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Viscoplastic fingering in rectangular channels
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We experimentally study the viscous fingering problem of viscoplastic fluids in channels of rectangular cross
section. We find that a yield stress-dependent capillary number (Ca∗) and an aspect ratio-dependent Bond number
(Bo∗) can classify the finger shape into ramified and unified fingering patterns, and the finger flow regime into
yield stress, viscosity, and aspect ratio-buoyancy-dominated regimes. For these regimes, we provide the transition
boundaries using Ca∗ and Bo∗ and propose simple relations to predict the finger width, for a wide range of flow
parameters, versus the capillary number, the channel aspect ratio, and the rheology of the viscoplastic fluid.
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I. INTRODUCTION

As the precursor to diverse pattern formations, interfacial
instabilities appear, to give a few examples, in fractal growth,
crystal growth, thermal plumes, electroosmotic flows, etc
[1,2]. Among interfacial flows of wide interest, the classical
Saffman-Taylor instability [3] or viscous fingering occurs
when air displaces a viscous liquid in a Hele-Shaw channel.
Aside from the beauty and complexity of viscous fingering
flow patterns, these interfacial flows are of importance as
they appear in a variety of natural phenomena and industrial
applications, with prominent examples in oil and gas indus-
tries, food processing, and biomedical and biotechnological
applications [4]. In fact, most natural and industrial materials,
including paints, pastes, glues, inks, blood, slurries, muds,
fresh concrete, etc., are complex fluids [5,6], particularly
exhibiting viscoplastic behavior [7,8]. For imposed stresses
below a critical value called the yield stress (τ̂y) [9], viscoplas-
tic materials respond like elastic solids; when the yield stress
is overcome, the viscoplastic materials flow like truly viscous
fluids [5]. In stark contrast to their Newtonian fluid counter-
parts, our understanding of viscous fingering of viscoplastic
fluids is not mature, despite the prevalence and diversity of
viscous fingering phenomena of viscoplastic fluids.

For Newtonian fluids in a Hele-Shaw channel, as air moves
within the viscous liquid, it forms a unified (single) finger
that advances at a constant velocity and the finger width (ŵ)
is determined by the capillary number, Ca = μ̂Û/σ̂ , i.e., the
ratio of viscous and capillary forces, where μ̂ is the liquid
viscosity, Û is the finger-tip velocity, and σ̂ is the surface
tension coefficient. The variation in the channel aspect ratio,
δ = Ŵ /b̂, with b̂ and Ŵ being the gap thickness and the
channel width, does not modify the fingering pattern, i.e., for
high [3], moderate [10,11], and low [12–14] aspect ratios,
there is always a unified finger within the channel. It must
be also noted that, when varying the aspect ratio through
increasing the gap thickness, buoyancy becomes non-
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negligible, the effects of which are assessed in a number of
studies, using the Bond number, i.e., the ratio of buoyant
to surface tension forces, defined as Bo = ρ̂ĝb̂2/σ̂ , where ρ̂

is the liquid density and ĝ is the gravitational acceleration
[11,12,15].

Compared to Newtonian fluids, the fingering patterns for
viscoplastic fluids are quite different [16–22]. In particular,
for these fluids at lower velocities of air, a ramified (branched)
fingering pattern is formed, for which ŵ is independent of Û
(i.e., the yield stress-dominated regime). At lager imposed ve-
locities of air, a unified fingering pattern appears, for which ŵ

continuously decreases with Û (i.e., the viscosity-dominated
regime). For these fluids, the formation of the ramified finger-
ing pattern is attributed to the dominance of the yield stress
and the existence of unyielded zones in regions behind the
finger front [23–25]. Despite these useful findings, a complete
picture of the viscous fingering problem for viscoplastic fluids
is still unavailable as their dynamics is highly nonlinear in
nature. In particular, the effects of the channel aspect ratios
and buoyancy, in combination with the yield stress, surface
tension, and viscosity, on viscous fingering of viscoplastic flu-
ids are unknown. In other words, although some of the general
features of the aforementioned regimes have been described
in the literature, the previous works have been limited to the
channels of large aspect ratios (δ � 27), where the effect of
buoyancy is negligible (Bo � 0.3) [24–26]. Therefore, it is
insightful to investigate the influence of Bo and δ together
with the other governing dimensionless flow parameters on
the flow regimes.

