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Two-temperature Navier-Stokes equations for a polyatomic gas derived from kinetic theory
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A polyatomic gas with slow relaxation of the internal modes is considered, and the Navier-Stokes equations
with two temperatures, the translational and internal temperatures, are derived for such a gas on the basis of the
ellipsoidal-statistical (ES) model of the Boltzmann equation for a polyatomic gas, proposed by Andries et al.
[Eur. J. Mech. B, Fluids 19, 813 (2000)], by the Chapman-Enskog procedure. Then, the derived equations are
applied to numerically investigate the structure of a plane shock wave in CO2 gas, which is known to have slowly
relaxing internal modes. The results show good agreement with those obtained by the direct numerical analysis
of the ES model for moderately strong shock waves. In particular, the results perfectly reproduce the double-layer
structure of the shock profiles consisting of a thin front layer with rapid change and a thick rear layer with slow
relaxation of the internal modes.
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I. INTRODUCTION

Polyatomic gas flows play important roles in various appli-
cations in high-temperature gas dynamics, such as the entry of
space vehicles into earth or planet atmosphere. Since the gas
is in highly nonequilibrium in most of applications, the treat-
ment based on kinetic theory, i.e., the Boltzmann equation,
is required. However, for a polyatomic gas, the Boltzmann
equation, which takes the molecular structure into account,
becomes much more complex than that for a monatomic gas
[1–7]. Therefore, it is a formidable task to apply the Boltz-
mann equation itself to practical flow problems. To bypass
this difficulty, either simplified kinetic model equations of the
Boltzmann equation [8–19], such as those of the Bhatnagar-
Gross-Krook (BGK) type, or macroscopic equations of fluid
dynamics type [4,6,20–25] are often employed.

Many kinetic models for a polytomic gas have been pro-
posed since the 1960s [8–19], even in the presence of simple
chemical reactions [26,27]. Most of the kinetic models are
constructed in such a way that some fundamental and global
properties of the original Boltzmann equation are satisfied,
the details of collision mechanics not being considered. Since
they are much more tractable than the original Boltzmann
equation, they have been playing crucial roles in practical
applications.

Nevertheless, the kinetic models are more computationally
demanding than the fluid dynamic or macroscopic equations.
Therefore, there have been various attempts to construct
macroscopic equations on the basis of kinetic or purely macro-
scopic considerations [4,6,17,20–25]. One of the standard
approaches is to derive equations of Euler and Navier-Stokes
types using the Chapman-Enskog procedure [4,6,20,25] from
the Boltzmann equation. In the case of a polyatomic gas, the
standard Chapman-Enskog expansion [28] leads to the ordi-
nary Navier-Stokes equations with bulk viscosity. However,
depending on the structure of a polyatomic molecule, there are

significant differences in characteristic (or relaxation) times of
different internal modes. It is known that, in such a case, the
ordinary Navier-Stokes equations are not sufficient to describe
flow properties [20,23,25].

To overcome this difficulty, some authors have introduced
the Euler- or Navier-Stokes-type equations with multitemper-
atures associated with the translational motion and the internal
modes of a molecule [20,25], starting from the Boltzmann
equation. For this purpose, one has to use either (i) an assump-
tion on the magnitude of the relaxation times of the internal
modes [20] or (ii) the detailed properties of rotational and
individual vibrational modes of a molecule of a specific gas,
such as carbon dioxide (CO2) [25]. The approach (i) is gen-
eral. However, because of its formal and abstract setting, its
application to practical flow problems is not straightforward
and rather difficult. The approach (ii) is precise. However,
it requires a large amount of information on the molecular
structure, containing numerical and empirical formulas and
some assumptions, for individual gases.

In this study, we will propose a set of macroscopic equa-
tions of Navier-Stokes type with two temperatures, which
we will call the two-temperature Navier-Stokes equations (or
system). Unlike the previous studies [20,25], our starting point
is not the original Boltzmann equation but the polyatomic
version of the ellipsoidal-statistical (ES) model, which is
one of the widely used kinetic models proposed in [13] and
rederived in a systematic way in [29]. The model contains a
parameter that is related to the bulk viscosity in the ordinary
Navier-Stokes equations with one temperature, as well as
to the speed of relaxation of the internal modes. Under the
assumption that this parameter is as small as the Knudsen
number, we carry out the Chapman-Enskog expansion [28]
to derive the two-temperature Navier-Stokes equations. Since
the number of parameters contained in the ES model is much
less than the original Boltzmann equation, the transport prop-
erties of the resulting two-temperature Navier-Stokes system
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in terms of the parameters are much simpler and perfectly
explicit. Therefore, it has a wide applicability to practical flow
problems. In fact, we will apply the system to the problem
of the structure of a stationary shock wave in CO2 gas and
demonstrate that it gives good agreement with the numerical
solution based on the ES model [30,31].

It should be mentioned that some authors have developed
macroscopic equations with multitemperatures, other than the
Navier-Stokes type, for a polyatomic gas on the basis of the
rational extended thermodynamics [17,21–24]. The moment
equations of the Boltzmann equation or its model equations
are considered, and appropriate moment-closure assumptions
are introduced using the entropy principle. They have been
applied to the shock-structure problem successfully, and in-
teresting results have been reported for CO2 gas [32–35]. In
fact, these results motivated the study based on kinetic theory
in [18,30,31].

We should also give a brief remark on the direct simulation
Monte Carlo (DSMC) method [36], which is a powerful
numerical method for the Boltzmann equation. This method
has been widely used also for diatomic and polytomic gases.
In this case, however, because of the lack of information about
collision processes, we need phenomenological assumptions
on the transition probabilities [37] or database constructed by
detailed molecular dynamics simulations for a specific gas
[38]. The latter approach is accurate and interesting, but the
construction of the database is difficult for polyatomic gases.

This paper is organized as follows. After this introduction,
the ES model and its basic properties are summarized in
Sec. II. Then, with an appropriate setting of parameters,
the two-temperature Navier-Stokes system is derived by the
Chapman-Enskog method in Sec. III. In Sec. IV, the derived
system is applied to the problem of the structure of a stationary
plane shock wave in CO2 gas, and it is shown that its numeri-
cal solution gives good agreement with the numerical solution
based on the ES model. Section V is devoted to brief remarks.

II. ES MODEL AND ITS BASIC PROPERTIES

In this section, we summarize the ES model for a poly-
atomic gas that was proposed in [13] and rederived in a
systematic way in [29] and its basic and related properties.

A. ES model

Let us consider a polyatomic gas and denote by δ the
number of the internal degrees of freedom of the gas molecule,
where δ is a constant such that δ � 2. Then, the specific heat
at constant volume cv , that at constant pressure cp, and the
ratio of the specific heats γ = cp/cv are all constant and are
expressed as

cv = δ + 3

2
R, cp = δ + 5

2
R, γ = δ + 5

δ + 3
. (1)

Here, R is the gas constant per unit mass and is related to
the Boltzmann constant kB and the mass of a molecule m by
R = kB/m.

