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Rheology of water in small nanotubes
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The properties of water in confinement are very different from those under bulk conditions. In some cases
the melting point of ice may be shifted and one may find either ice, icelike water, or a state in which freezing
is completely inhibited. Understanding the dynamics and rheology of water in confined media, such as small
nanotubes, is of fundamental importance to the biological properties of micro-organisms at low temperatures,
to the development of new devices for preserving DNA samples, and for other biological materials and
fluids, lubrication, and development of nanostructured materials. We study rheology and dynamics of water
in small nanotubes using extensive equilibrium and nonequilibrium molecular dynamics simulations. The results
demonstrate that in strong confinement in nanotubes at temperatures significantly below and above bulk freezing
temperature water behaves as a shear-thinning fluid at shear rates smaller than the inverse of the relaxation time
in the confined medium. In addition, our results indicate the presence of regions in which the local density of
water varies significantly over the same range of temperature in the nanotube. These findings may also have
important implications for the design of nanofluidic systems.
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I. INTRODUCTION

Water, in addition to being vital for life, is one of the most
intriguing fluids, as many of its properties exhibit anomalous
behavior. For example, its density reaches its maximum at
277 K. The anomalous behavior of several of water’s other
properties is enhanced as the temperature T decreases [1]: its
isothermal compressibility increases as T decreases, reaching
a maximum, and then it decreases [2] at still lower temper-
atures. Under supercooled condition, water density reaches a
minimum at around 203 K [3], while its heat capacity reaches
a maximum near 250 K [4], and its thermal conductivity
attains a maximum at about 400 K [5]. Such intriguing
anomalies at low temperatures have given rise to fundamental
questions, which is why it is not surprising that numerous
theoretical and experimental studies, as well as computer
simulations, have been undertaken in order to understand the
behavior of water over a wide range of temperature.

Compared with bulk liquid water, confined water at room
temperature exhibits stronger anomalies. For example, it is
well known that self-diffusion of water strongly decreases
upon confinement [6–14], and that the dynamics of the system
slows down [15–18]. Similarly, water’s thermodynamic prop-
erties may be altered. In the past, it was reported, based on
molecular dynamics (MD) simulations, that the water phase
diagram can develop a “shift” when affected by confinement
[19]. Later on, a phase diagram was proposed [20] that indi-
cated a decrease in the melting point. Furthermore, different
liquid phases, such as low- and high-density liquid, have
been reported in carbon nanotubes (CNTs) [21], even at room
temperatures. There is also evidence for a possible second
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critical point below the freezing point, where the three phases
can coexist [22,23].

Below freezing temperature, confinement may lead to in-
hibition of freezing and a deeply cooled liquid state [24],
giving rise to even more anomalous properties than under
bulk conditions. Water is no exception and, indeed, analyzing
the behavior of supercooled water in confined media below
the bulk freezing temperature of 273 K reveals very intrigu-
ing phenomena [24–27]. We recently showed [28,29] that
water in small CNTs and their silicon-carbide counterparts
[silicon-carbide nanotubes (SiCNTs)] of a specific size does
not freeze, even below 231 K, the temperature for bulk ho-
mogeneous nucleation [30]. Inhibiting freezing inside small
tubes or pores may be accomplished, if their diameter is
smaller than a critical size of about 3–4 nm [31]. Similarly,
by calculating the mean-squared displacements (MSDs) of
the molecules in CNTs, it was determined that 8.6 Å is the
critical radius in which freezing is repressed [32]. It was
also demonstrated [10] that in both CNTs and SiCNTs the
Stokes-Einstein relation between the viscosity and diffusivity
is no longer satisfied, and that temperature dependence of
the self-diffusivity indicates a transition from a fragile to a
strong liquid state at 230 K. Understanding the anomalous
behavior of water under such conditions is highly relevant
to many chemical, biological, and physical phenomena [33],
including the question of how micro-organisms survive at
very low temperatures, development of new instruments for
preserving DNA, lubrication problems, and fabrication of
nanomaterials [34,35].