In this paper, we present experimental results on the forma-
tion of different fingering patterns emerging from the injection
of air into a Hele-Shaw channel of different rectangular cross
sections, filled with a viscoplastic fluid. We systematically
investigate the effects of the channel width (Ŵ ), the gap
thickness (b̂), the imposed or finger-tip velocity (V̂ or Û ),
and the yield stress (τ̂y) on the viscous fingering features of
viscoplastic fluids. The experiments cover a wide range of
aspect ratios (1 � δ � 200) and buoyancy forces (0.002 �
Bo � 4.45). We uncover that the aspect ratio and buoyancy,
in combination with the yield stress, viscosity, and surface
tension, exert remarkable impacts on the flow, inhibiting or
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FIG. 1. Flow curves of the shear stress, τ̂ , vs the shear rate, ˆ̇γ ,
from steady shear tests. The lines correspond to the Herschel-Bulkley
model parameters fitted to the data. The data correspond to three
different Carbopol concentrations, called for simplicity as high ( ),
medium ( ), and low ( ) Carbopol concentrations. The inset shows
the variation of the effective viscosity vs the shear rate for the same
data as in the main figure.

triggering the formation of ramified and unified fingering
patterns. Analyzing the role of the flow characteristic stresses,
we succeed in providing a reasonable picture of the flow,
via classifying the flow regimes and proposing predictions
to the finger width in different regimes, versus appropriate
dimensionless groups that elegantly combine the aspect ratio,
surface tension, viscosity, yield stress, and buoyancy.

II. EXPERIMENTS

In our experiments, air displaces a Carbopol gel, i.e.,
a common viscoplastic fluid, at different Carbopol concen-
trations, in channels of different rectangular cross sections.
The rheological properties of the Carbopol gel are quantified
using a rheometer (DHR-3 TA Instrument) via a parallel-plate
geometry (gap 1 mm, diameter 40 mm). Fine sandpapers
are attached to the rheometer plates to eliminate wall slip.
The shear behavior of the Carbopol gel can be described by
the Herschel-Bulkley model [27,28]:

τ̂ = τ̂y + κ̂ ˆ̇γ n.

This is a well-known constitutive equation for viscoplastic
fluids, which includes the shear stress (τ̂ ), the shear rate ( ˆ̇γ ),
the consistency index (κ̂), and the power-law index (n). Using
the Herschel-Bulkley model, the effective viscosity can be
written as

μ̂ = τ̂y( ˆ̇γ )−1 + κ̂ ( ˆ̇γ )n−1,

which depends on both the Carbopol concentration and the
shear rate.

The flow curves measured using rotational tests are shown
in Fig. 1. In steady conditions, the graph shows the shear
stress (τ̂ ) as a function of the shear rate ( ˆ̇γ ), for the three
Carbopol concentrations. As seen, at low shear rates, these
Carbopol gels clearly exhibit a yield stress and increasing
the Carbopol concentration results in enhancing the yield
stress value. The dashed lines superimposed on Fig. 1 demon-
strate that the three Carbopol gel samples are well fitted using

the Herschel-Bulkley model, for which the rheology can be
described by

low Carbopol concentration: τ̂ = 5.4 + 5.7 ˆ̇γ 0.32;

medium Carbopol concentration: τ̂ = 8.3 + 7.6 ˆ̇γ 0.31;

high Carbopol concentration: τ̂ = 13.7 + 11.6 ˆ̇γ 0.35.

These samples exhibit strong yield stress and shear-thinning
behavior (n < 0.4), implying a remarkable deviation from
Newtonian viscosity behavior (see the inset of Fig. 1).

