ma) in eigenvalues cor-
responding to Bo = 0 and Bo �= 0 cases, we carried out an
independent low-k analysis for a stationary liquid film (i.e.,
with vz = 0 or Bo = 0). This analysis also shows that the
surfactant is unable to completely stabilize the RP instabil-
ity in absence of flow. The leading-order velocity field is
zero in absence of flow [refer to Eq. (24)], and hence, the
leading-order kinematic condition Eq. (22c) gives c(0)

RP = 0.
Similarly, it is evident that c(0)

Ma = 0 using surfactant transport
equation [Eq. (22d)]. The equations at O(k) are solved for
first correction to wave speed using c(0) = 0 and vz = 0. The
eigenvalue correct up to O(k) for zero flow case is given as

c@Bo=0 = ik

2
{(q − Maq1) ±

√
[(q − Maq1)2 + Maq2]}, (34)

where q, q1, and q2 are positive functions of S (refer to Ap-
pendix B). When Ma = 0, the above expression with negative
sign becomes zero, and hence, the above expression with
positive sign before the square root term captures the RP
capillary instability of a clean stationary film. This also im-
plies that the expression with plus sign corresponds to the RP
mode, and the expression with negative sign corresponds to
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the Marangoni mode. Since q, q1, and q2 all remain positive,
the above expression shows that the root with plus sign, i.e.,
RP mode, will never become stable on increasing Marangoni
number. However, the Marangoni mode (root with negative
sign) always remains stable. A comparison of Eqs. (33)
and (34) shows that the way the terms appear in RP mode
eigenvalue for Bo = 0 prevents it to become stable for any
value of Ma in contrast to the case of Bo �= 0 where the RP
instability is suppressed above a critical Marangoni number.

The discussion given above in context of RP mode captured
by Eq. (34) for Bo = 0 and Eq. (33) for Bo �= 0 demands
some more attention as explained in the following. The zero
Bond number case predicts instability irrespective of the value
of Marangoni number while the nonzero Bond number case
predicts instability suppression above a critical Marangoni
number Macrit, and this Macrit is found to remain independent
of Bond number. This independence of Macrit with respect
to Bond number lead us to infer that the instability sup-
pression holds even when Bond number is infinitesimally
small. However, it is expected that the film must remain
unstable for the case of infinitesimally small Bond number
as depicted by the case of Bond number being identically
zero. A possible reason for such disagreement between zero
Bond number case with infinitesimally small Bond number
case could be appearance of ratio of Bond number to wave
number in the analysis. If we carefully look at the details
of long-wave analysis, then this ratio of Bo/k does play an
important role in retaining or neglecting terms at leading order
and/or first correction while performing the analysis. As an
example, the tangential stress balance at gas-liquid interface
is: ikṽr + dr ṽz + h̃(d2

r vz ) + ikMa�̃ = 0 with ṽr ∼ O(1), ṽz ∼
O(1/k), h̃ ∼ O(1/k) (for low-wave-number analysis), and
d2

r vz@r = +1 = −Bo. On substitution of all the variables in a
series of k according to the respective scaling of each variable,
the tangential stress balance can be written as

ik
(
ṽ(0)

r + kṽ(1)
r

) + 1

k

(
dr ṽ

(0)
z + kdr ṽ

(1)
z

)
+ 1

k
(h̃(0) + kh̃(1) )(−Bo) + iMa(�̃(0) + k�̃(1) ) = 0.

(35)

The leading-order tangential stress balance is obtained by
collecting terms of O(1/k) from above equation. The leading-
order contribution of the term h̃(d2

r vz ) will come from ex-
pression 1

k h̃(0)(−Bo). This contribution will remain O(1/k)
quantity only when Bond number is finite and O(1). It has
already been mentioned at the start of Sec. IV that Bond
number is assumed to be an O(1) quantity. When Bo → 0 and
k → 0, we cannot conclude that the above mentioned contri-
bution will remain an O(1/k) quantity so as to be included
in leading-order tangential stress balance. Equation (33) is
obtained by considering Bond number to be an O(1) quan-
tity, and by retaining the above leading-order contribution
at O(1/k) in tangential stress balance. Thus, the prediction
regarding instability suppression using Eq. (33) will be strictly
valid only when Bond number remains an O(1) quantity.
Further, the above arguments put question on the validity
of range of small wave numbers (numerically) up to which
Eq. (33) holds. This is because one can always choose small

enough wave numbers and a small Bond number such that
the O(1/k) term at leading order from 1

k h̃(0)(−Bo) may not
be unimportant in the analysis. An idea about the validity
of range of wave numbers up to which the Macrit value for
instability suppression holds can be obtained by numerical
continuation of Marangoni number values from sufficiently
small wave number to finite and arbitrary wave numbers at
small values of Bond number. We discuss this aspect in more
detail when we present neutral stability curves in Marangoni
versus wave number plane in the later part of this work.