Let t be the time variable, X (or Xi) the position vector
in the physical space, and ξ (or ξi) the molecular velocity.
In addition, let E be the energy per unit mass associated

with the internal modes (i.e., the combined energy for the δ

modes), which is continuous ranging from 0 to ∞. We denote
the number of the gas molecules, at time t , contained in an
infinitesimal volume dX dξ dE around a point (X , ξ, E ) in
the seven-dimensional (extended) phase space consisting of
X , ξ, and E by

1

m
f (t, X , ξ, E )dX dξ dE . (2)

Therefore, f (t, X , ξ, E ) is the mass density in the seven-
dimensional phase space. We call f (t, X , ξ, E ) the velocity-
energy distribution function of the gas molecules. It is gov-
erned by the ES model of the Boltzmann equation for a
polyatomic gas [13,29], which can be written in the following
form:

∂ f

∂t
+ ξi

∂ f

∂Xi
= Q( f ), (3)

where

Q( f ) = Ac(T )ρ(G − f ), (4a)

G = ρEδ/2−1

(2π )3/2(detT)1/2(RTrel )δ/2�(δ/2)

× exp

(
−1

2
(T−1)i j (ξi − vi )(ξ j − v j ) − E

RTrel

)
,

(4b)

(T)i j = (1 − θ )[(1 − ν)RTtrδi j + νpi j/ρ] + θRT δi j,

(4c)

ρ =
∫∫ ∞

0
f dE dξ, (4d)

vi = 1

ρ

∫∫ ∞

0
ξi f dE dξ, (4e)

pi j =
∫∫ ∞

0
(ξi − vi )(ξ j − v j ) f dE dξ, (4f)

Ttr = 1

3Rρ

∫∫ ∞

0
|ξ − v|2 f dE dξ, (4g)

Tint = 2

δRρ

∫∫ ∞

0
E f dE dξ, (4h)

T = 3Ttr + δTint

3 + δ
, (4i)

Trel = θT + (1 − θ )Tint. (4j)

Here, ρ is the density, v (or vi) the flow velocity, pi j the stress
tensor, Ttr the temperature associated with the translational
energy, Tint the temperature associated with the energy of
the internal modes, T the temperature, dξ = dξ1dξ2dξ3, and
the domain of integration with respect to ξ is its whole
space R3. The symbol δi j indicates the Kronecker delta, and
ν ∈ [− 1

2 , 1) and θ ∈ (0, 1] are the constants that adjust the
Prandtl number and the bulk viscosity. In addition, Ac(T ) is a
function of T such that Ac(T )ρ is the collision frequency of
the gas molecules, �(z) is the gamma function defined by

�(z) =
∫ ∞

0
sz−1e−sds, (5)
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T is the 3 × 3 matrix with its (i, j) component defined by
Eq. (4c), and detT and T−1 are, respectively, its determinant
and inverse. Here and in what follows, we basically use the
summation convention, i.e., aibi = ∑3

i=1 aibi, a2
i = ∑3

i=1 a2
i ,

aib jci j = ∑3
i, j=1 aib jci j , etc.

The other important macroscopic quantities, the pressure p
and the heat-flow vector qi, are defined by

p = RρT, (6)

qi =
∫∫ ∞

0
(ξi − vi )

(
1

2
|ξ − v|2 + E

)
f dE dξ, (7)

where Eq. (6) is the equation of state.
It should be noted that in Ref. [13], the variable I , which

is related to our E as E = I2/δ , is used as an independent
variable instead of E . See Ref. [39] or Appendix A in
Ref. [40] for the relation between the notation in Ref. [13]
and that of this paper (see also [19]). In the ES model (3),
the energy associated with the internal modes is expressed
by a single continuous variable E . Some models also use a
continuous energy variable (e.g., [10,14,19]), whereas others
use a discrete energy variable (e.g., [8,9,11,12]). However, the
corresponding macroscopic equations are analogous in both
cases (see, e.g., [16]). Concerning the structure of Eq. (3), one
might, for instance, think that it is more natural to use Ttr,
instead of T , in Eqs. (4c) and (4j). If Ttr is used, however, the
conservation of energy and the entropy inequality in Sec. II B
are not satisfied.

B. Basic properties

The ES model (3) has the basic properties listed in the
following.

Equilibrium. The vanishing of the collision term Q( f ) = 0
is equivalent to the fact that f is the following local equilib-
rium distribution [13] (see also Appendix A in [31]):

feq = ρEδ/2−1

(2πRT )3/2(RT )δ/2�(δ/2)
exp

(
−|ξ − v|2

2RT
− E

RT

)
,

(8)

where ρ, v, and T are arbitrary functions of t and X .
Conservations. For an arbitrary function g(t, X , ξ, E ), the

following relation holds [13] (see also Appendix A in [31]):∫∫ ∞

0
ϕrQ(g)dE dξ = 0, (9)

where ϕr (r = 0, . . . , 4) are the so-called collision invariants,
i.e.,

ϕ0 = 1, ϕi = ξi (i = 1, 2, 3), ϕ4 = 1
2 |ξ|2 + E . (10)

Entropy inequality. For an arbitrary function g(t, X , ξ, E ),
the following inequality holds [13]:∫∫ ∞

0

(
ln

g

Eδ/2−1

)
Q(g)dE dξ � 0, (11)

and the equality sign holds if and only if g = feq in Eq. (8).
Mean free path. The mean free path l0 of the gas molecules

in the equilibrium state at rest at density ρ0 and temperature

T0 is given by

l0 = 2√
π

(2RT0)1/2

Ac(T0)ρ0
, (12)

for Eq. (3), since Ac(T0)ρ0 is the collision frequency at this
equilibrium state.

C. Bulk viscosity and parameter θ

When the mean free path of the gas molecules l0 is small
compared with the characteristic length of the system, we can
formally derive the ordinary (compressible) Navier-Stokes
equations for a polyatomic gas from the ES model (3) by the
Chapman-Enskog method [13]. The Navier-Stokes constitu-
tive laws thus obtained are as follows (see Sec. VI of [41] for
these forms and for the entire Navier-Stokes equations):

pi j = pδi j − μ(T )

(
∂vi

∂Xj
+∂v j

∂Xi
−2

3

∂vk

∂Xk
δi j

)
−μb(T )

∂vk

∂Xk
δi j,

(13a)

qi = −λ(T )
∂T

∂Xi
, (13b)

where μ(T ), μb(T ), and λ(T ) are, respectively, the viscosity,
the bulk viscosity, and the thermal conductivity and are ex-
pressed as follows:

μ(T ) = 1

1 − ν + θν

RT

Ac(T )
, (14a)

μb(T ) = 2

3

δ

θ (δ + 3)

RT

Ac(T )
, (14b)

λ(T ) = δ + 5

2

R2T

Ac(T )
. (14c)

From Eqs. (14a), (14c), and (1), the Prandtl number Pr =
cpμ/λ is obtained as

Pr = 1/(1 − ν + θν), (15)

and from Eqs. (14a), (14b), (15), and (1), the ratio μb/μ is
expressed as

μb

μ
= 2

3

δ

θ (δ + 3)

1

Pr
= 1

θ

(
5

3
− γ

)
1

Pr
. (16)

Here, it should be noted that the ratio μb/μ does not depend
on T and is inversely proportional to the parameter θ con-
tained in the ES model.