In terms of dimensional parameters, the experiments are
designed to investigate the effects of the channel width (Ŵ ),
the gap thickness (b̂), and the imposed velocity (V̂ ), at
different Carbopol concentrations, on the viscous fingering
features of viscoplastic fluids. A large number of channels
with different rectangular cross sections are made out of
acrylic plastic plates, each of length L̂ = 50 cm, for which
the gap thickness (0.1 � b̂ � 5.5 mm) and the channel width
(3 � Ŵ � 130 mm) are varied. See the middle image in Fig. 2
for a schematic view of the experimental setup. The channel
is initially filled with a Carbopol gel sample, dyed with black
ink for visualization. Then, through an inlet, air is injected
into the channel. The air imposed velocity is controlled via
a mass flow controller and the interface evolution is recorded
with a high-speed camera (Basler acA2040), from the channel
top view. Postprocessing is carried out using MATLAB. For
the preparation of this study, more than 2000 experiments are
performed.

It is known that viscoplastic fluids can slip on smooth solid
surfaces, for example, the acrylic plastic plates that make
our Hele-Shaw channels. The wall slip effects in Carbopol
gel flows, especially at lower shear rates, may result in a
deviation of the effective rheological parameters from the ones
measured in the rheometry (in which sandpapers are typically
used to avoid slippage); however, the previous works have
shown that these effects may be of importance only when
the gap thickness is smaller than 0.4 mm [29], which is not
the case in most of our experiments (where b̂ in most of our
channels is larger than 0.5 mm). In addition, a comparison
between the rheological measurements of the Carbopol gels
using smooth plates compared against rough plates (using
sandpapers) reveals that the slippage starts to affect the rhe-
ological measurements only at smaller shear rates, typically
ˆ̇γ < 0.1, which orderwise is comparable with the values re-
ported in the literature [30]. Using the average value of the gap
thickness and the lowest velocities in our experiments results
in a characteristic shear rate that is always greater than 0.1,
implying that our experiments are not affected by the wall
slip. Finally, our recent work with a similar range of rheo-
logical parameters reveals the presence of thin static wetting
films of the Carpool gels attached to the upper and lower
plates of the Hele-Shaw channels, after the passage of the
displacing finger, confirming that there is no slippage in our
experiments [25].

III. RESULTS AND DISCUSSION

Figure 2 shows two main flow patterns as a function of b̂,
Ŵ , and V̂ ; the Carbopol concentration is constant. Depending
on the flow parameters, a unified or ramified fingering pattern
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FIG. 2. Diagram of two flow patterns, i.e., unified and ramified fingering patterns, as a function of the dimensional control parameters in
this study, including the channel width (Ŵ ), the gap thickness (b̂), and the air imposed velocity (V̂ ). The middle image shows the schematic of
the 3D experimental setup and the other images are the 2D top view experimental images. The results for the low Carbopol concentration are
shown, while similar results are observed for moderate and high Carbopol concentrations. The air finger flows from left to right in all images.

is observed. For small V̂ (or equivalently small Û ), the yield
point is not exceeded everywhere in the viscoplastic fluid,
leading to the domination of the yield stress; consequently, the
initial finger frequently splits without feeling the surround-
ings and forms several asymmetric fingers, leading to the
formation of the ramified fingering pattern. By increasing the
velocity, the yield stress is overcome and the flow becomes
dominated by the viscosity; the finger shape transitions from
a ramified to a unified fingering pattern. The unified finger
moves in the channel center and it is relatively thin; these are
characteristics of a viscous finger. When b̂ increases, resulting
in increasing buoyancy, a similar behavior is observed: The
flow transitions from the yield stress-dominated regime to
one in which buoyancy dominates the flow, while the finger
shape transitions from a ramified to a unified fingering pattern.
The unified finger is quite wide [11], i.e., the characteristic
of a buoyant finger. An opposite effect to that of b̂ and V̂ is
seen for Ŵ : At small values of Ŵ (i.e., small aspect ratios)
there is a unified finger, which at large values of Ŵ (i.e.,
large aspect ratios) becomes destabilized and develops into
a ramified finger. The flow transitions from a regime where
the low aspect ratio is critical to one where the aspect ratio
is not important and the yield stress dominates. These results
emphasize that the flow parameters such as the aspect ratio,
yield stress, surface tension, viscosity, and buoyancy have
significant effects on the fingering pattern as well as the finger
width.