V. RESULTS AT ARBITRARY WAVE NUMBER

Before we present results, it is useful to discuss the choice
of different dimensionless parameters, and a possible estimate
of dimensional parameters for which the results presented
would be expected to hold in practice. As mentioned in
Sec. II, there are three dimensionless parameters that appear in
equations governing the stability of film flow [refer to Eq. (4)].
Further, we have assumed creeping flow limit which implies
that the Reynolds number is zero. The Reynolds number, if
inertial terms were taken into account, would be equal to
Re = ργ0h0

μ2 . The air-liquid interfacial tension for several vis-

cous liquid is γ0 ∼ 0.01 N/m, and if we set ρ ∼ 103 kg/m3;
the Reynolds number will be estimated as Re ∼ 10−2h0/μ

2,
where h0 is the film thickness in mm, and μ is the viscosity
in Pa s. Thus, Re � 0.01 for μ � 1 Pa s and h0 ∼ 1 mm,
or equivalently, the creeping flow approximation will hold
only for viscous liquid films. Note that a decrease in h0
from 1 mm will further reduce the Reynolds number. The
Marangoni number varies between 0.01 for low surfactant
concentration to ∼1 for moderate concentrations [19]. The
other two important parameters are: (i) Bond number (Bo =
ρgh0

2/γ0) which signifies the strength of basic flow, and (ii)
the relative ratio of fiber or rod radius to film thickness (S =
R0/h0). For ρ ∼ 103 kg/m3, g ≈ 10 m/s2, and γ0 ∼ 0.01
N/m, the Bond number is estimated as Bo ∼ h2

0, where h0
is the film thickness in mm. All the results are presented by
fixing Bo and varying S and/or Marangoni number. Assigning
a value to Bond number implies that the film thickness is fixed,
and for fixed h0, variation in S means a change of rod/fiber
radius relative to a given film thickness. The values of Bo and
S(= R0/h0) are selected in such a manner that both h0 and R0
remain in the between 0.1 and 1 mm.

A. Growth-rate versus wave-number results

The low-wave-number results presented above
demonstrated that the RP instability can be suppressed when
Marangoni number increases above a critical value while the
surfactant mode always remains stable in low-k limit. In this
section, we continue the eigenvalues obtained above for RP
mode [Eq. (33)] and surfactant mode [Eq. (32)] from low
wave numbers to finite and arbitrary wave numbers. Recall
that this is equivalent to continuing the two roots (root-1 and
root-2) of the quadratic characteristic equation as per the
discussion given in Sec. III. The results are presented in the
form of growth-rate versus wave-number data and neutral
stability curves in Ma versus wave-number plane. Following
previous studies related to cylindrical film flows, we rescale
wave number using unperturbed GL interface location
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FIG. 2. Growth-rate vs. wave-number data for a stationary film (Bo = 0). The continuous lines (solid, dashed, dash-dotted, etc.) correspond
to present results while symbols (open circle, open square, star, etc.) represent data points obtained using Carroll and Lucassen’s growth-rate
Eq. (37).

(i.e., R0 + h0) instead of film thickness (h0) to present the
results. The rescaled wave number is denoted as k1 and is
related to k as k1 = k(S + 1). It is well known for cylindrical
liquid threads or films that the growth-rate for RP instability
goes from positive to negative when the dimensional wave
number is equal to the inverse of (unperturbed) gas-liquid in-
terfacial location measured from the central axis (for example,
refer reviews by Eggers and Villermaux [39], and Gallaire and
Brun [40]). The growth-rate (GR) of RP instability for clean
cylindrical liquid film, in fact, scales with k1 as GR ∼ k2

1
(1 − k2

1 ). A similar scaling is also observed for surfactant-
laden stationary film (Bo = 0) coating over a cylindrical
rod [23]. Thus, k1 = 1 represents the cutoff wave number
where the growth-rate switches from positive to negative
values in these earlier studies. This is precisely the reason that
we rescaled wave number using (R0 + h0) while presenting
results.

Figures 2(a) and 2(b) show the growth-rate versus wave-
number data for RP and surfactant mode, respectively, for
a stationary film (Bo = 0). These two figures also provide
a comparison of results obtained here with Carroll and Lu-
cassen’s work [23] who examined the stability of surfactant-
laden liquid film coating over a fiber in the limit of zero Bond
number. They derived the equation governing the growth-rate
(denoted as β∗ in their paper) using thin film approximation,
and the nondimensional form of their equation for growth-rate
using present scheme of nondimensionalization is

β =
[ (

1 − k2
1

)
k2

1

12(S + 1)3

][
4β(S + 1)2 + Mak2

1

β(S + 1)2 + Mak2
1

]
. (36)

The two roots of the above equation are

β = k2
1

6(S + 1)3

[
B1 ±

√
B2

1 + 3Ma(S + 1)2
(
1 − k2

1

)]
,

(37)

where, B1 = 1 − k2
1 − 3Ma(S + 1)2. Since, the scaling used

to write down above equation is consistent with the current
scheme of nondimensionalization, β is same as k1ci. Follow-

ing the procedure outlined in context of Eq. (34), the root with
positive sign before square-root term captures the Rayleigh-
Plateau instability, and the root with negative sign before
square-root term corresponds to surfactant/Marangoni mode.
The different symbols (open circle, square, star, etc.) in Fig. 2
correspond to Carroll and Lucassen’s result using Eq. (37),
and continuous lines (solid, dashed, dash-dotted, etc.) repre-
sent data obtained in the present work. Figures 2(a) and 2(b)
show a good agreement between our results and previous
results [23] for both RP and surfactant modes. Note that the
data in Fig. 2(b) shows that the agreement between our results
and previous results get better with increase in value of S. This
is expected because Carroll and Lucassen’s analysis is valid in
the limit of thin film as compared to rod radius. An increase
in S implies a decrease in film thickness h0 with respect to rod
radius R0, thus, we observe a better match at higher values
of S. Figure 2(a) clearly shows that the growth-rate of RP
instability is reduced as Marangoni number becomes nonzero.
We have verified that the growth-rate reduces approximately
by a factor of 4 with sufficient increase in Marangoni number,
but the RP instability is never completely suppressed. This
observation is also in agreement with previous studies related
to the effect of surfactant on the RP instability of stationary
(Bo = 0) cylindrical films [19,23]. While the data in Fig. 2(a)
is shown for S = 10, we have verified that the RP mode does
not become stable for other values of S for Bo = 0. We have
also verified that the surfactant mode always remains stable
for different values of S and Ma for Bo = 0 [for example, as
shown in Fig. 2(b)].