Another common phenomenon in water flow in nanotubes
is the slip boundary condition on the nanotubes’ walls. In
addition, Ramos-Alvarado et al. [36] studied water-silicon
interactions and reported that the contact angle can be used to
predict the slip length. Similarly, Wei et al. [37] reported that
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functionalization of confined media can weaken or strengthen
the slip velocity, which is usually orders of magnitude larger
than what is predicted by the Hagen-Poiseuille (HP) (laminar)
flow in tubes. Atomistic composition of the confined media
can, in fact, drastically change the contact angle and the slip
velocity, produce very fast flow in hydrophilic materials, and
in hydrophobic media make the layer next to the wall either
slip or stick to it; it can, of course, also be adsorbed there [38].

The anomalous behavior of water in nanotubes has also
been reported in other types of nanostructured materials, such
as self-assembled nanolayers (SAMs) that are important to
biological and tribological applications. Lorenz et al. [39],
for example, found that even when the diffusion coefficient of
water increases up to two orders of magnitude when confined
between layers of alkylsilane-SAMs no ice layers were found
(although even hydrocarbons exhibit layered structures under
confinement [40]), which is different from what happens in
nanotubes where icelike behavior and layering is observed.
Nonetheless, Ramin and Jabbarzadeh [41] reported that wa-
ter does behave in an icelike fashion when it is confined
under high pressures in other types of SAMs, such as n-
alkanethiols, implying that despite confinement of the SAM
structure the formation of icelike structures depends not only
on the thermodynamics of the system but also on the atomistic
composition of the nanostructured materials.

Due to the complex interactions between the water
molecules, as well as between them and a confined medium’s
walls, use of MD simulation is imperative. Studies involving
confined water in isolated nanotubes require, however, special
treatment regarding the equilibration time. For example, when
the molecular structure of water is represented by such models
as the SPC/E and TIP4P/ice, the melting point cannot be
reached in less than 10 ns [42] of MD simulation. Moreover,
the motion and arrangement of the molecules can produce
false crystalline structures, which are products of the artifacts
caused by periodicity [43] of the simulation cell, or when
the Ewald summation method or the particle-particle-particle-
mesh (PPPM) approach is used to compute the electrostatic
interactions, but the implementation of the method is not done
properly, which can lead to inaccuracies in the computed
properties, as demonstrated by Bostick and Berkowitz [44].

Viscosity of fluids is usually computed by either the Green-
Kubo (GK) method or by nonequilibrium MD (NEMD)
simulation. Both are computationally expensive, due to the
necessity of requiring long simulations to generate enough
fluctuating samples in the GK method, or because of the
requirement in the NEMD simulation that one must achieve
steady state that is usually reached on a time scale t that is
related to the viscoelastic relaxation time of the fluid, which
can be quite long. Assuming that water is a Newtonian fluid
allows use of the equations that are used in the bulk regime
or in large tubes. It was shown recently, however, that the
velocity profile of water or other Newtonian fluids flowing
in nanotubes is not necessarily parabolic (the HP flow), even
when the Reynolds number was low enough [38]. This affects
directly computation of the shear rate and shear stress in
nanotubes, disallowing use of the equations for Newtonian
fluids in the HP regime. Indeed, we are not aware of any study
in which the rheology of supercooled water in nanotubes, and
in particular its shear stress versus shear rate diagram, has

been measured or computed. Other physical quantities, such
as the intermediate scattering function, help computing the
relaxation time that is related to the viscosity [45]. Nonethe-
less, in supercooled liquids the shear-thinning behavior occurs
at shear rates several orders of magnitude smaller than the
inverse of the relaxation time [46,47]. It should also be noted
that the shear-thinning rheology can be observed in any bulk
liquid, as long as the applied shear rate is greater than a critical
shear rate γ̇c.

Given the anomalous behavior of water over a wide range
of temperatures, its rheology is also important, but has re-
mained unexplored. The goal of the present paper is to study
the dynamics and rheology of water in small nanotubes over a
wide range of temperature, using extensive MD simulations.
As described below, our results indicate interesting and im-
portant rheological behavior for water.