D. Relaxation of internal modes and parameter θ

In this section, we examine the speed of relaxation of
the internal modes. For this purpose, we consider the space
homogeneous case, where f does not depend on X , i.e.,
f = f (t, ξ, E ). Then, the ES model (3) reduces to

∂ f

∂t
= Ac(T )ρ(G − f ). (17)

If we integrate Eq. (17) and that multiplied by ξ, respec-
tively, over the whole space of ξ and whole range of E and
take into account Eqs. (4d), (4e), and (9), we have

dρ

dt
= 0,

d (ρv)

dt
= 0, (18)
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that is, ρ and v are constants. Next, we multiply Eq. (17)
by |ξ − v|2 and E , respectively, and integrate over the whole
ranges of ξ and E . Considering the fact that ρ and v are
constants and making use of Eqs. (4g) and (4h) and the
moments of G calculated in Appendix A in [31], we obtain

dTtr

dt
= θAc(T )ρ(T − Ttr ), (19a)

dTint

dt
= θAc(T )ρ(T − Tint ). (19b)

It is readily seen from Eqs. (4i) and (19) that

dT

dt
= 0, (20)

i.e., T is a constant.
Let Ttr and Tint at the initial time t = 0 be Ttr∗ and Tint∗,

respectively, where Ttr∗ and Tint∗ need to satisfy (3Ttr∗ +
δTint∗)/(3 + δ) = T . Then, Eq. (19) gives the following so-
lutions:

Ttr = T + (Ttr∗ − T ) e−θAc (T )ρt , (21a)

Tint = T + (Tint∗ − T ) e−θAc (T )ρt . (21b)

These solutions indicate that the temperature Tint associated
with the energy of the internal modes, as well as the tempera-
ture Ttr associated with the translational energy, approaches
the total temperature T with the timescale 1/[θAc(T )ρ].
Since Ac(T )ρ is the collision frequency of the gas molecules,
1/[Ac(T )ρ] is the mean free time. Therefore, we can say
that the timescale of relaxation of the internal modes is
(mean free time)/θ . This means that small values of θ cor-
respond to slow relaxation of the internal modes.

In the case of the original Boltzmann equation, when
the phenomenon under consideration contains two different
timescales, the collision term is naturally split into two colli-
sion terms with different collision frequencies [20]. On the
other hand, the ES model (3) seemingly contains only one
timescale, i.e., the mean free time 1/[Ac(T )ρ]. However,
as can be seen from Eq. (21), it has an additional hidden
timescale 1/θ that controls the speed of relaxation of the
internal modes.

E. Remarks and strategy

Some gases are known to have large bulk viscosity. For
instance, according to p. 30 in [42], the ratio μb/μ of the
bulk viscosity to the viscosity and the Prandtl number Pr are
(μb/μ, Pr) = (32, 0.71) for H2 gas and (1000, 0.75) for CO2

gas at 300 K and 1 atm. Therefore, if we set δ = 2 for H2 gas
(thus γ = 7

5 ) and δ = 4 for CO2 gas (thus γ = 9
7 ), then from

Eq. (16) we obtain θ = 0.0117 for H2 gas and 5.08 × 10−4

for CO2 gas. In this way, large values of μb/μ lead to small
values of θ .

It is a common understanding that the large bulk viscosity
is related to the slow relaxation of the internal modes [43,44].
As we have seen in Secs. II C and II D, the ES model gives
a consistent result, that is, both the large bulk viscosity and
the large relaxation time lead to small values of θ . The reader
is referred to [44] concerning gases with large bulk viscosity
other than H2 and CO2. The impact of large bulk viscosity

for H2 gas flows is investigated in [45]. Here, it should be
mentioned that some authors are doubtful about the large
values of μb/μ for CO2 gas [25,46]. However, in this study,
we follow the view that μb/μ is large for CO2 gas.

If the values of μb/μ, Pr, and δ (or γ ) are known for
a gas, the parameters ν and θ contained in the ES model
are determined from Eqs. (15) and (16). Here, it should be
noted that the viscosity μ and the bulk viscosity μb make
sense under the assumption of the Navier-Stokes stress tensor,
Eq. (13a). More specifically, if the shear and normal stresses
are measured for known velocity, pressure, and temperature
fields, μ and μb are determined on the basis of Eq. (13a).
As long as Eq. (13a) is assumed, large μb/μ gives small
θ . However, for the ES model (3), Eq. (13a) is derived by
the Chapman-Enskog expansion for small Knudsen numbers
under the implicit assumption that the parameter θ is of the
order of unity. If θ is small (θ � 1), therefore, the validity of
the Navier-Stokes equations based on Eq. (13) is questionable.
In other words, we should take into account the smallness of
θ explicitly in order to derive the appropriate fluid-dynamic
equations. Therefore, in this study, we assume that θ is small
and of the same order of magnitude as the Knudsen number
and try to derive the correct fluid-dynamic equations for small
θ , i.e., for a gas with large μb/μ or slow relaxation of the
internal modes, from the ES model (3) by the Chapman-
Enskog procedure.

III. TWO-TEMPERATURE NAVIER-STOKES EQUATIONS

In this section, we will derive the two-temperature Navier-
Stokes system, under the assumption that the parameter θ

contained in the ES model (3) is as small as the Knudsen
number.

A. Nondimensionalization

In this section, we nondimensionalize the ES model in-
troducing appropriate dimensionless variables. Let L be the
reference length, t0 the reference time, and p0 = Rρ0T0 the
reference pressure, where ρ0 and T0 are the reference density
and temperature. We further choose t0 as

t0 = L/(2RT0)1/2. (22)

This corresponds to the so-called fluid-dynamic scaling in
time. Let us introduce the dimensionless quantities [t̂ , xi, ζi, Ê ,
f̂ , Ĝ, ρ̂, v̂i, T̂tr , T̂int, T̂ , T̂rel, p̂i j , p̂, q̂i, Âc(T̂ )], which correspond
to the original dimensional quantities [t , Xi, ξi, E , f , G, ρ, vi,
Ttr , Tint , T , Trel, pi j , p, qi, Ac(T )], by the following relations:

t̂ = t/t0, xi = Xi/L, ζi = ξi/(2RT0)1/2,

Ê = E/RT0,

( f̂ , Ĝ) = ( f , G)/2ρ0(2RT0)−5/2, ρ̂ = ρ/ρ0,

v̂i = vi/(2RT0)1/2,

(T̂tr, T̂int, T̂ , T̂rel ) = (Ttr, Tint, T, Trel )/T0, p̂i j = pi j/p0,

p̂ = p/p0, q̂i = qi/p0(2RT0)1/2,

Âc(T̂ ) = Ac(T )/Ac(T0). (23)
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We occasionally use the boldfaced letters x, ζ, v̂, and q̂ in
place of xi, ζi, v̂i, and q̂i, respectively.