Figure 3 shows the growth-rate versus wave-number data
for RP mode and surfactant mode in presence of flow (Bo =
0.25) at S = 1. Figure 3(a) shows that the clean film (Ma = 0)
remains unstable owing to the presence of Rayleigh-Plateau
instability. With increase in Marangoni number, the growth
rates as well as the band of unstable wave numbers de-
crease, and the RP instability is completely suppressed above
a particular value of Marangoni number. The growth-rates
are observed to be negative for Ma = 0.2 in Fig. 3(a), and
further increase in Ma results in increased decay rates. In
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FIG. 3. Growth-rate vs. wave-number data for Bo = 0.25, and S = 1.

contrast, the surfactant mode perturbations remain stable at
small Marangoni numbers, however, become unstable when
Ma is sufficiently increased. For example, Fig. 3(b) shows
that the surfactant mode remains stable for Ma = 0.05 and the
decay rate increases with increase in Ma up to 0.2. However,
for Ma = 0.5, there is a slight decrease in the decay rate of
surfactant mode in the vicinity of k � 1. This decrease in
decay rate with increase in Marangoni number is more clearly
evident at Ma = 1, and finally, positive growth rates are ob-
served for surfactant mode at Ma = 5 and 10. Thus, while RP
instability is suppressed on increasing the Marangoni number,
the surfactant mode becomes unstable when Ma is sufficiently
increased. However, there is a range of Marangoni numbers
where the RP instability is suppressed without triggering the
surfactant mode instability. For example, in Fig. 3, both the
modes are observed to remain stable between Ma = 0.2 and
Ma ∼ 1.

Figure 4 shows the growth-rate versus wave-number data
for a smaller value of Bo (= 0.04) at two different values of
S. Figure 4(a) shows that the RP mode remains unstable for
Ma = 0 and increasing Marangoni number has a stabilizing
effect on RP instability in a manner similar to shown in
Fig. 3(a). This figure shows that the RP mode becomes stable
for Ma � 0.2. The surfactant mode which remains stable at
small enough values of Marangoni number become unstable
with increase in Marangoni number [refer to Fig. 4(b)]. How-
ever, Figs. 4(a) and 4(b) show that while RP instability exists
at Ma = 0.1 and is suppressed for Ma � 0.2, the surfactant
mode becomes unstable at Ma = 0.1 and remains unstable on
further increase of Marangoni number. Thus, the RP instabil-
ity is still suppressed by increase of Marangoni number but
the surfactant mode instability triggers in at sufficiently low
Marangoni numbers to render the film flow unstable. These
figures [Figs. 4(a) and 4(b)] suggest that a stability window in
terms of Marangoni number does not exist for Bo = 0.04, S =
1 while a stable gap in terms of Ma was possible for Bo =
0.25, S = 1 (Fig. 3). Further, when S is increased from 1 to
2.5, Figs. 4(c) and 4(d) demonstrate that it is possible to obtain
stable film flow configuration by selecting an appropriate
value of Marangoni number. Recall that the surface tension
has a destabilizing effect on RP instability arising due to

circumferential curvature [1/(S + 1)] of GL interface. With
increase in S, the circumferential curvature decreases which
results in reduced destabilizing effect of surface tension on
RP mode for S = 2.5 as compared to S = 1. Thus, the RP
instability is suppressed at low Marangoni numbers at S = 2.5
as compared to S = 1. This can be observed by analyzing
growth-rate versus wave-number data for RP mode given in
Fig. 4(a) for S = 1 and Fig. 4(c) for S = 2.5. Figure 4(c)
shows that the RP mode instability is suppressed at Ma =
0.05 for S = 2.5 while the RP mode remains unstable up
to Ma = 0.1 for S = 1 as shown in Fig. 4(a). In a similar
manner, one can observe using Figs. 4(b) and 4(d) that the
effect of increasing S is stabilizing for surfactant mode as
well. Since the effect of increasing S is stabilizing for both RP
and surfactant modes, it is possible to obtain stable film flow
configuration when S is increased from 1 to 2.5. These data in
Figs. 3 and 4 suggest that the possibility of obtaining a stable
film flow configuration depends on the values of Bo and S. To
get a clear idea about the parameter ranges where a surfactant
could be used to obtain stable film flows, we next show neutral
stability curves in Ma-k1 plane which demarcates stable and
unstable region for given Bond number and S.

B. Neutral stability curves

Before we present the neutral curves for nonzero Bond
numbers, we refer to Fig. 2 to get an idea about the neutral
curves at Bo = 0. Figure 2 shows that the presence of sur-
factant is not able to completely suppress the RP instability
and the RP mode remains unstable from k1 → 0 to k1 = 1.
However, the surfactant mode is never observed to become
unstable for any wave number. Thus, only one neutral curve
corresponding to RP mode will exist for Bo = 0. The growth-
rate versus wave-number data for RP mode in Fig. 2(a) shows
that the growth-rate changes sign from positive to negative at
k1 = 1 irrespective of the value of Marangoni number. Even
though the data in Fig. 2(a) is shown for S = 10, we have
verified that the cutoff wave number remains 1 irrespective of
the values of S and Ma. Thus, the neutral curve for RP mode
in Ma versus k1 plane will simply be a vertical straight line
k1 = 1 with region left to this line (i.e., k1 < 1) being unstable
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FIG. 4. Growth-rate vs. wave-number data for Bo = 0.04.

region while the right side of the line (k1 > 1) is the stable
region. We next focus our attention on neutral stability data
for nonzero Bond numbers.