The organization of the rest of this paper is as follows.
We first describe the molecular model of the nanotubes and
the details of the molecular simulations. The results are then
presented and discussed, including the basis for suppression
of freezing of water confined in a nanotube by computing
some of the characteristic quantities. To study the rheology of
confined water, we compute the shear rate and the viscosity
using a NEMD method that does not assume any specific
velocity profile for the water, and compare the results with
those computed by the GK equation, as well as with the
shear viscosity of bulk water. We then discuss the differences
between the bulk and confined critical shear rates, and their
relation with the relaxation time computed by the ISF. The
paper is summarized in the last section.

II. MOLECULAR MODELS AND
COMPUTATIONAL METHODS

We first describe the molecular model of the nanotube
that we employed in the simulations, after which we explain
the computational procedure and the quantities that we have
computed for the bulk and confined water.

A. The nanotubes

We used a SiCNT as the model of confined media but, as
we demonstrated recently [28], the same type of phenomena
and results that we present in this paper is also obtained
in carbon nanotubes. It is, of course, well known that SiC
has exceptional properties, such as thermal and mechanical
stability up to very high temperatures, as well as high thermal
conductivity [48]. In the past we utilized SiC for fabricating
nanoporous membranes [49] for hydrogen separation at high
temperatures in a very corrosive environment, and fabricated
SiCNTs as potential materials for hydrogen storage [50–52].
Others have used SiC membranes for biomedical applications
[53], and studied it [54] as material for storage of natural
gas. In the present paper we used three single-wall SiCNTs,
namely, the (12,0), (20,0), and (30,0) tubes with diameters
D = 11.9, 19.9, and 29.8 Å. Note that among all the possible
SiCNT structures those with equal numbers of C and Si atoms
were shown [55] to be most stable, which is also the type that
we use. In setting the nanotube’s length �, one should take into
account the well-known fact [56] that the MSDs in a confined
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medium are influenced by finite-size effects. Thus, to set �

we first computed the MSDs of the oxygen along the axial
direction z,

〈�2z(t )〉 = 1

N

N∑
i=1

[zi(t ) − zi(0)]2, (1)

for various lengths of the nanotube, where N is the total
number of oxygen atoms, taking into account the change in
the center of mass when computing the MSDs. While there
were indeed finite-size effects, we found that for lengths � =
300, 250, and 160 Å of, respectively, the (12,0), (20,0), and
(30,0) nanotubes the finite-size effects were negligible. Thus,
we set the nanotubes’ lengths at � = 325, 300, and 180 Å.
Note that the length of the C-Si bond is 1.8 Å [57].

B. Computational protocol for bulk water

A cubic simulation cell of linear size L = 35 Å was filled
up with 1331 water molecules, represented by the TIP4P/ice
[58] model, which predicts a bulk freezing point of 271.3 K.
The initial density was 0.93 g/cm3 at T = 230 K and P =
1 atm, taken from a recent model that predicts the density
of supercooled water [59]. Equilibrium MD (EMD) and the
NEMD simulations were carried out for, respectively, 10 and
50 ns. Such long simulations are required for computing the
relaxation time using the ISF by the EMD simulations, and
to attain steady state when very low shear rates are simulated
in the NEMD calculations. The NPT ensemble was used for
the equilibration of the system at pressure P = 1 atm. After
10 ns of equilibration the Nosé-Hoover thermostat was used
in the production stage of the MD simulations, whereas the
algorithm based on the SLLOD equation of motion1 was
employed in the NEMD [60]. The self-part of the ISF was
computed using

Fs(κ, t ) = 1

N

〈
N∑

j=1

exp{−iκ · [r j (t ) − r j (0)]}
〉
, (2)

where r j (t ) is the position vector of atom j at time t , and 〈·〉
implies an ensemble average. We computed the ISF for the
hydrogen atoms, as they have a larger scattering area. Fs(κ, t )
is typically fitted to a stretched exponential function, also
known as the Kohlrausch-Williams-Watts function [61,62]:

Fs(κ, t ) = a exp[−(t/ε)β], (3)

in which ε is the relaxation time, and a and β are constants. In
the NEMD simulation the shear viscosity was computed using

η = −τxy

γ̇
, (4)

where τxy is the shear stress, and γ̇ is the shear rate. We used
a wide range of the shear rates in order to identify the onset of
non-Newtonian behavior of water, if any.