Then, the dimensionless version of the ES model (3) is
obtained in the following form:

∂ f̂

∂ t̂
+ ζi

∂ f̂

∂xi
= 1

ε
Q̂( f̂ ), (24)

where

Q̂( f̂ ) = Âc(T̂ )ρ̂(Ĝ − f̂ ), (25a)

Ĝ = ρ̂Êδ/2−1

π3/2(detT̂)1/2 T̂ δ/2
rel �(δ/2)

× exp

(
−(T̂−1)i j (ζi − v̂i )(ζ j − v̂ j ) − Ê

T̂rel

)
, (25b)

(T̂)i j = (1 − θ )[(1 − ν)T̂trδi j + ν p̂i j/ρ̂] + θ T̂ δi j, (25c)

ρ̂ =
∫∫ ∞

0
f̂ d Ê dζ, (25d)

v̂i = 1

ρ̂

∫∫ ∞

0
ζi f̂ d Ê dζ, (25e)

p̂i j = 2
∫∫ ∞

0
(ζi − v̂i )(ζ j − v̂ j ) f̂ d Ê dζ, (25f)

T̂tr = 2

3ρ̂

∫∫ ∞

0
(ζk − v̂k )2 f̂ d Ê dζ, (25g)

T̂int = 2

δρ̂

∫∫ ∞

0
Ê f̂ d Ê dζ, (25h)

T̂ = 3T̂tr + δT̂int

3 + δ
, (25i)

T̂rel = θ T̂ + (1 − θ )T̂int. (25j)

Here, ε is a quantity of the order of the Knudsen number Kn
defined by

ε =
√

π

2
Kn =

√
π

2

l0
L

, (26)

dζ = dζ1dζ2dζ3, and the domain of integration with respect
to ζ is its whole space R3. The (dimensionless) pressure p̂ and
heat-flow vector q̂i are given by

p̂ = ρ̂T̂ , (27)

and

q̂i = q̂(tr)i + q̂(int)i, (28a)

q̂(tr)i =
∫∫ ∞

0
(ζi − v̂i )|ζ − v̂|2 f̂ d Ê dζ, (28b)

q̂(int)i =
∫∫ ∞

0
(ζi − v̂i )Ê f̂ d Ê dζ. (28c)

The dimensionless form of the basic properties of the ES
model given in Sec. II B is summarized in the following.

Equilibrium. Q̂( f̂ ) = 0 is equivalent to the fact that f̂ is the
dimensionless local equilibrium given by

f̂eq = ρ̂Êδ/2−1

(π T̂ )3/2T̂ δ/2�(δ/2)
exp

(
−|ζ − v̂|2

T̂
− Ê

T̂

)
, (29)

where ρ̂, v̂, and T̂ are arbitrary functions of t̂ and x.

Conservations. For an arbitrary function ĝ(t̂, x, ζ, Ê ), the
relation ∫∫ ∞

0
ϕ̂rQ̂(ĝ)d Ê dζ = 0 (30)

holds, where ϕ̂r (r = 0, . . . , 4) are the dimensionless collision
invariants, i.e.,

ϕ̂0 = 1, ϕ̂i = ζi (i = 1, 2, 3), ϕ̂4 = |ζ|2 + Ê . (31)

Entropy inequality. For an arbitrary function ĝ(t̂, x, ζ, Ê ),
the following inequality holds:∫∫ ∞

0

(
ln

ĝ

Êδ/2−1

)
Q̂(ĝ)d Ê dζ � 0, (32)

and the equality sign holds if and only if ĝ = f̂eq in Eq. (29).

B. Chapman-Enskog expansion and two-temperature
Navier-Stokes equations

As mentioned in Sec. II E, we try to derive fluid-dynamic
equations when not only the Knudsen number but also the
parameter θ contained in the ES model is small. Therefore,
we assume that θ is of the same order of magnitude as ε and
let

θ = αε � 1, (33)

where α is a positive constant (parameter) of the order of
unity.

1. Preliminaries

If we formally let ε → 0, we have, from Eq. (24),

Q̂( f̂ )|θ=0 = Âc(T̂ )ρ̂ (Ĝ|θ=0 − f̂ ) = 0 (34)

because of Eq. (33). This equation essentially determines
the form of the leading-order term of the Chapman-Enskog
expansion [28] and the strategy of the expansion. Here, it is
noted that the properties of the collision operator Q̂( f̂ )|θ=0

have been studied in Appendix A3 in [31]. The dimensionless
versions of the equilibrium and the conservation laws are as
follows.

Equilibrium. Q̂( f̂ )|θ=0 = 0 is equivalent to the fact that f̂
is the (dimensionless) local equilibrium of the form

f̂eq = ρ̄ Êδ/2−1

(π T̄tr )3/2T̄ δ/2
int �(δ/2)

exp

(
−|ζ − v̄|2

T̄tr
− Ê

T̄int

)
, (35)

where ρ̄, v̄, T̄tr, and T̄int are arbitrary dimensionless functions
of t̂ and x.

Conservations. For an arbitrary function ĝ(t̂, x, ζ, Ê ), the
relation ∫∫ ∞

0
φ̂rQ̂(ĝ)|θ=0d Ê dζ = 0 (36)

holds, where φ̂r (r = 0, . . . , 5) are the (dimensionless) colli-
sion invariants, i.e.,

φ̂0 = 1, φ̂i = ζi (i = 1, 2, 3), φ̂4 = |ζ|2, φ̂5 = Ê .

(37)

Equation (35) shows that the local equilibrium f̂eq con-
tains the six macroscopic quantities corresponding to collision
invariants (37), i.e., the density ρ̂, the flow velocity v̂, the
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temperature associated with the translational motion T̂tr, and
that associated with the internal modes T̂int. This suggests
that these are the basic quantities not to be expanded in
ε in the Chapman-Enskog expansion and that the resulting
fluid-dynamic equations corresponding to the Navier-Stokes
equations are for these quantities.

Since ρ̂, v̂, T̂tr, and T̂int are directly related to the moments
of f̂ with φ̂r of Eq. (37), the fluid-dynamic equations should
be obtained on the basis of the moment equations (or the weak
form) of the ES model, Eq. (24) with Eq. (33), generated with
these φ̂r . To be more specific, multiplying Eq. (24) by φ̂r and
integrating over the whole ranges of ζ and Ê , we obtain the
following moment equations:

∂ρ̂

∂ t̂
+ ∂ (ρ̂v̂ j )

∂x j
= 0, (38a)

∂ (ρ̂v̂i )

∂ t̂
+ ∂

∂x j

(
ρ̂v̂iv̂ j + 1

2
p̂i j

)
= 0, (38b)

∂

∂ t̂

[
ρ̂

(
3

2
T̂tr + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
3

2
T̂tr + v̂2

i

)
+ v̂i p̂i j + q̂(tr) j

]
= 3

2
αÂc(T̂ )ρ̂2(T̂ − T̂tr ), (38c)

∂

∂ t̂

(
δ

2
ρ̂T̂int

)
+ ∂

∂x j

(
δ

2
ρ̂v̂ j T̂int + q̂(int) j

)
= αδ

2
Âc(T̂ )ρ̂2(T̂ − T̂int ). (38d)

The right-hand sides of Eqs. (38c) and (38d) can be obtained readily from the moments of f̂ and Ĝ summarized in Appendix A
in [31]. Equations (38a) and (38b) express the conservation of mass and momentum. If we add Eqs. (38c) and (38d) and take
account of Eq. (25i), we recover the conservation of total energy, i.e.,

∂

∂ t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
3 + δ

2
T̂ + v̂2

i

)
+ v̂i p̂i j + q̂ j

]
= 0. (39)

Therefore, only two equations are independent among
Eqs. (38c), (38d), and (39).