Typically, two neutral curves exist for a given value of
Bo and S: a lower neutral curve corresponding to RP mode
and a upper curve corresponding to surfactant mode. Fig-
ure 5(a) shows neutral stability curves for Bo = 0.25 and
at different values of S. Let us first focus on a particular
value of S, say S = 2. The RP mode is unstable for Ma =
0 and at small values of Marangoni number. However, the
the surfactant mode remains stable at sufficiently lower val-
ues of Marangoni number. As Marangoni number increases
above the lower neutral curve, the perturbations correspond-
ing to RP mode are suppressed. With further increase in
Marangoni number, we encounter an upper neutral curve
which corresponds to the destabilization of surfactant mode
[as shown in Figs. 3(a), 4(b) and 4(d)]. Figure 5(a) shows
that the critical value of Marangoni number above which RP
instability gets suppressed is Ma ≈ 0.45, and the Marangoni
number above which surfactant mode becomes unstable is
Ma ≈ 4.1. Thus, for S = 2 and Bo = 0.25, there exists a wide
gap in between the lower RP mode neutral curve and upper
surfactant mode neutral curve where both the modes remain
stable. This implies that the film flow configuration which
was otherwise unstable due to RP instability in the clean film

limit (Ma → 0) can be made stable by appropriately selecting
the value of Marangoni number, or equivalently, by choosing
the sufficient concentration of an interfacial surfactant. Note
that the threshold value of Ma above which the suppression
of RP instability is achieved is determined by long-wave
perturbations, and hence, the critical value for lower neutral
curve can always be evaluated using long-wave results, i.e.,
Eq. (33). Figure 5(a) shows that with decrease in value of S
from 2, the lower neutral curve moves up and the upper curve
shifts down thereby decreasing the stable gap where both
the modes remain stable. This figure shows that the stability
window almost vanishes when S is decreased to 0.2.

Figure 5(b) shows the neutral stability diagram for Bo =
0.04 and at different values of S. This figure demonstrates
that a stable gap exists between lower and upper neutral
curves for S = 5 and 2.5, however, the gap disappears when
S decreases to 1 and 0.5. Figure 5(b) shows that the upper
and lower neutral curves continue to exist as two separate
curves for S = 5, 2.5, and 1. However, for S = 0.5, both the
upper and lower neutral curves split into two branches with
left branch of upper curve merging with left branch of lower
neutral curve (toward low-k1 side), and right branch of upper
curve joining with right branch of lower neutral curve (near to
k1 ≈ 1). Figure 6(a) shows the neutral curves for Bo = 0.01
and different values of S. This figure also depicts that the
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FIG. 5. Neutral stability diagram in Ma vs. k1 plane. “S” denotes surfactant mode.

stable gap is present at higher values of S, and this gap
decreases with decrease in S and finally disappears for low
enough values of S. Figure 6(a) shows the merging of neutral
curves corresponding to the two roots (identified as RP mode
and surfactant mode) for S = 1, and Bo = 0.01 in a manner
similar to as shown in Fig. 5(a) for S = 0.5 and Bo = 0.04. In
contrast to the above mentioned figures [Figs. 5 and 6(a)], a
stability window in terms of Ma is always present for Bo = 1
as shown in Fig. 6(b). The RP instability is suppressed for
a wide range of Marangoni numbers without triggering the
surfactant mode instability for all the values of S reported
in Fig. 6(b). Of course, the width of stable gap decreases
with decrease in value of S in agreement with the neutral
stability results presented for other (smaller) values of Bond
number.

It is useful to look at the above results in terms of di-
mensional values of film thickness and fiber radius. To do
that, we set ρ = 103 kg/m3, g ≈ 10 m/s2, μ = 1 Pa s, and
γ0 ∼ 0.01 N/m. This is equivalent to considering a particular
liquid, and substituting them in the expression of Bond num-

ber gives Bo = h2
0 as mentioned at the start of this section.

Thus, h0 = 0.5, 0.2, 0.1, and 1 mm, respectively, when Bo =
0.25, 0.04, 0.01, and 1 in Figs. 5 and 6. The fiber radius
can then be calculated using S = R0/h0. Hence, a decrease
in S for a given Bo implies a reduction in fiber radius for
a given liquid film thickness. We have varied S in such a
manner that the largest value of S in a given neutral stability
diagram (i.e., for a given Bo) corresponds to 1-mm-thick
film, and the smallest S gives R0 = 0.1 mm. Thus, all the
figures depicting neutral curves above show that the effect of
decreasing the fiber radius for a fixed h0 is destabilizing for
the surfactant-laden liquid film flow configuration considered
in the present work. For example, the film thickness is 0.1 mm
in Fig. 6(a) and S = 10 gives R0 = 1 mm. A wide stable
gap is present for this parameter set where RP instability is
suppressed without activating the surfactant mode instability,
and thus, the clean film configuration which remains unstable
due to RP instability can be made stable by using an interfacial
surfactant. However, when S = 3 or 1 (i.e., R0 = 0.3 or
0.1 mm, respectively, and h0 is still 0.1 mm), the stable gap
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almost vanishes or remains absent because of merging of
upper and lower neutral curves (for S = 1). Thus, thinning
the fiber for a given film thickness is destabilizing for the
system under investigation. While this observation holds, we
also observe that the film flow remains most stable at Bo = 1
followed by Bo = 0.25 case. We anticipate this increased
stability of film flow at higher Bond numbers to be related
to the strength of basic flow. We can get an idea about the
strength of base flow by evaluating the expression vz(r), i.e.,
Eq. (16), at GL interface (at r = S + 1). We have verified that
the function f (r)@r=S+1 in Eq. (16) is a monotonic decreasing
function of S, and is close to 4.1 at S = 0.1 while it remains
below 2 as S increases to very high value. In fact f (S +
1) → 2 as S → ∞. Thus, f (S + 1) remains an O(1) number
and the order of magnitude of base flow at GL interface is
decided by Bond number. For example, we have verified using
Eq. (16) that the nondimensional basic free-surface velocity
remains approximately between 0.005–0.006 for Bo = 0.01
for the values of S used in Fig. 6(a). The vz@r=S+1 increases
significantly and lies between 0.6–1.1 for Bo = 1 and at
different S used in Fig. 6(b). These observations confirms
that the magnitude of Bond number determines the strength
of base flow as compared to f (r) appearing in expression of
Eq. (16). Hence, we infer that the existence of more stable
film flow configuration at high Bond number is a result of
increased strength of base flow.