1The name SLLOD is due to the use of the transposed Doll’s tensor,
the dyadic product of the positions and momenta, which was named
after the Kewpie Doll by Hoover.

C. Computational protocol for confined water

After inserting the (12,0), (20,0), and (30,0) nanotubes in
individual simulation boxes with linear dimensions of, respec-
tively, 400, 350, and 240 Å, water molecules were distributed
in the box, including in the nanotube, with a density of
1 g/cm.3 The SiCNTs were modeled by the Tersoff [63] po-
tential that has been widely used for estimating the mechanical
properties of SiCNTs [56,64–67]. The interactions between
water and the SiCNTs were represented by the Lennard-Jones
(LJ) potential, the parameters of which for the SiCNTs were
taken from Malek and Sahimi [50], while the partial charges
were taken from the ab initio calculations reported previously
[55]. The Lorentz-Berthelot mixing rules were employed to
compute the LJ parameters of pairs of atoms.

The energy of the system was then minimized, which
typically took between 1.5 and 3 ns. Then, EMD simulations
were carried out at each temperature in the NV T ensemble
for 10 ns in order to allow the water molecules to move in and
out of the nanotubes. After equilibrium was reached, water
molecules outside the nanotube were removed, the axis of
the simulation box was aligned with that of the nanotubes,
and periodic boundary conditions were imposed. The system
was then taken to its final temperature. We also ran a set
of simulations in the (12,0) SiCNT at 80 and 290 K in
order to visualize solid and liquid states on both sides of the
freezing point.

After the structures were generated, separate sets of MD
and NEMD simulations for each case were carried out. The
EMD simulations were done for 10 ns to compute the cage
correlation function (CCF), the MSDs, and the radial distribu-
tion function (RDF) g(r) at several temperatures. Calculation
of the ISF, however, required 200 ns to reach its low values.
In order to analyze the local density fluctuations of water, we
used the Voronoi tessellation method to compute the volume
occupied by the molecules. The local density of water is given
by its mass divided by the volume of the Voronoi blocks in
which it resides. Then, a local density larger than 1.0 g/cm3

was considered as the high; if it was between 0.9 and 1.0
g/cm3, it was labeled as normal density, whereas a density
less than 0.9 g/cm3 was viewed as the low. Based on such
classification, we analyzed the local density fluctuations of
water in the nanotube.

To compute C(t ), the CCF, we used a generalized neighbor
list [68] in order to keep track of the locations of neighbors of
every molecule, using the first solvation shell as the boundary,
since we wish to understand how fast the cage rearranges
itself. If C(t ) = 1, the list for any atom at time t remains
unchanged relative to time t = 0. If, however, a molecule
diffuses outside its surrounding cage, the lists at times t and
t = 0 will not be identical, and C(t ) = 0 at time t . Thus, C(t )
was computed by averaging over all the atoms in the nanotube.
We used the location of the oxygen atoms as the basis for
calculating C(t ), because it is the closest to the center of mass
of H2O. The aforementioned list was represented by a vector
of neighbors of each individual oxygen atom i in the CNT
with radial distance rlist:

Li(t ) = [ f (ri j )], j = 1, 2, . . . , N, (5)
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where N is the total number of atoms in the system, and

f (ri j ) =
{

1 ri j � rlist

0 otherwise. (6)

We used a cutoff rlist = 3.25 Å, which is the lowest value of
the first well in the RDF. Using a larger value of rlist may lead
to misinterpreting the results. Then, C(t ) is given by

C(t ) = 〈Li(0) · Li(t )〉〈
L2

i (0)
〉 . (7)

The MSDs in the axial direction z were computed through
Eq. (1). The zero shear rate viscosity was computed using the
GK equation, by integrating the stress-stress autocorrelation
function of the three off-diagonal entries of the viscous pres-
sure tensor:

η(T ) = V

3kBT

∫ ∞

0
[〈τxy(t )τxy(0)〉

+ 〈τxz(t )τxz(0)〉 + 〈τyz(t )τyz(0)〉]dt, (8)

where V is the volume of the system, and kB is Boltzmann’s
constant.