The Chapman-Enskog expansion is a formal expansion of
f̂ in ε, i.e.,

f̂ = f̂ (0) + f̂ (1)ε + f̂ (2)ε2 + · · · . (40)

In the present problem, we impose the condition∫∫ ∞

0
φ̂r f̂ (m)d Ê dζ = 0 (r = 0, . . . , 5; m = 1, 2, . . . ),

(41)

so that it follows from Eqs. (25d), (25e), (25g), and (25h) that

ρ̂ =
∫∫ ∞

0
f̂ (0) d Êdζ, (42a)

v̂i = 1

ρ̂

∫∫ ∞

0
ζi f̂ (0)d Ê dζ, (42b)

T̂tr = 2

3ρ̂

∫∫ ∞

0
(ζk − v̂k )2 f̂ (0)d Ê dζ, (42c)

T̂int = 2

δρ̂

∫∫ ∞

0
Ê f̂ (0)d Ê dζ. (42d)

That is, ρ̂, v̂i, T̂tr, and T̂int are not expanded and are determined
only by f̂ (0).

In accordance with Eq. (40), other macroscopic quantities
p̂i j , q̂i, q̂(tr)i, q̂(int)i, and T̂rel are expanded as

h = h(0) + h(1)ε + · · ·
(h = p̂i j, q̂i, q̂(tr)i, q̂(int)i, and T̂rel ). (43)

Here, the coefficients for p̂i j , q̂i, q̂(tr)i, and q̂(int)i are obtained
by substituting Eqs. (40) and (43) into Eqs. (25f) and (28), i.e.,

p̂(m)
i j = 2

∫∫ ∞

0
(ζi − v̂i )(ζ j − v̂ j ) f̂ (m)d Ê dζ

(m = 0, 1, . . . ), (44)

and

q̂(m)
i = q̂(m)

(tr)i + q̂(m)
(int)i (m = 0, 1, . . . ), (45a)

q̂(m)
(tr)i =

∫∫ ∞

0
(ζi − v̂i )|ζ − v̂|2 f̂ (m)d Ê dζ, (45b)

q̂(m)
(int)i =

∫∫ ∞

0
(ζi − v̂i )Ê f̂ (m)d Ê dζ, (45c)

and those for T̂rel are obtained from Eqs. (25j) and (33), i.e.,

T̂ (0)
rel = T̂int, T̂ (1)

rel = α(T̂ − T̂int ),
(46)

T̂ (m+2)
rel = 0 (m = 0, 1, . . . ),

where T̂ is determined by Eq. (25i) and thus is not expanded
in ε.

If we substitute the expansion (40) into Eq. (24) with the
setting Eq. (33), we obtain

[Q̂( f̂ )](0) = 0, (47a)

[Q̂( f̂ )](1) = ∂ f̂ (0)

∂ t̂
+ ζ j

∂ f̂ (0)

∂x j
+ O(ε), (47b)

where [Q̂( f̂ )](0) and [Q̂( f̂ )](1) are the coefficients of the
expansion of the collision term Q̂( f̂ ) in ε:

Q̂( f̂ ) = [Q̂( f̂ )](0) + [Q̂( f̂ )](1)ε + · · · , (48)
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and are specified below. Since we consider only up to the
first-order solution f̂ = f̂ (0) + f̂ (1)ε in the following, the

irrelevant higher-order terms are all put in the O(ε) term
in Eq. (47b).

2. Zeroth-order solution

Because [Q̂( f̂ )](0) = Q̂( f̂ )|ε=0 = Q̂( f̂ )|θ=0, the solution of the leading-order equation (47a) is given by Eq. (35), that is,

f̂ (0) = ρ̂ Êδ/2−1

(π T̂tr )3/2T̂ δ/2
int �(δ/2)

exp

(
−|ζ − v̂|2

T̂tr
− Ê

T̂int

)
, (49)

where the arbitrary functions in Eq. (35) are determined in such a way that Eq. (42) holds. Using Eq. (49) in Eqs. (44) and (45),
we have

p̂(0)
i j = ρ̂T̂trδi j, q̂(0)

(tr)i = q̂(0)
(int)i = q̂(0)

i = 0. (50)

Therefore, we can write

p̂i j = ρ̂T̂trδi j + O(ε), q̂(tr)i = q̂(int)i = q̂i = 0 + O(ε). (51)

The substitution of Eq. (51) into Eq. (38) leads to the following equations:

∂ρ̂

∂ t̂
+ ∂ (ρ̂v̂ j )

∂x j
= 0, (52a)

∂ (ρ̂v̂i )

∂ t̂
+ ∂ (ρ̂v̂iv̂ j )

∂x j
+ 1

2

∂ (ρ̂T̂tr )

∂xi
= O(ε), (52b)

∂

∂ t̂

[
ρ̂

(
3

2
T̂tr + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
5

2
T̂tr + v̂2

i

)]
− 3

2
αÂc(T̂ )ρ̂2(T̂ − T̂tr ) = O(ε), (52c)

∂

∂ t̂

(
ρ̂T̂int

) + ∂

∂x j

(
ρ̂v̂ j T̂int

) − αÂc(T̂ )ρ̂2(T̂ − T̂int ) = O(ε), (52d)

and the same substitution transforms Eq. (39) into

∂

∂ t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
3 + δ

2
T̂ + T̂tr + v̂2

i

)]
= O(ε). (53)

Neglecting the terms of O(ε) in Eq. (52) and noting
Eq. (25i), one obtains the system of partial differential equa-
tions for ρ̂, v̂i, T̂tr, and T̂int at the zeroth order in ε. One of
Eqs. (52c) and (52d) [without the O(ε) terms] can be replaced
with Eq. (53) [without the O(ε) term]. These equations, whose
steady version was derived in [31], correspond to the Euler
system in the form of conservation laws with relaxation and
are essentially the same as the macroscopic system for six
macroscopic variables based on the extended thermodynamics
derived in [21,24] (ET6 system in the terminology in [21,24]).

3. First-order solution

Next, we consider Eq. (47b) and calculate the terms on the
right-hand side following the standard Chapman-Enskog pro-

cedure. The terms ∂ f̂ (0)/∂ t̂ and ∂ f̂ (0)/∂x j can be calculated
explicitly by the use of Eq. (49), and the former is expressed
in terms of the time derivatives ∂ρ̂/∂ t̂ , ∂ v̂i/∂ t̂ , ∂T̂tr/∂ t̂ , and
∂T̂int/∂ t̂ , whereas the latter in terms of the space derivatives
∂ρ̂/∂x j , ∂ v̂i/∂x j , ∂T̂tr/∂x j , and ∂T̂int/∂x j . It is reasonable to
assume that Eq. (52) is still valid even if we proceed to
the first order because we just make the O(ε) terms explicit
with the first-order solution. From Eq. (52), we obtain the
expression of the time derivative terms ∂ρ̂/∂ t̂ , ∂ v̂i/∂ t̂ , ∂T̂tr/∂ t̂ ,
and ∂T̂int/∂ t̂ in terms of the space-derivative terms with the
error of O(ε). Using these expressions, we can eliminate the
time-derivative terms arising from ∂ f̂ (0)/∂ t̂ on the right-hand
side of Eq. (47b). As the result, we have

1

f̂ (0)

(
∂ f̂ (0)

∂ t̂
+ ζ j

∂ f̂ (0)

∂x j

)
=

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− 1

3

(ζk − v̂k )2

T̂tr
δi j

](
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi

)
+ (ζ j − v̂ j )

T̂tr

[
(ζk − v̂k )2

T̂tr
− 5

2

]
∂T̂tr

∂x j

+ (ζ j − v̂ j )

T̂int

(
Ê

T̂int
− δ

2

)
∂T̂int

∂x j
+ αÂc(T̂ )ρ̂

{[
(ζk − v̂k )2

T̂tr
− 3

2

](
T̂

T̂tr
− 1

)
+

(
Ê

T̂int
− δ

2

)(
T̂

T̂int
− 1

)}
+ O(ε). (54)
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The left-hand side of Eq. (47b) is