Another point worth noting from neutral stability diagrams
is that the surfactant mode becomes unstable even at low
wave numbers for high enough values of Marangoni number.
This feature is more evident if we focus on the neutral curve
corresponding to surfactant mode for Bo = 0.01 and S = 1
in Fig. 6(a) or for Bo = 0.04 and S = 0.5 in Fig. 5(b). For
all other surfactant mode neutral curves in Figs. 5 and 6
as well, the upper curve continues to low wave numbers.
In contradiction to this observation, the low-k eigenvalue
expression for surfactant mode [Eq. (32)] found in Section IV
predicted that the surfactant mode will never become unstable
on increasing the value of Marangoni number. However, the
low-k analysis presented in Sec. IV assumed Ma ∼ O(1)
which implies that the Marangoni number do not scale with
wave number in any manner and remains independent of wave
number. However, the neutral curves for surfactant mode in
above figures clearly show that the critical Marangoni number
scales with wave number in a particular fashion. We examined
the neutral stability data and found that critical Ma increases
as 1/k2 for k << 1. We then performed a low-wave-number
analysis considering the scaling Ma ∼ 1/k2 to capture the
surfactant mode neutral curve in k << 1 limit. This analysis
remains similar to the low-wave-number analysis presented in
Section IV with modifications in conditions at GL interface
because of scaling of Ma with wave number. The details of
the asymptotic analysis are presented in Appendix A. The
expression of critical Marangoni number obtained from this
analysis is

Macrit = Bo2

64k2

g1

(1 + S)6q2
1

, (38)

where g1 is a positive valued functions of S given in Ap-
pendix B. The functions q1 (also a positive valued function)
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FIG. 7. Comparison of surfactant mode neutral curve branch in
low-wave-number limit with asymptotic result. The dashed lines with
symbols (open circle, star, open square, and open triangle) represent
the Marangoni number evaluated using Eq. (38).

was defined earlier and is also given in Appendix B. Figure 7
compares the neutral curve data with the value of critical
Marangoni number evaluated using Eq. (38). Note that k is
rescaled to k1 as done earlier to present results at arbitrary
wave numbers. This figure clearly shows an excellent match
between the Ma obtained from asymptotic results with Ma
values depicted in upper neutral curves in low-k limit. It is
worth to recall here that, in practice, the Marangoni number
varies between O(10−2) to O(1). The upper neutral curves in
Fig. 7 (as well as in Figs. 5 and 6) are extrapolated to very high
values of Marangoni number (∼10 or 100) and the data at such
large Ma values is not of any practical interest. However, the
values of Ma which really are important in practice are the
threshold value above which the RP instability is suppressed,
and the minimum of upper neutral curve above which the
surfactant mode instability is triggered. The neutral curves
shown in in Figs. 5 and 6 clearly show that these two values
fall in range of O(10−2)–O(1) which are practically feasible.

At this point, it is important to recall the issue raised at
the end of Section IV. The surfactant-laden film is known
to remain unstable in absence of flow (Bo = 0). Specifi-
cally, the RP mode remains unstable for perturbations with
infinitesimally small wave numbers (k1 → 0) to k1 = 1 at
Bo = 0. Therefore, it is expected that the surfactant-laden
film flow configuration will remain unstable in the limit of
infinitesimally small Bond number. It was argued at the end
of Sec. IV that the prediction of RP instability suppression
in low-wave-number limit using Eq. (33) is strictly valid only
when Bond number is an O(1) quantity. It was also mentioned
that the range of (small) wave numbers up to which Eq. (33)
holds may get affected at smaller values of Bond number. This
effect of decreasing Bond number toward smaller values can
be seen by constructing lower neutral curves starting from
very low wave numbers (i.e., say k1 = 0.001 or lower, where
Macrit = q/n is expected to hold true) and continuing them
numerically to finite and arbitrary wave numbers. However,
before we present neutral curves at different (small) Bond
numbers, it is useful to look at the eigenvalue expression eval-
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uated in Appendix A in the limit of long-wave disturbances
and Ma ∼ 1/k2. The eigenvalue obtained from the analysis
can be written as

c = c(0) + kc(1) = Boζ1 + ik
q2

q1

[
1 − Bo2

64M

g1

(1 + S)6q2
1

]
.