The NEMD simulations were carried out for between 10
and 20 ns. At time t = 0 an axial force was applied to every
water molecule in order to induce motion. To do so, the z-axis
(axial) degree of freedom was removed from the thermostat
to avoid artificial heating of the system. It took about another
8 ns for the systems to reach steady state. Once the velocity of
the center of mass of water molecules reached steady state, the
external applied force was turned off to allow water molecules
to decelerate. Computation of the deceleration could have
been done by various ways. Here, however, we only used up
the 800 fs right after the external force was removed to avoid
inaccuracies due the motion of the z-axis degree of freedom of
the thermostat. Such approach has been used before in several
studies of confined water [69–74]. Data for the velocities were
collected every 1 fs, and averaged over 5-fs intervals, where
the average was defined by v̄ = M−1 ∑N

i mivi, with M being
the total water mass in the tube, mi and vi the mass and
velocity of water molecule i, and N the total number of water
molecules.

To compute the quantities of interest, we proceeded as
follows. After removing the external force, the deceleration ā
of the water molecules was computed. Then, the shear stress
at the wall was calculated by

τ = Mā

πDL
, (9)

which is obtained by a force balance and is independent of
the rheology. Note that because the LJ cutoff was set at 12,
20, and 30 Å for the three nanotubes, which are slightly larger
than each nanotube’s diameter, all water molecules interact
with the walls. Thus, Eq. (9) is representative of the shear
stress in the nanotube. We also point out that Eq. (9) does
not contain a pressure term, because the force applied to each
particle to induce flow was used. To compute the shear rate
γ̇ , we divided the interior of the nanotube into five concentric
cylinders, the maximum number of layers in which the water
molecules were distributed in the tube. The center-of-mass
velocity for the groups was used for computing the mean shear

rate, given by

γ =
〈(

∂Vz

∂r
+ ∂Vr

∂z

)〉
. (10)

Thus, since ∂Vr/∂z ≈ 0, we have

γ =
〈
∂Vz

∂r

〉
≈

〈
�Vz

�r

〉
, (11)

where �Vz/�r denotes the difference in the values between
two layers at a distance �z. Finally, the average shear rate was
computed using those obtained by Eq. (11). Multiple values of
the applied force were employed to simulate water flow in the
nanotubes over a wide range of the fluid velocities. Note that
the pressure component Pzz = 1 atm in the simulations.

Let us point out that, due to slip on the nanotube’s wall,
computing the shear rate is a difficult problem, and particu-
larly so if its value is small. For example, it was not possible
to compute the shear rate at velocities vz smaller than 10
m/s, which are velocities that are comparable with the thermal
velocities of the molecules. Moreover, the water layers in the
nanotube may have velocities that are close to each other. To
overcome this difficulty, the velocity of the center of mass of
each layer was averaged over all the time between the begin-
ning of the steady-state velocity profile and the time at which
the external force was removed. This removed most of the
thermal noise, making it possible to obtain accurate results.
In addition, a minimum of 30 realizations were generated for
each data point to improve the statistics, and for velocities
smaller than vz = 30 m/s at least 50 realizations were used.

In both the EMD and NEMD simulations, long-range
Coulombic interactions were computed by the PPPM
method [75]. The SHAKE algorithm [76] was used to keep the
bonds and angles in the water molecules intact. Temperature
was adjusted by the Langevin thermostat, and its increase to
higher values, when needed, was done at a rate of 1 K after
every 5 ps. All the simulations were carried out using the
LAMMPS package [77], and the systems were visualized using
the VMD package [78]. The time step was always 1 fs. As
mentioned earlier, water molecules were represented by the
TIP4P/ice [58] model. Their viscosity at 273 K, calculated
by the TIP4P/ice model, is 1.78 cP [79], which is larger than
the experimental value of 1 cP, but is of the correct order of
magnitude.