[Q̂( f̂ )](1) = Âc(T̂ )ρ̂(Ĝ (1) − f̂ (1) ), (55)

where Ĝ (1) is the first-order term of the expansion of Ĝ in ε, i.e.,

Ĝ = Ĝ (0) + Ĝ (1)ε + · · · . (56)

Here, Ĝ (0) and Ĝ (1) are, respectively, expressed as

Ĝ (0) = Ĝ|ε=0, Ĝ (1) = (dĜ/dε)|ε=0, (57)

and are calculated in Appendix A, according to which Ĝ (1) is obtained in the following form:

1

f̂ (0)
Ĝ (1) =ν

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− δi j

2

]
p̂(1)

i j

ρ̂T̂tr
+ α

[
(ζk − v̂k )2

T̂tr
− 3

2

](
T̂

T̂tr
− 1

)
+ α

(
Ê

T̂int
− δ

2

)(
T̂

T̂int
− 1

)
. (58)

Using Eqs. (54), (55), and (58) in Eq. (47b) and neglecting the O(ε) terms, we obtain f̂ (1) in the following form:

f̂ (1) = ν f̂ (0)

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− δi j

2

]
p̂(1)

i j

ρ̂T̂tr
− f̂ (0)

Âc(T̂ )ρ̂

{[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− 1

3

(ζk − v̂k )2

T̂tr
δi j

](
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi

)

+ (ζ j − v̂ j )

T̂tr

[
(ζk − v̂k )2

T̂tr
− 5

2

]
∂T̂tr

∂x j
+ (ζ j − v̂ j )

T̂int

(
Ê

T̂int
− δ

2

)
∂T̂int

∂x j

}
. (59)

Precisely speaking, this is the linear integral equation for f̂ (1) because p̂(1)
i j is given by Eq. (44) with m = 1. However, it should

be noted that in Eq. (59), the functional form of f̂ (1) in terms of ζi and Ê has already been determined. If we substitute Eq. (59)
into Eq. (44) with m = 1, we obtain the algebraic equation for p̂(1)

i j , which gives the following p̂(1)
i j :

p̂(1)
i j = − T̂tr

(1 − ν)Âc(T̂ )

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)
. (60)

By the substitution of this p̂(1)
i j , Eq. (59) is transformed to

f̂ (1) = − 1

Âc(T̂ )ρ̂
f̂ (0)

{
1

1 − ν

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− 1

3

(ζk − v̂k )2

T̂tr
δi j

](
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi

)

+ (ζ j − v̂ j )

T̂tr

[
(ζk − v̂k )2

T̂tr
− 5

2

]
∂T̂tr

∂x j
+ (ζ j − v̂ j )

T̂int

(
Ê

T̂int
− δ

2

)
∂T̂int

∂x j

}
. (61)

It can be confirmed by the direct calculation that this f̂ (1) satisfies the constraint (41) with m = 1. Therefore, Eq. (61) is the final
form of f̂ (1).

Making use of Eq. (61), we can obtain q̂(1)
(tr)i and q̂(1)

(int)i from Eqs. (45b) and (45c), respectively. The result is as follows:

q̂(1)
(tr)i = −5

4

T̂tr

Âc(T̂ )

∂T̂tr

∂xi
, q̂(1)

(int)i = − δ

4

T̂tr

Âc(T̂ )

∂T̂int

∂xi
. (62)

Summarizing Eqs. (50), (60), and (62), we can write

p̂i j = ρ̂T̂trδi j − �μ(T̂ , T̂tr )

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)
ε + O(ε2), (63a)

q̂(tr)i = −5

4
�λ(T̂ , T̂tr )

∂T̂tr

∂xi
ε + O(ε2), (63b)

q̂(int)i = − δ

4
�λ(T̂ , T̂tr )

∂T̂int

∂xi
ε + O(ε2), (63c)

q̂i = q̂(tr)i + q̂(int)i, (63d)

where

�μ(T̂ , T̂tr ) = T̂tr

(1 − ν)Âc(T̂ )
, �λ(T̂ , T̂tr ) = T̂tr

Âc(T̂ )
. (64)
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If we use Eq. (63) in Eq. (38), we obtain Eq. (52) with the explicit expressions of O(ε) terms and with the error of O(ε2). By
neglecting the error terms of O(ε2), the higher-order equations for ρ̂, v̂i, T̂tr, and T̂int are obtained, i.e.,

∂ρ̂

∂ t̂
+ ∂ (ρ̂v̂ j )

∂x j
= 0, (65a)

∂ (ρ̂v̂i )

∂ t̂
+ ∂ (ρ̂v̂iv̂ j )

∂x j
+ 1

2

∂ (ρ̂T̂tr )

∂xi
= 1

2
ε

∂

∂x j

[
�μ(T̂ , T̂tr )

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
, (65b)

∂

∂ t̂

[
ρ̂

(
3

2
T̂tr + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
5

2
T̂tr + v̂2

i

)]
− 3

2
αÂc(T̂ )ρ̂2(T̂ − T̂tr )

= 5

4
ε

∂

∂x j

[
�λ(T̂ , T̂tr )

∂T̂tr

∂x j

]
+ ε

∂

∂x j

[
�μ(T̂ , T̂tr )v̂i

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
, (65c)

∂ (ρ̂T̂int )

∂ t̂
+ ∂ (ρ̂v̂ j T̂int )

∂x j
− αÂc(T̂ )ρ̂2(T̂ − T̂int ) = 1

2
ε

∂

∂x j

[
�λ(T̂ , T̂tr )

∂T̂int

∂x j

]
, (65d)

where T̂ = (3T̂tr + δT̂int )/(3 + δ) [Eq. (25i)]. Equations (65a)–(65d) correspond to the (compressible) Navier-Stokes equations
in the case of the standard Chapman-Enskog expansion. Equation (39) (the total energy conservation), with Eq. (63) and with
O(ε2) terms being neglected, becomes

∂

∂ t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
3 + δ

2
T̂ + T̂tr + v̂2

i

)]
= 1

2
ε

∂

∂x j

[
�λ(T̂ , T̂tr )

(
3 + δ

2

∂T̂

∂x j
+ ∂T̂tr

∂x j

)]
+ ε

∂

∂x j

[
�μ(T̂ , T̂tr )v̂i

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
. (66)

Equation (66) may be used in place of Eq. (65c) or (65d).
Equation (65), together with Eq. (66), is what we have called
the two-temperature Navier-Stokes equations.

It should be mentioned that equations similar to Eq. (65)
have been derived in [20,25] from the Boltzmann equation. In
[20], under the assumption that the collision integral is split
into the rapid collision term and slow collision term, a system
of Navier-Stokes equations with two temperatures is derived
by the Chapman-Enskog method. The aim of the study is to
clarify the effect of bulk viscosity, so that the collision term is
written in a rather abstract form in terms of the collision cross
sections (or the transition probabilities), whose explicit forms
are not given. Therefore, it is not straightforward to apply
the system to practical problems. On the other hand, [25] is
specialized for CO2 gas, and the detailed structure of a CO2

molecule is taken into account in the collision terms. A system
of Navier-Stokes equations with two temperatures is then de-
rived by the Chapman-Enskog expansion. The system, whose
transport properties are related to various collision cross sec-
tions, does not contain any adjustable parameters. However, it

requires some calculated, empirical, or approximate formulas
for application to CO2 gas flows. It should be mentioned that
the references [20,25] provide important contributions in the
field. However, our system (65), which takes the advantage of
the simplicity of the ES model compared with the Boltzmann
equation, has a simpler and explicit structure, so that its
applicability to practical flow problems is much wider. An
example of its application will be given in Sec. IV.