(39)
Here, ζ1 and q2 are positive valued function of S (given in
Appendix B). The eigenvalue expression given above shows
that the growth-rate depends on Bond number. The expression
in Eq. (39) reduces to c = ikq2

4q1
for Bo = 0. The eigenvalue

in the limit of long-wave disturbances at Bo = 0 is earlier
reported in Sec. IV in Eq. (34). Recall that the expression
with positive sign before square root term in Eq. (34) corre-
sponds to RP mode; and it can be shown that this RP mode
eigenvalue in Eq. (34) reduces to ikq2

4q1
in the limit of very

high Marangoni number. This implies that the expression of
c [Eq. (39)] obtained from the low-wave-number analysis
presented in Appendix A with Ma ∼ 1/k2 	 1 captures the
RP mode instability in the limit of zero basic flow (Bo = 0).
Thus, at Bo = 0, Eq. (39) predicts instability with growth-rate
identically equal to the zero flow growth-rate evaluated using
Eq. (34) in the limit of high Marangoni number. Equation (39)
further shows that increasing Bond number has a stabilizing
effect on this positive growth-rate ( ikq2

4q1
) at fixed value of

scaled Marangoni number M. This equation shows that there
will be a transition from unstable to stable perturbations with
increase in Bond number at a given value of M. Since, Eq. (39)
captures the stabilizing effect of increasing flow strength (Bo)
and is also finally used to evaluate the low-k branch of upper
neutral curves; we expect that the effect of Bond number
on upper neutral curves (as well as on lower neutral curves)
could provide more insights in connecting results at zero Bond
number and infinitesimally small Bond number.

As mentioned above, we have plotted neutral curves for
a given S and examined how the stable and unstable regions
vary as we systematically decrease the Bond number. Figure 8
shows the neutral stability diagram at S = 1 and for different
values of Bond number. The figure clearly shows that a stable

gap exists at sufficiently high Bond number (Bo = 0.25), and
as Bond number decreases to 0.04, the upper neutral curve
shifts downwards so as to close the stable gap. The lower
and upper neutral curves still exist as two distinct curves at
Bo = 0.04. However, as Bond number is further decreased (to
0.01 and lower), both the upper and lower neutral curves split
into two branches: left and right branch. The left (right) branch
of upper curve merges with left (right) branch of lower neutral
curve. The gap between the left and right merged branches is
the unstable region. An important point to note is that the left
merged branch keep shifting toward low wave numbers with
decrease in Bond number while right branch remains a vertical
line at k1 = 1. This implies that the band of unstable region
keeps shifting toward low wave numbers, and as Bo → 0, the
perturbations from k1 → 0 to k1 = 1 remains unstable. This
figure also provides information about the range of validity
of small wave numbers up to which Eq. (33) (or equiva-
lently, Macrit = q/n) will hold true. For S = 1, the critical
Marangoni predicted from low-wave-number expression is
Macrit = q/n = 0.115. The lower neutral curves in Fig. 8
clearly show that the range of wave numbers up to which this
long-wave threshold Marangoni number continues decreases
with decrease in Bond number. For example, the critical value
of Marangoni number Macrit holds up to k1 ≈ 0.1 for Bo =
0.01. This range decreases to k1 � 0.01 and k1 � 0.001 for
Bo = 10−3 and 10−4, respectively. Thus, as Bond number
becomes infinitesimally small, the wave number up to which
Macrit value is valid (for transition from unstable to stable
perturbations) also becomes infinitesimally small. This im-
plies that there always exists (theoretically) an infinitesimally
small wave number for infinitesimally small Bond number up
to which Eq. (33) holds, however, for all practical purposes,
the film flow configuration remains unstable in the limit of
infinitesimally small Bond numbers which is in agreement
with the results corresponding to Bo = 0.

We now focus on one major difference in finding out
the wave speed using the analysis given in Appendix A
with Ma ∼ 1/k2 as compared to the eigenvalue calculation
for surfactant mode [with Ma ∼ O(1)] given previously in
Eq. (32) in Sec. IV. An important aspect that emerges out
of the following discussion is that the instability captured
by upper neutral curves does not belong to the true sur-
factant mode as per the definition given in earlier studies
related to stability of surfactant-laden film flows [24,33,42–
44]. The leading-order wave speed solution that exists purely
because of presence of surfactant concentration fluctuation
(i.e., �̃(0) �= 0) without necessarily having a perturbation in
gas-liquid interface location (i.e., with h̃(0) = 0) is identified
as surfactant mode in low-k limit [24,33,42–44] (also refer
discussion just preceding Eq. (29) in Sec. IV). Thus, the
calculations given in Sec. IV used h̃(0) = 0, and �̃(0) �= 0 to
find out surfactant mode eigenvalue given in Eq. (32). In
contrast, the analysis given in Appendix A with Ma ∼ 1/k2

requires both h̃(0) and �̃(0) to be nonzero to capture the
(unstable) eigenvalues depicted by upper neutral curves in
k << 1 limit. We have verified that the leading-order and
first correction equations given in Appendix A gives a zero
trivial solution if we consider h̃(0) = 0, and �̃(0) �= 0 while
incorporating the scaling Ma ∼ 1/k2. Since, the instability
captured at higher Ma (∼1/k2) requires the presence of fluc-
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tuations in both surfactant concentration and GL interface
location, this instability does not belong to the pure surfactant
mode as defined in earlier studies [24,33,42–44]. Another
difference that appears due to h̃(0) �= 0 is that the leading-
order flow is nonzero in the analysis given in Appendix A as
compared to the low-k analysis given in Sec. IV for surfactant
mode where the leading-order flow was absent. The leading-
order velocities are proportional to h̃(0) in both the analysis
[for example, refer to Eq. (24) or Eq. (A5)], and hence, they
are zero or nonzero according to whether h̃(0) is zero or
nonzero, respectively.