Let us attempt to find the appropriate dimensionless groups
that can explain the key flow features observed so far. First
of all, our results show that the ramified fingering pattern
appears at lower imposed velocities, where the yield stress is
predominant. At higher velocities, on the other hand, there is
a unified finger mainly controlled by a balance between the
surface tension stress (σ̂ /b̂) and the viscous stress (μ̂Û/b̂), as
the yield stress is no longer dominant. In order to consider all
these effects mentioned, i.e., the yield, viscous, and surface
tension stresses, into a single dimensionless group, let us

define a yield stress-dependent capillary number, Ca∗:

Ca∗ =

viscous stress︷ ︸︸ ︷(
μ̂Û

b̂

) ×
viscous stress︷ ︸︸ ︷(

μ̂Û
b̂

)

τ̂y︸︷︷︸
yield stress

× (
σ̂

b̂

)
︸︷︷︸

surface tension stress

= (μ̂Û )
2

τ̂yb̂σ̂
, (1)

in which the numerator represents the viscous stress and the
denominator includes the yield and surface tension stresses.
Equation (1) can be also presented in the form of

Ca∗ =
(

μ̂Û
σ̂

)2

( τ̂yb̂
σ̂

) = Ca2

Ca
, (2)

where Ca is the traditional capillary number and Ca is a
viscoplasto-capillary number obtained by replacing the effec-
tive viscosity (μ̂) in the traditional capillary number by the
yield viscosity [τ̂y(b̂/Û )], leading to Ca = τ̂yb̂/σ̂ . Note that
one can also write

Ca∗ ≡ Ca

Bn
,

where the Bingham number (Bn = τ̂y

μ̂ Û
b̂

) represents a dimen-

sionless yield stress number, which is zero for Newtonian
fluids [31]. Moreover, our results show that the ramified
fingering pattern occurs when the values of Ŵ and b̂ are
large and small, respectively. The effects of the former can
be considered via the cross-section aspect ratio, δ, while
the effects of the latter are typically evaluated via the Bond
number, Bo, which in combination with δ results in an aspect
ratio-dependent Bond number (Bo∗):

Bo∗ = Bo

δ
= ρ̂ĝb̂3

σ̂Ŵ
. (3)

The relation above is also equivalent to the ratio of
the Archimedes number (Ar = ρ̂2ĝb̂3/μ̂2) and the Laplace
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FIG. 3. Fingering pattern classification in the plane of Bo∗ and
Ca∗, for the ramified (filled symbols) and unified (hollow symbols)
fingering patterns. Three finger flow regimes associated with Fig. 4,
i.e., the yield stress, viscosity, and aspect ratio-buoyancy-dominated
regimes, are also marked by I, II, and III as well as red, white, and
yellow colored areas. The critical transition boundaries between the
colored areas are at Ca∗ ≈ 5, Bo∗ ≈ 0.015, and Bo∗ ≈ 0.2.

number (La = ρ̂σ̂Ŵ /μ̂2):

Bo∗ = Bo

δ
≡ Ar

La
. (4)

For a wide range of flow parameters (i.e., 1 � Ca∗ � 102

and 10−4 < Bo∗ � 1), Fig. 3 classifies the experimental data
in the plane of Ca∗ and Bo∗, where the unified and ramified
fingering patterns are reasonably segregated using the hollow
and filled symbols, with the critical boundaries at Ca∗ ≈ 5 and
Bo∗ ≈ 0.015. At small values of Bo∗ or Ca∗, the appearance
of the ramified fingering pattern is due to the dominance of
the yield stress over the other forces; however, at higher Bo∗
(Ca∗), the buoyant (viscous) stress competes with the yield
stress to balance the surface tension, resulting in the unified
fingering pattern. When Bo∗ > 0.015, the unified fingering
pattern is observed, independent of the value of Ca∗. Sim-
ilarly, when Ca∗ > 5 the unified fingering pattern is seen,
independent of the value of Bo∗.