C. Summary

In Sec. III B, we derived the two-temperature Navier-
Stokes equations by the Chapman-Enskog expansion for the
ES model under the parameter setting (33). In the following,
we summarize the dimensional form of the derived equations.

We start with the stress tensor pi j and heat-flow vector qi.
With the help of Eq. (23), we can transform Eq. (63), with
O(ε2) terms being neglected, to the following dimensional
form:

pi j = ρRTtrδi j − μtr(T, Ttr )

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)
, (67a)

q(tr)i = −λtr(T, Ttr )
∂Ttr

∂Xi
, q(int)i = −λint(T, Ttr )

∂Tint

∂Xi
, (67b)

qi = q(tr)i + q(int)i, (67c)

where

μtr(T, Ttr ) = 1

1 − ν

RTtr

Ac(T )
, λtr(T, Ttr ) = 5

2
R

RTtr

Ac(T )
, λint(T, Ttr ) = δ

2
R

RTtr

Ac(T )
, (68)

and T = (3Ttr + δTint )/(3 + δ) [Eq. (4i)]. In deriving Eq. (67), use has been made of Eqs. (12) and (26). The stress tensor pi j

contains the pressure ρRTtr based on the translational temperature, and μtr plays the role of (shear) viscosity. The bulk viscosity
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does not appear in pi j . The coefficients λtr and λint are, respectively, the thermal conductivity for the translational temperature
and that for the internal temperature. Note that the Fourier law (13b) does not hold in this case.

Then, Eq. (65) is transformed into the following dimensional two-temperature Navier-Stokes equations:

∂ρ

∂t
+ ∂ (ρv j )

∂Xj
= 0, (69a)

∂ (ρvi )

∂t
+ ∂ (ρviv j )

∂Xj
+ ∂ (ρRTtr )

∂Xi
= ∂

∂Xj

[
μtr(T, Ttr )

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)]
, (69b)

∂

∂t

[
ρ

(
3

2
RTtr + 1

2
v2

i

)]
+ ∂

∂Xj

[
ρv j

(
5

2
RTtr + 1

2
v2

i

)]
− 3

2
θAc(T )ρ2R(T − Ttr )

= ∂

∂Xj

[
λtr(T, Ttr )

∂Ttr

∂Xj

]
+ ∂

∂Xj

[
μtr(T, Ttr )vi

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)]
, (69c)

∂ (ρTint )

∂t
+ ∂ (ρv jTint )

∂Xj
− θAc(T )ρ2(T − Tint ) = 2

δ

1

R

∂

∂Xj

[
λint(T, Ttr )

∂Tint

∂Xj

]
. (69d)

These are the equations for ρ, vi, Ttr, and Tint. If Eq. (69d) is multiplied by (δ/2)R, the unit becomes consistent with Eq. (69c). It
should be noted that the parameter θ (θ � 1) contained in the ES model [cf. Eqs. (4c) and (4j)] appears in Eqs. (69c) and (69d).
In addition, the equation for the total energy (66) is transformed to

∂

∂t

[
ρ

(
3 + δ

2
RT + 1

2
v2

i

)]
+ ∂

∂Xj

[
ρv j

(
3 + δ

2
RT + RTtr + 1

2
v2

i

)]

= 2

5

∂

∂Xj

[
λtr(T, Ttr )

(
3 + δ

2

∂T

∂Xj
+ ∂Ttr

∂Xj

)]
+ ∂

∂Xj

[
μtr(T, Ttr )vi

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)]
. (70)

This can also be derived directly by adding Eq. (69c) and Eq. (69d) multiplied by (δ/2)R. Therefore, Eq. (69c) or (69d) can be
replaced by Eq. (70).

IV. APPLICATION TO SHOCK-WAVE STRUCTURE

In this section, we apply the two-temperature Navier-
Stokes equations (65), derived in Sec. III, to the problem of
shock-wave structure for CO2 gas. A shock wave is a com-
pression wave across which physical quantities undergo rapid
changes over a distance of some tens of the mean free path.
Therefore, the study of the structure inside the shock wave
requires kinetic theory or, more specifically, the Boltzmann
equation. In fact, the structure of a stationary plane shock
wave is one of the most fundamental problems in kinetic
theory and has been investigated by many authors. Since the
survey of existing work is beyond the scope of this paper, we
just refer to some standard textbooks [1,36,47–50] containing
this subject.

On the other hand, there have been several attempts to
tackle this problem with macroscopic equations that are be-
yond the Navier-Stokes equations and are claimed to be valid
for nonequilibrium flows (see [23,51,52] and the references
therein) because the macroscopic equations are much more
tractable than the original Boltzmann equation. In particular,
when a polyatomic gas is considered, the approach using the
Boltzmann equation is not practical because of insufficient
information on the collision process of gas molecules. In this
case, therefore, the approach using macroscopic equations, as
well as that using model Boltzmann equations with simplified
collision integrals, is more practical and powerful.

Let us restrict ourselves to the case of a polyatomic gas.
Such an approach using macroscopic equations was consid-
ered in [23,32–35,53] rather recently, and some interesting
results were reported. More specifically, the macroscopic

equations based on the extended thermodynamics were used
to investigate the shock-structure problem for CO2 gas, which
is known to have a large ratio of the bulk viscosity to the
viscosity (cf. Sec. II E). It was shown numerically that the
shock wave is very thick and there were three different types
of profiles of the macroscopic quantities depending on the
upstream Mach number. Subsequently, these results were
confirmed by the numerical analysis based on kinetic theory
using the ES model in [18,30,31]. It should also be mentioned
that the problem has been tackled with various macroscopic
equations of the Euler and Navier-Stokes types derived from
the Boltzmann equation for CO2 gas [25,54,55].

Now, let us recall that the two-temperature Navier-Stokes
equations (65) [or Eq. (69)] have been derived from the
ES model when the parameter θ is small. As discussed in
Sec. II E, this corresponds to large values of the ratio of the
bulk viscosity to the viscosity or to slow relaxation of the
internal modes. Therefore, it is natural to expect that the two-
temperature Navier-Stokes equations are able to describe the
shock-wave structure for CO2 gas. For this reason, we try to
analyze the shock-structure problem for CO2 gas numerically
using Eq. (65). It should be noted that the present two-
temperature Navier-Stokes equations have a different struc-
ture from the macroscopic equations used in [23,32–35].

A. Problem

We consider a stationary plane shock wave in a flow of
an ideal polyatomic gas with slow relaxation of the internal
modes, perpendicular to the shock wave. The X1 axis of
the coordinate system is taken in the flow direction. The
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gas at upstream infinity (X1 → −∞) is in an equilibrium
state with density ρ−, flow velocity v− = (v−, 0, 0), and
temperature T−, and that at downstream infinity (X1 → +∞)
is in another equilibrium state with density ρ+, flow velocity
v+ = (v+, 0, 0), and temperature T+. These upstream and
downstream parameters are related by the Rankine-Hugoniot
relations. We investigate the steady behavior of the gas under
the following assumptions:

(i) The behavior of the gas is described by the two-
temperature Navier-Stokes equations derived in Sec. III B.