This observation about upper neutral curves not belonging
to true surfactant mode becomes more important in context of
the observation that the eigenvalue calculated in Appendix A
reduces to RP mode eigenvalue in low wave number and
high Marangoni number limit. These two observations suggest
that the mechanism that drives the instability predicted by
upper neutral curve could be the same as the mechanism for
RP instability with later being modified by the presence of
surfactant. The exact role played by surfactant in presence
of basic flow in exciting the instability at higher Marangoni
number and suppressing the instability at lower Marangoni
number is an issue worth considering as future investigation.
In view of this preceding discussion, the labeling of the
upper neutral curves as surfactant mode neutral curves is not
entirely correct. Recall that the two roots are labeled as RP
or surfactant mode based on the low-wave-number behavior
when Marangoni number is either small or an O(1) quantity
(refer to Sec. III). It is only in this sense that we identify
the two roots (nominally) as RP or surfactant modes. While
classifying the two roots as RP or surfactant mode is more a
matter of labeling the eigenmodes, the more important aspect
uncovered here is that there are two eigenmodes possible
for the present flow configuration, and these two eigenmodes
can become stable/unstable depending on the value of S, Bo,

and Ma. The neutral stability results show that it is possible
to choose values of Bond number and S such that both the
eigenmodes (roots) remain stable. Of course, the results also
show that for a given Bond number and sufficiently small
value of S, it is not possible to stabilize the film flow past a
cylindrical rod using interfacial surfactant.

VI. CONCLUSIONS

We have performed a linear stability analysis for a liquid
film flowing past a cylindrical rod when the gas-liquid in-
terface is loaded with an interfacial surfactant. In creeping
flow limit, the characteristic equation is quadratic and the two
roots (or eigen-modes) can be stable/unstable depending on
parameters: Bond number, ratio of rod radius to film thickness
(S), and Marangoni number. The two roots are labeled as
Rayleigh-Plateau mode (root-1) and surfactant mode (root-
2) based on their behavior in low-wave-number limit. The
Rayleigh-Plateau mode (or root-1) always remains unstable
for a clean film (Ma = 0), and earlier work by Carroll and
Lucassen [23] demonstrated that the presence of surfactant
have a partial stabilizing effect on Rayleigh-Plateau mode,
and it is not possible to achieve a completely stable film
flow configuration even in the limit of very high Marangoni
number. Recall that they considered a stationary liquid film,

and hence, the effect of basic flow was ignored in their work.
In contrast, we show that inclusion of basic flow in stabil-
ity analysis results in complete stabilization of eigen-mode
corresponding to root-1 (labeled as Rayleigh-Plateau mode).
The instability corresponding to root-1 completely disappears
when Marangoni number increases above a finite threshold
value. Interestingly, the second root of characteristic equation,
nominally labeled as surfactant mode, becomes unstable with
increase in Marangoni number above a critical value for a
given Bond number and S. Thus, the overall stability of the
system is governed by a competition in between the two
eigen-modes. Specifically, the stability depends on whether
the critical value of Ma required for stabilization of root-1
is sufficiently larger than the critical value of Marangoni
number required to destabilize the eigen-mode corresponding
to root-2? Our results show that there exists a stable gap
in terms of Ma where both the modes remain stable. This
stable gap is usually found to exist at higher values of S for a
given Bond number. The width of stability window decreases
with decrease in S and finally vanishes for sufficiently small
values of S at a given Bond number. In terms of dimensional
variables, the above statement implies that for a given liquid
and film thickness, the effect of decreasing rod radius is desta-
bilizing. Further, the effect of increasing the Bond number is
found to have an overall stabilizing effect on the film flow
configuration. We argued that this increase in stabilization
with increasing Bond number is a consequence of increased
strength of basic flow.

To summarize, we have shown that depending upon a given
S and Bond number (which is equivalent to specifying film
thickness and rod radius for a given fluid), the clean film
flow which otherwise remains unstable can be stabilized by
using an interfacial surfactant by choosing right amount of
surface concentration (i.e., according to the stable gap in Ma).
However, this stabilization is not possible for all values of film
thickness and rod radius (or Bond number and S) as one of the
eigen-mode among the two possible modes become unstable
for a band of wave numbers. These results are important be-
cause a complete stabilization of surfactant-laden cylindrical
film flows has not been observed thus far in existing literature.
This happens because of neglecting the basic flow in stability
analysis in previous works while our analysis incorporates a
nonzero base flow in the stability analysis.
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APPENDIX A: LOW-WAVE-NUMBER ANALYSIS WITH
Ma ∼ 1/k2

The surfactant mode neutral curve data reveals that cr ∼
O(1) in low-k limit. Thus, the wave speed is expanded as: c =
c(0) + kc(1) + · · · . Similar to the analysis given in Sec. IV,
we obtain ṽr ∼ O(1), ṽz ∼ O(1/k), p̃ ∼ O(1/k2), and h̃ ∼
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O(1/k). Considering Ma = M/k2, where M is a constant
independent of k, we get �̃ ∼ O(1) from tangential/normal
stress balance [Eq. (11) or (12)]. Since the scalings of ṽr, ṽz, p̃,
and h̃ remain identical to the low-k analysis presented in
Sec. IV, the governing equations, kinematic condition, and
no-slip conditions at O(1) and O(k) remain unchanged [i.e.,
Eqs. (A1a)–(A1c) are same as Eqs. (18)–(20) in Sec. IV, and
Eq. (A2) here is identical to Eq. (23) in Sec. IV]. However, we
write down these equations again for the sake of completeness
of the present analysis, and more importantly, to point out the
differences in present analysis and low-k analysis given pre-
viously in Sec. IV for capturing eigenvalue of the surfactant
mode. The governing equation at leading order and O(k) are

dr ṽ
( j)
r + 1

r
ṽ( j)

r + iṽ( j)
z = 0, (A1a)

dr p̃( j) = 0, (A1b)

i p̃( j) − d2
r ṽ( j)

z − 1

r
dr ṽ

( j)
z = 0, (A1c)

where superscript index j = 0 for leading order and j =
1 for equations correct up to O(k). In a similar manner, the
no-slip conditions at r = S can be written as