III. RESULTS AND DISCUSSION

We computed several important physical quantities that
characterize the rheology and dynamics of supercooled wa-
ter in small nanotubes. In what follows we present and
discuss them.

A. The cage correlation function
and mean-squared displacements

Figure 1 presents the CCF at three widely disparate tem-
peratures. At 80 K the CCF does not change, indicating a
frozen state. It decays clearly at 230 K, indicating that the cage
formed by the water molecules rearranges itself continuously
due to jumping of the molecules into a different cage. The
decay of the CCF is the sharpest at 290 K, as expected.
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FIG. 1. The cage correlation function C(t ). The results at 80 K
indicate a frozen state, whereas those at other temperatures are
representative of a liquid state.

Figure 2 presents the results for the MSDs. They are prac-
tically zero at 80 K, not changing over time. But, they grow
continuously with the time at 230 K and higher temperatures.
Moreover, at longer times the MSDs vary essentially linearly
with the time, indicating ordinary diffusive motion. The inset
in Fig. 2 shows the diffusion coefficient D, computed based

FIG. 2. Axial mean-squared displacements 〈�2z(t )〉 of water.
The results at 80 K indicate a frozen state. The inset compares the
diffusivities in confinement with the bulk values. The bulk values
were taken from Ref. [80].
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FIG. 3. The radial distribution function g(r), which provides
evidence for a (a) liquid state, and the existence of (b) low- and
(c) high-density water regions in the (12,0) nanotube.

on the MSDs. The bulk values were taken from Ref. [80]. The
results in Figs. 1 and 2 are completely consistent with the ex-
istence of a liquid state below the bulk freezing temperature.
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FIG. 4. Histogram of density fluctuations of water in the (12,0) nanotube.

B. Radial distribution function and density fluctuations
of liquid water

The radial distribution function g(r) of the oxygen-oxygen
pairs is shown in Fig. 3(a). The differences in the relative
heights of each peak at T = 80 and 230 K are consistent with
the results shown in Figs. 1 and 2. The second and third peak
at 230 K are more “flat,” when compared with those at 80 K,
indicating that at 230 K one has a liquid state.

The presence of the three types of density was confirmed
by the computation using the Voronoi volumes, as described
earlier, as well as the RDF g(r). Locally low and high densities
have distinct g(r) patterns. This is shown in Fig. 3. For high
density the second peak collapses, with the first one leaving
a small shoulder at r ≈ 3 Å. Moreover, the first peak corre-
sponding to the high density develops before the first peak
representing the low density, which is due to the closeness of
the water molecules in the former region. The second peak
corresponding to the low densities is broad and larger than the
corresponding one in the region with high density, due to the
larger probability of finding water molecules than in the latter.

At 230 K the normal density water tends to occupy the
largest portion among the three, representing about 55% of
the total volume, followed by the high and low densities at,
respectively, 33 and 12%. The fractions change only slightly
at 290 K, with the values for the regions with normal, high,
and low densities being, respectively, 59, 31, and 10%, with all
the changes being well in the range of the numerical error. A
summary of the density fluctuations in the nanotube is shown
in Fig. 4. At T = 230 and 290 K, the low density represents
the lowest portion, and there is a peak at around a density of
about 0.925 g/cm,3 which closely matches the density of bulk
water at the same temperature [59]. In contrast, at T = 290 K
there is not a unique peak. Instead, the molecules with normal
density have a broader distribution. Nevertheless, the fractions
of the three types of local densities at 290 K in the larger

nanotubes are significantly different. Higher volume fractions
of the normal density, 63% in the (20,0) and 70% in the
(30,0) nanotubes, are present. In contrast, the fractions of the
regions with high density in the (20,0) and (30,0) nanotubes
are only 28 and 23%. The low-density type also experiences
such a decrease, which are 9 and 7%. The anisotropy produced
by the confinement can be a possible explanation of the
rheology, as explained below. Note that structural changes
in sheared liquids have been interpreted as the fingerprint of
non-Newtonian rheology [40].