In addition to the fingering pattern, a key parameter in
the viscous fingering problem is the relative finger width
(λ = ŵ/Ŵ ), the variation of which versus a proper scaling
parameter is of interest. For Newtonian fluids, this scaling
parameter is Caδ2 [32,33] (which can be theoretically ratio-
nalized based on the maximum growth wavelength obtained
using the linear stability analysis). When the experimental
results of the relative finger width are plotted versus Caδ2, a
universal master curve can be obtained for Newtonian fluids.
For weakly shear-thinning fluids, the same rescaling is also
valid if the viscosity is substituted by the shear dependent
viscosity [34]. More recently, for large aspect ratios and in
the absence of buoyancy, it has been shown that Caδ1+n

is a relevant scaling parameter for viscoplastic fluids [25].
This scaling parameter agrees both with the Newtonian limit
(n = 1), for which Caδ2 is relevant, and the strongly shear-
thinning viscoplastic limit (n � 1), for which Caδ [24] has
also provided satisfactory results. Figure 4 shows the variation
of λ versus Caδ1+n, for a wide spectrum of experimental
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FIG. 4. Relative finger width, λ, vs Caδ1+n for ≈2000 experi-
mental data at different conditions. The values of Ca∗ and Bo∗ are
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larger values of Bo∗. Three different flow regimes associated to the
colored areas in Fig. 3, i.e., the yield stress, viscosity, and aspect
ratio-buoyancy-dominated regimes, are marked by I, II, and III,
respectively.

parameters, for both unified and ramified fingering patterns.
The values of Ca∗ and Bo∗ are represented by the color
and size of the circles, respectively. On this figure, different
finger flow regimes are marked by I, II, and III, the transition
boundaries of which are presented in Fig. 3. For regime II, as
the finger width continuously decreases with Caδ1+n, all the
experimental data reasonably fall onto a master curve found
as

λII ≈ αII (Caδ1+n)
βII

, (5)

where the subscript denotes the finger flow regime here and
elsewhere, and αII = 2.85 and βII = −0.44 are the best-fit
parameters in our work. Regime II is dominated by viscosity,
and it coincides with the unified fingering pattern, with Ca∗ >

5 or Bo∗ > 0.015 limited to Bo∗ < 0.02 (see Fig. 3).
Looking into the literature, it is worth noting that the

exponent value in the equation above (βII) seems to depend
on the fluid types and it varies in the previous experimen-
tal results, finding, for example, for Newtonian fluids βII ∈
[(−0.15) − (−0.11)] [3,33,35,36], for shear-thinning fluids
βII ∈ [(−0.22) − (−0.18)] [34,37], and for viscoplastic fluids
βII ∈ [(−0.67) − (−0.48)] [24,26]. The first thing to notice is
that the exponent value is not constant in the previous works
even for simple fluids (i.e., Newtonian fluids). The reason may
be attributed to the control parameter in which the displaced
film thickness left behind the fingers is neglected [33]. The
second thing to notice is that, on average, the absolute value
of βII for viscoplastic fluids is nearly four times larger than
that for Newtonian ones, implying that the finger width in
viscoplastic fluids decreases versus the control parameter at
a much higher rate compared to that for Newtonian fluids.

Unlike regime II in Fig. 4, the data for regimes I and III
do not fall on the master curve. In fact, for regime I, which is
dominated by the yield stress and corresponds to the ramified
fingering pattern, λ is nearly independent of Caδ1+n. As the
yield stress is the critical parameter of the flow in this regime,
the finger width is expected to be a function of the viscoplasto-
capillary number, Ca, which indeed turns out to be the case:
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Using our experimental data, we are able to find that

λI ≈ αI(δ
2Ca)βI, (6)

valid for Ca∗ � 5 and Bo∗ � 0.015 (see Fig. 3). In this equa-
tion, we find αI = 5.5 and βI = −0.5. While the exponent
βI = −0.5 can be supported by theory [23–25], the coefficient
αI ≈ 5.5 in Eq. (6) is a constant found in our experiments. The
form of Eq. (6) is in agreement with the previous findings from
various studies, only with different fitting coefficients: αI ≈
8.1 [26], αI ≈ 4.2 [24], and αI ≈ 3.2 [38]. These differences
between the values of αI may be generally due to various
experimental conditions, uncertainties, and also differences
in the surface tension coefficient value; in fact, the existence
of a yield stress makes the surface tension measurement for
viscoplastic fluids very difficult [39,40].