ṽ( j)
z = 0, ṽ( j)

r = 0. (A2)

The leading-order surfactant transport equation, kinematic
condition, tangential, and normal stress balance are given as

dr ṽ
(0)
r =0, (A3a)

ṽ(0)
r − i(vz − c(0) )h̃(0) = 0, (A3b)

dr ṽ
(0)
z + h̃(0)

(
d2

r vz
) + iM�̃(0) = 0, (A3c)

p̃(0) + M

S + 1
�̃(0) = 0. (A3d)

The surfactant transport equation, kinematic condition,
tangential, and normal stress balance at O(k) are

i(vz − c(0) )�̃(0) =dr ṽ
(1)
r , (A4a)

ṽ(1)
r − i(vz − c(0) )h̃(1) + ic(1)h̃(0) = 0, (A4b)

dr ṽ
(1)
z + h̃(1)

(
d2

r vz
) + iM�̃(1) = 0, (A4c)

p̃(1) + h̃(0)

(S + 1)2
+ M

S + 1
�̃(1) = 0. (A4d)

The underlined equations above represent the GL interfa-
cial conditions at leading-order and first correction which are

modified due to different scalings used in the present analysis
as compared to the interfacial conditions given in Sec. IV. The
subsequent analysis reveals that calculations up to O(k) are
sufficient to capture the surfactant mode instability depicted
in above neutral curves in low-k regime. The governing equa-
tions and boundary conditions at leading order are used to
evaluate leading-order wave speed c(0) in the following man-
ner. The leading-order r momentum Eq. (A1b) and normal
stress balance [Eq. (A3d)] are used to find the leading-order
pressure profile: p̃(0) = −M�̃(0)/(S + 1). Equation (A1c) is
integrated and on using the no-slip condition (ṽ(0)

z = 0) at
r = S, and leading-order tangential stress balance [Eq. (A3c)],
we obtain

ṽ(0)
z = Bo h̃(0)(1 + S) ln

( r

S

)

− i �̃(0)M

4(1 + S)

(
r2 − S2 + 2(1 + S)2 ln

r

S

)
. (A5)

The continuity equation [Eq. (A1a)] is then used along with
no-slip condition to determine ṽ(0)

r . Similar to the expression
of ṽ(0)

z above, the expression of ṽ(0)
r also contains two terms:

one proportional to h̃(0) and other to �̃(0). The surfactant
transport equation at leading order (dr ṽ

(0)
r = 0) is then used to

evaluate �̃(0). This expression is of the form �̃(0) = Boh̃(0)g(S)
M ,

where g is a function of S. This in turn implies that the
expression of ṽ(0)

z and ṽ(0)
r will be proportional to h̃(0). The

kinematic condition at leading order [Eq. (A3b)] is finally
used to determine leading-order wave speed c(0). The leading-
order wave speed is found to be real, and hence, we proceed
to calculations at next correction to find the expression of c(1).
The sequence of steps involved in finding c(1) are identical to
the sequence used in obtaining leading-order wave speed. The
eigenvalue correct up to O(k) is

c = c(0) + kc(1) = Boζ1 + ik
q2

q1

[
1 − Bo2

64M

g1

(1 + S)6q2
1

]
,

(A6)
where ζ1, q1, and q2 are positive values functions of S and are
given in Appendix B. The above equation shows that the first
correction to wave speed is imaginary, and setting it equal to
zero gives the expression of M. Thus, the expression of critical
Marangoni number as a function of k can be written using
Macrit = M/k2,

Macrit = Bo2

64k2

g1

(1 + S)6q2
1

, (A7)

where g1(S) and q1(S) are given in Appendix B.

APPENDIX B: FUNCTIONS APPEARING IN ANALYTICAL RESULTS

In this Appendix, we provide all the functions of S that appear in analytical solutions in asymptotic analysis:

A1 =
[

(S + 1)2 − S2 + 2(S + 1)2 ln

(
S + 1

S

)]
, A2 =

[
(S + 1)4 − S4 − 4(S + 1)4 ln

(
S + 1

S

)]
,

q = −
[

(A2 + 8S2 + 8S + 2)

16(S + 1)3

]
, n = −

[
A1A2

16(S + 1)3 f

]
, where f = f (r) |r=S+1 with f (r) defined in Sec. IV in Eq. (16).

023111-15



ASHWIN NAIR AND GAURAV SHARMA PHYSICAL REVIEW E 102, 023111 (2020)

ζ =
{

(1 + 2S)
[
(1 + 2S) + (1 + 2S + 2S2) ln

(
S

S+1

)]
4
[
(1 + 2S)(S + 1) + 2(S + 1)3 ln

(
S

S+1

)]
}

,

ζ1 = 1

4

{
2(1 + S)2 ln

(
S + 1

S

)
− (1 + 2S)

[
9 + 36S + 46S2 + 20S3 − 4S2(1 + S)2 ln

(
S+1

S

)]
[
5 + 20S + 26S2 + 12S3 + 4(1 + S)4 ln

(
S+1

S

)]
}

,

q1 =
{[

(5 + 20S + 26S2 + 2S3) + 4(S + 1)4 ln
(

S+1
S

)]
16(S + 1)3

}
,

q2 = −
{

(1 + 3S + 2S2)
[
1 + 2S + (1 + 2S + 2S2) ln

(
S

S+1

)]
4(S + 1)3

}
,

g1 = (S + 1)4

(
−[(1 + 2S)2(1 + 2S + 2S2)] + 8(S + 1)6{ln[S(S + 1)]}2 + 2(S + 1)2(1 + 2s)2 ln

(
S + 1

S

)

− 16(S + 1)6 ln S ln(S + 1)

)
,
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