C. Intermediate scattering function and the relaxation time

Figure 5 presents the ISF for bulk and confined waters.
Note that in the MD simulations of water at low temperatures
that we consider the bulk water does not freeze, because in
order to produce ice one must add nucleation sites for ice;
otherwise, it is very unlikely that MD simulation of bulk water
at such temperatures can produce ice. In other words, one has
to put the supercooled water in contact with, for example,
hexagonal ice in order to produce the frozen state; see, for
example, Naserifar and Goddard [81], who recently simulated
supercooled bulk water without ice.

The relaxation times that were computed for bulk water
at 230, 250, 270, and 290 K were, respectively, 60, 23, 12.5,
and 6.9 ps. The corresponding values for confined water in
the (12,0) nanotube at the same temperatures were 4.18, 2.08,
1.01, and 0.57 ns, respectively, about two orders of magnitude
larger than those of bulk water. The fact that the relaxation
times of confined water are much larger than those in the bulk
provides evidence for the existence of a possible critical shear
rate γ̇c for non-Newtonian rheology. As mentioned earlier, one
usually finds that γ̇c for supercooled liquids is smaller than the
inverse of the relaxation time, implying that γ̇c is very small.
Here, we present evidence indicating that the critical shear

023106-6



RHEOLOGY OF WATER IN SMALL NANOTUBES PHYSICAL REVIEW E 102, 023106 (2020)

10 5 10 3 10 1 101 103

T (K)
230
250
270
290
(20,0) 290
(30,0) 290

10 6 10 5 10 4 10 3 10 2 10 1 100 101

time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

F s
(

,t
)

T (K)
230
250
270
290

(a) (b)

FIG. 5. The intermediate scattering function Fs(κ, t ) for (a) bulk water and (b) water confined in the nanotube.

rate of confined water is smaller than the corresponding value
for the bulk water, implying that shear-thinning rheology in
confinement sets in much earlier than in the bulk. We shall
return to this point shortly.

D. Rheology

The viscosity of bulk supercooled water was computed
by the NEMD simulation. The results are shown in Fig. 6.

FIG. 6. Viscosity of bulk water as a function of the shear rate,
computed by the NEMD simulation.

We note that the onset of non-Newtonian rheology occurs for
shear rates between 109 and 1010 s−1, which is about one order
of magnitude lower than the inverse of the relaxation times.
The effective zero shear rate viscosity of the water confined
in the (12,0) nanotube was computed by the GK formalism.
The results are shown in Fig. 7, and indicate that water in
the nanotube is a very viscous fluid at 230 K. The viscosity
decreases gradually as temperature rises.

FIG. 7. Zero-shear rate viscosity of water in the nanotube, com-
puted by the Green-Kubo equation.
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FIG. 8. Temperature and shear rate dependence of the shear
stress in the nanotube, computed by the NEMD simulation.

Zero shear rate viscosity of water at room temperature,
computed by the GK relation, was also reported previously
by us [28]. Our estimates are about twice larger than the
experimental values reported for bulk supercooled water [82]
over the same temperature range. Note that, as has also been
pointed out by others [70,71], use of the GK relation in
confined media is not without problems, because the equation
was originally derived for homogeneous fluids. Moreover,
the frequency of sampling and the periodicity may generate
artifacts. Despite this, as explained below, the calculations
based on the GK relation can still be useful.

To obtain more accurate estimates of the viscosity based on
sound theoretical foundations, we also carried out a separate
set of NEMD simulations to compute shear rate dependence of
the effective viscosity. Figure 8 presents the shear stress–shear
rate diagram for water in the nanotubes as a function of
the temperature. In all cases the shear stress does not vary
significantly with the shear rate γ̇ when γ̇ is small. But, as
γ̇ increases, so also does the shear stress. The results shown
in Fig. 8 indicate clearly a non-Newtonian rheology at all
temperatures.