Finally for regime III, which occurs when the aspect ratio-
dependent Bond number is very large, there is a unified finger
and the finger width is significantly affected by buoyancy or
the aspect ratio. Thus, in this regime the experimental data do
not collapse onto the master; instead, the finger width remains
large (i.e., λ � 0.5) and it is a complex function of the yield
stress, buoyancy, viscosity, and aspect ratio. For this regime,
we crudely find

λIII ≈ 0.75 ± 0.25. (7)

which is valid for Bo∗ � 0.2 (see Fig. 3).
It may be insightful to remember that, while the yield

stress-dependent capillary number (Ca∗) is used to separate
regimes I and II, the traditional capillary number (Ca) and the
viscoplasto-capillary number (Ca) with various powers of the
aspect ratio are relevant for scaling the relative finger width in
these regimes. In other words, the data points of regimes I and
II are clearly segregated using the appropriate combination of
Ca and Ca, leading to Ca∗ (see Fig. 3), whereas Ca∗ itself
is not appropriate to describe the finger-width variations; this
is simply because of the domination of different forces in
different regimes. For example, in regime I, the finger width
is determined by a balance between the surface tension stress
and the yield stress, independent of Û . In this case, Ca, which
is independent of the velocity, becomes naturally relevant, as
Ca∗ includes the velocity term and is therefore inappropriate.
In regime II, on the other hand, the finger width is determined
by a balance between the viscous stress (narrowing the finger)
and the surface tension stress (widening the finger); therefore,
Ca is relevant, while Ca∗ ≡ Ca/Bn would be expectedly
unable to describe the finger-width variation, simply due to
the presence of the extra Bn in the denominator.

Regime III

The aspect ratio-buoyancy-dominated regime (i.e., regime
III) in our experiments is associated with an efficient removal
of the viscoplastic displaced fluid and the presence of a
wide, unified finger in the Hele-Shaw channel. Since this
regime has not been reported before in the context of viscous
fingering of viscoplastic flows, it is useful to describe its flow
features, mainly based on analyzing the finger-width variation
versus the flow parameters. In dimensional form, the main
experimental flow parameters are the gap thickness (b̂), the
yield stress (τ̂y), the channel width (Ŵ ), and the finger-tip

velocity (Û ), the effects of which on the relative finger width
(λ) will be qualitatively described in this section. For com-
parison purposes only, the variation of λ in regimes I and II
will be also presented alongside that in regime III; however,
as the focus of this section is on regime III, the interested
reader is referred to Refs. [20,24,25] for a detailed analysis
and understanding of the effect of the flow parameters on λ in
regimes I and II.

Figure 5 plots the variation of λ versus Û for different val-
ues of b̂ in regime III, in comparison with that in regimes I and
II. As seen, λ increases with b̂, regardless of the flow regime.
One justification for the observed behavior in regime III may
be that increasing b̂ improves the transverse buoyancy force
within the channel gap, which has some consequences. First
of all, it affects the pressure drop across the finger tip [11],
which in return affects the finger-tip shape and curvatures.
Second, and perhaps more important, it lifts the displacing
finger from the channel bottom wall and pushes it toward
the channel top wall; consequently, the residual layers of the
displaced fluid become thinner and thicker on the channel top
and bottom walls, respectively [11,41]. Loosely speaking, as
the residual layers of the displaced fluid on the lower wall
becomes progressively thicker in the transverse direction, the
finger must become wider in the lateral direction (simply due
to mass conservation), which leads to an increase in λ.

The effects of increasing τ̂y on the variation of λ versus τ̂y

is plotted in Fig. 6. As seen, there is a significant difference
between the effect of the yield stress on the relative finger
width in regime III, compared to that in regimes I and II. In
the viscosity- and yield stress-dominated regimes, increasing
the yield stress results in decreasing the finger width as shown
in Figs. 6(b) and 6(c) (also see Refs. [24,25] for physical ex-
planations). However, in the aspect ratio-buoyancy-dominated
regime, the finger width increases with the yield stress, within
the ranges explored [see Fig. 6(a)]. This further highlights the
flow complexity in this regime.