To understand this better, as well as obtain more accurate
estimates of water viscosity in the nanotube, we define an
effective viscosity η by Eq. (4). For Newtonian fluids, η is
independent of the shear rate and depends only on T (and
pressure P) and the molecular structure of the solution, but
for non-Newtonian fluids η depends also on γ̇ . The results
for η, presented in Fig. 9, provide further evidence that the
confinement and the supercooled state of water enhance the
non-Newtonian rheology, and that water resembles a shear-
thinning fluid since its viscosity decreases with the shear
rate γ̇ . Note also that as the temperature and the nanotubes’
diameter increase the dependence of η on γ̇ weakens, hence
indicating that rheology of water in the nanotube at temper-

FIG. 9. Temperature and shear rate dependence of the effective
viscosity of water, computed by the NEMD simulation. They indicate
non-Newtonian rheology.

atures higher than room temperature resembles increasingly
that of Newtonian fluids.

We note that even though it is not possible to precisely
determine the critical shear rate for confined water it is
evident from Fig. 9 that it is at least two or three orders of
magnitude smaller than the inverse of the relaxation times in
the same systems. This indicates that shear-thinning rheology
in nanotubes emerges earlier than in the bulk.

The effective viscosity for the smallest (zero) shear rate
that we computed by the NEMD simulations in the nanotube
is smaller than that computed by the GK formalism, but much
closer to the experimental data [82] for supercooled water
under bulk condition over the same temperature range. We
explain this by noting that [83] thermal fluctuations of shear
stress at equilibrium will be affected not only by the viscosity
but also by the slip boundary condition at the wall, which is
known to exist in flow through small nanotubes. Thus, because
the GK equation was intended for homogeneous fluids, it does
not take into account the slip on the walls.

Therefore, the GK provides overestimates of the effective
viscosity in confined media. This implies that either the GK
formulation must be modified in order to take into account the
slip effect or the estimates that it provides for the effective
viscosity of liquids in confined media with slip boundary
conditions should be viewed as a sort of upper bound to the
true values, as it ignores the slip on the walls. Indeed, recent
research [84] has shown that for confined fluids between
parallel plates the GK equation is inadequate for computing
the viscosity.

Finally, we note that although the viscosities for the bulk
and confined water were computed by different methods
the differences between the relaxation times agree with the
slow dynamics encountered due to confinement, which was
reported previously in several studies [5–10,19].
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IV. SUMMARY

This paper reported on a study of rheology of supercooled
water in small nanotubes. We reported the results of extensive
equilibrium and nonequilibrium molecular dynamics simula-
tions of supercooled water in small SiCNTs over a wide range
of temperatures. The properties computed, namely, the CCF,
MSDs, g(r), shear stress–shear rate diagram, and effective
viscosity, indicate that not only does water not freeze at
temperatures way below the bulk freezing temperature of
273 K but also regions with high and low densities coexist
in the nanotube at such temperatures and above the freezing
point. The volume fractions of the regions with locally high
and low densities tend, however, to decrease as temperature
and diameter of the nanotube increase. We also note that the
non-Newtonian regime tends to be in a narrower range of
shear rates as the nanotube’s diameter increases. Moreover,
while the presence of the liquid with different densities in
smaller nanotubes is very clear, the same is not true in larger
ones, where the non-Newtonian behavior is weaker.

We also reported clear evidence for non-Newtonian rheol-
ogy of confined water over the same range of temperature at
high velocities. We suspect that the existence and the relative

abundance of the water with different local densities may
be linked to the non-Newtonian rheology, since it has been
shown that the structure of liquids has a strong relationship
with their viscosity, especially in supercooled water [45].
Most recently, it was proposed [85] that water could behave
as a polymer chain over certain time scales, which may
provide further evidence for its non-Newtonian rheology in
confinement.

These results may have important implications for flow
of water and similar liquids in nanostructured materials, for
biological systems, and for the design of devices for various
medical applications at low temperatures.
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