A possible justification for the observed effects of τ̂y on
λ in regime III may be related to the residual wall layers of
the displaced fluid. These layers, for which the thickness is
a function of several flow parameters such as the yield stress
value, can notably affect the flow features. In regime III, as
the flow geometry approaches a 3D one due to the small
aspect ratio (and the large gap thickness), the displacing finger
feels the presence of all four channel walls, implying that
the effect of the residual wall layers on the flow become
even more significant. There are numerous studies in the
viscoplastic displacement flow context [42–47], revealing that
by increasing the yield stress the wall residual layer thickness
decreases. In fact, increasing the yield stress affects the plug
ahead of the finger, which reduces the residual layer thickness
[48–50]. Regarding regime III, in which the aspect ratio is
small, it may be argued that the most notable decrease in
the residual layer thickness (as the yield stress increases)
can be in the lateral direction, resulting in increasing λ [see
Fig. 6(a)]. Loosely speaking, by increasing the yield stress,
the resistance ahead of the finger front increases, causing the
finger to expand most remarkable in the lateral direction and
become widened.

To analyze the effect of the channel width in regime III
compared with that in regimes I and II, Fig. 7 shows the
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Û (mm/s)

λ
(a)

b̂

0 90 180
0.2

0.6

1
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variation of λ versus Û , for given parameter sets. First of all,
λ decreases with Û in regimes III and II but is independent of
Û in regime I. However, increasing Ŵ increases λ in regime
III, decreases λ in regime II, and has no significant effect
on λ in regime I. It is interesting that Ŵ has an opposite
effect on λ in regimes III and II. It seems that, independent
of the finger velocity, the finger-width selection mechanism
in the aspect ratio-buoyancy-dominated regime is completely
different from that in the viscosity-dominated regime. In
fact, the presence of three-dimensional effects in regime III,
compared to primarily two-dimensional effects in regimes I
and II, makes the understanding of the underlying physics
behind the finger width variation more difficult. Examples of
these three-dimensional effects include a modified pressure
drop across the finger front, the presence and importance of
the residual layers of the Carbopol gel on the four walls, the
finger front three-dimensional dynamics, etc.

One critical question is whether regime III is governed by
the balance between buoyancy and surface tension, buoyancy
and yield stress, or the combination of these forces. To answer
to this question, let us first provide an estimation of the surface
tension effect compared to the yield stress effect, quantified
via the viscoplasto-capillary number varying in the range of
0.3 � Ca � 1.2 in regime III. This implies that, compared to
the yield stress, the effect of the surface tension in regime III

is less pronounced than that in regimes I and II, for which Ca
can be as small as 0.008. However, since Ca is still an order
1 parameter, the effect of the surface tension cannot be totally
ignored in regime III. On the other hand, for the yield number
[6,51,52], which can be written as

Y = τ̂y

ρ̂ĝb̂
≡ Ca

Bo
,

we find that 0.1 � Y � 0.4 in regime III, suggesting the
importance of buoyancy in this regime. Note that the yield
number value can be much larger in regimes I and II (e.g., up
to 13). Considering that the dimensionless parameters present
intermediate values in regime III, i.e., 0.3 � Ca � 1.2 and
0.1 � Y � 0.4, we can crudely say that the force balance is
among the yield stress, buoyancy, and surface tension forces
in this regime.

Regime III in our work has certain similarities with the
Newtonian viscous fingering flows at larger values of the
aspect ratio-dependent Bond numbers (Bo∗), where the tra-
ditional scaling law for λ breaks down and the collapse of
the λ data onto a single curve is not possible. Based on the
Newtonian literature, the Saffman-Taylor-like system breaks
down when Bo∗ � 0.16 (which is calculated based on the
results of Ref. [10]). This value is slightly smaller than that
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FIG. 6. Variation of λ vs Û in (a) regime III, (b) regime II, and (c) regime I, at fixed parameter sets. The yield stress increases in the solid
arrow direction. The data correspond to three different Carbopol concentrations: low ( ), medium ( ), and high ( ) Carbopol concentrations.
The other flow parameters are (a) b̂ = 3 mm and Ŵ = 6 mm; (b) b̂ = 1.5 mm and Ŵ = 60 mm; and (c) b̂ = 1.5 mm and Ŵ = 45 mm.
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FIG. 7. Variation of λ vs Û in (a) regime III, (b) regime II, and (c) regime I, at fixed parameter sets. The channel width increases in the
solid arrow direction. The flow parameters in each subfigure are as follows. (a) At fixed gap thickness (b̂ = 3 mm) and Carbopol concentration

(low) with Ŵ = 15 mm ( ); Ŵ = 12 mm ( ); Ŵ = 9 mm ( ); Ŵ = 6 mm ( ); Ŵ = 4.5 mm ( ); Ŵ = 3 mm ( ). (b) At fixed gap thickness
(b̂ = 3 mm) and Carbopol concentration (low) with Ŵ = 130 mm ( ); Ŵ = 80 mm ( ); Ŵ = 60 mm ( ); Ŵ = 45 mm ( ); Ŵ = 36 mm ( );

Ŵ = 30 mm ( ); Ŵ = 21 mm ( ). (c) At fixed gap thickness (b̂ = 1.5 mm) and Carbopol concentration (medium) with Ŵ = 100 mm ( );

Ŵ = 80 mm ( ); Ŵ = 60 mm ( ); Ŵ = 40 mm ( ).

found in our work, e.g., Bo∗ ≈ 0.2, suggesting a difference
between Newtonian and viscoplastic fingering flows when
buoyancy becomes significant.

In the context of regime III, there are other differences
between Newtonian and viscoplastic fingering flows. For ex-
ample, Fig. 8 compares the variation of λ versus Caδ1+n for
viscoplastic fluids (filled symbols) against their corresponding
Newtonian fluids (hollow symbols [10]) with comparable
parameters. As seen, λ decreases with increasing Caδ1+n and
increases with increasing δ, for both Newtonian and viscoplas-
tic cases. As also seen, the values of λ in the Newtonian
fluids are generally larger than those in the viscoplastic fluids.
In addition, while the aspect ratio seems to only slightly
affect the finger width in the Newtonian cases, its effects are
much more pronounced in the viscoplastic cases (e.g., see the
distance between the curves in the viscoplastic cases). Finally,
the finger-width data for Newtonian fluids remain close to one
other for different values of δ and they seem to progressively

10
0

10
1

10
2

0.2

0.6

1

Caδ1+n

λ

FIG. 8. Variation of λ vs Caδ1+n in viscoplastic fluids of the
current work (filled symbols) and Newtonian fluids from the liter-
ature (hollow symbols), for fixed values of b̂ and Ŵ . For Newtonian
fluids (n = 1), the control parameter, i.e., Caδ1+n, reverts back to
Caδ2. The data corresponding to four different aspect ratios are δ = 1
( , ) δ = 2 ( , ), δ = 4 ( , ), δ = 5 ( , ). All the data are for
Bo∗ > 0.2, i.e., regime III.

approach a master curve at large values of δ, which is not the
case for viscoplastic fluids.

Let us end this section by remembering that our description
of regime III in this section has been mainly qualitative; for
instance, we have not attempted to propose a scaling law to
superimpose the finger-width data on a single curve in this
regime (we do not even claim that such a simple scaling law
exists). In fact, as we have partly seen, the flow behaviors
in the aspect ratio-buoyancy-dominated regime is complex
due to the presence of a variety of flow parameters and
features. Considering this, a computational analysis of the
flow, providing an in-depth insight into the flow details within
the channel gap thickness, seems to be appropriate as a future
research direction, to bring to light the flow physics behind
regime III.

IV. CONCLUSION

In conclusion, we demonstrated that the viscous fingering
instability of viscoplastic fluids can be significantly affected
by the channel cross-section aspect ratio and buoyancy, in
combination with the surface tension, viscosity, and yield
stress. We found that the finger destabilization due to the
yield stress, resulting in the ramified fingering pattern, can be
damped at higher values of a yield stress-dependent capillary
number (Ca∗) and an aspect ratio-dependent Bond number
(Bo∗), leading to the unified fingering pattern. Based on the
finger-width variation, we classified the flow regimes into
yield stress (I), viscosity (II), and aspect ratio-buoyancy-
dominated (III) regimes, for which we proposed simple re-
lations to predict the finger width versus appropriate scaling
parameters that included the capillary number, the channel
aspect ratio, and the rheology of the viscoplastic fluid.
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