(ii) The problem is spatially one dimensional, so that the
physical quantities are independent of X2 and X3.

Let M− denote the Mach number of the flow at upstream
infinity, i.e.,

M− = v−√
γ RT−

, (71)

where γ = cp/cv is the ratio of the specific heats already ap-
peared in Sec. II A [cf. Eq. (1)]. Then, the Rankine-Hugoniot
relations provide the following expressions of the downstream
quantities ρ+, v+, and T+ in terms of the upstream quantities
ρ−, v−, and T− and the upstream Mach number M−:

ρ+ = (γ + 1)M2
−

(γ − 1)M2− + 2
ρ−, (72a)

v+ = (γ − 1)M2
− + 2

(γ + 1)M2−
v−, (72b)

T+ = [2γ M2
− − (γ − 1)][(γ − 1)M2

− + 2]

(γ + 1)2M2−
T−. (72c)

Incidentally, the Mach number of the flow at downstream
infinity M+, i.e., M+ = v+/

√
γ RT+, is given as

M+ =
[

(γ − 1)M2
− + 2

2γ M2− − (γ − 1)

]1/2

. (73)

B. Basic equations

We apply the two-temperature Navier-Stokes equations
(65) to the present problem. In this connection, we should
specify the appropriate reference quantities. In the following,
we take ρ0, T0, and p0 as

ρ0 = ρ−, T0 = T−, p0 = p− = Rρ−T−, (74)

so that the reference mean free path l0 becomes the following
l−, i.e.,

l0 = l− = 2√
π

(2RT−)1/2

Ac(T−)ρ−
. (75)

Since the problem is a steady and one-dimensional one with
a unidirectional flow, we let ∂/∂ t̂ = ∂/∂x2 = ∂/∂x3 = 0 and
v̂2 = v̂3 = 0.

In the present problem, the only characteristic length is
the mean free path l−, and there is no reference length
L. Therefore, the small parameter ε = (

√
π/2)(l−/L) does

not make sense. However, by an appropriate scaling of the
space coordinate, we can naturally eliminate the fake small
parameter ε from Eq. (65). Let us take an arbitrary number
much larger than l−, regard this number as L, and define
ε by ε = (

√
π/2)(l−/L). Then, we introduce a new space

coordinate η in place of x1 as

η = x1

ε
= 2√

π

X1

l−
. (76)

This means that η is the X1 coordinate normalized by the
quantity of the order of the mean free path l−. By changing
the space coordinate from x1 to η and using Eqs. (25i), (64),
and (33), we can transform the time-independent and one-
dimensional version of Eq. (65) to the following form:

d (ρ̂v̂1)

dη
= 0, (77a)

d (ρ̂v̂2
1 )

dη
= −1

2

d (ρ̂T̂tr )

dη
+ 2

3(1 − ν)

d

dη

[
T̂tr

Âc(T̂ )

d v̂1

dη

]
, (77b)

d

dη

[
ρ̂v̂1

(
5

2
T̂tr + v̂2

1

)]
+ 3δ

2(3 + δ)
θ Âc(T̂ )ρ̂2

(
T̂tr − T̂int

) = 5

4

d

dη

[
T̂tr

Âc(T̂ )

dT̂tr

dη

]
+ 4

3(1 − ν)

d

dη

[
T̂tr

Âc(T̂ )
v̂1

d v̂1

dη

]
, (77c)

d

dη

(
ρ̂v̂1T̂int

) + 3

(3 + δ)
θ Âc(T̂ )ρ̂2

(
T̂int − T̂tr

) = 1

2

d

dη

[
T̂tr

Âc(T̂ )

dT̂int

dη

]
. (77d)

As we can see, the parameter ε does not occur in Eq. (77), and
only the original small parameter θ appears in Eqs. (77c) and
(77d).

Our problem is to solve Eq. (77) under the following
boundary conditions:

(ρ̂, v̂1, T̂tr, T̂int ) → (1, v̂−, 1, 1) as η → −∞, (78a)

→ (ρ̂+, v̂+, T̂+, T̂+) as η → ∞, (78b)

where ρ̂+ = ρ+/ρ−, v̂± = v±/(2RT−)1/2, and T̂+ = T+/T−.
Since v̂− = (γ /2)1/2M− [cf. Eq. (71)], the dimensionless
downstream parameters ρ̂+, v̂+, and T̂+ are expressed in terms
of M− by the Rankine-Hugoniot relations (72).

C. Numerical method

In this section, we try to solve the boundary-value problem
of the system of ordinary differential equations, Eqs. (77)
and (78), numerically. For this purpose, we introduce the new
(dimensionless) time variable t̄ , i.e.,

t̄ = t̂/ε, (79)

add the corresponding time-derivative terms [cf. Eq. (65)], i.e.,

∂ρ̂

∂ t̄
,

∂ (ρ̂v̂1)

∂ t̄
,

∂

∂ t̄

[
ρ̂

(
3

2
T̂tr + v̂2

1

)]
,

∂ (ρ̂T̂int )

∂ t̄
, (80)
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to the left-hand sides of Eqs. (77a)–(77d), respectively, and
replace d/dη with ∂/∂η in these equations. Then, we solve the
resulting system, under an appropriate initial condition and
the boundary condition (78), to pursue the time evolution of
the solution and regard the long-time limit as the solution of
Eqs. (77) and (78).

For simplicity, we change the notation as

(t̄, ρ̂, v̂1, T̂tr, T̂int, T̂ , Âc) ⇒ (t, ρ, v, Ttr, Tint, T, Ac),
(81)

only in this section. The quantities on the right-hand side of
Eq. (81) should not be confused with the original dimensional
quantities with the same symbols.

Our time-dependent equations can be written in the follow-
ing form:

∂U

∂t
+ ∂F

∂η
= ∂G

∂η
+ θH, (82)

where

U =

⎡⎢⎢⎢⎣
ρ

ρv

ρ
(

3
2 Ttr + v2

)
ρTint

⎤⎥⎥⎥⎦, F =

⎡⎢⎢⎢⎣
ρv

ρv2 + 1
2ρTtr

ρv
(

5
2 Ttr + v2

)
ρvTint

⎤⎥⎥⎥⎦, (83a)

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2

3(1 − ν)

Ttr

Ac(T )

∂v

∂η

5

4

Ttr

Ac(T )

∂Ttr

∂η
+ 4

3(1 − ν)

Ttr

Ac(T )
v
∂v

∂η

1

2

Ttr

Ac(T )

∂Tint

∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(83b)

H =

⎡⎢⎢⎢⎢⎢⎣
0
0

3δ

2(3 + δ)
Ac(T )ρ2(Tint − Ttr )

3

3 + δ
Ac(T )ρ2(Ttr − Tint )

⎤⎥⎥⎥⎥⎥⎦,

and T = (3Ttr + δTint )/(3 + δ). We solve this system under
the boundary conditions

(ρ, v, Ttr, Tint ) →
{

(1, v̂−, 1, 1) as η → −∞,

(ρ̂+, v̂+, T̂+, T̂+) as η → ∞,

(84)

and the following initial condition:

ρ = 1 + ρ̂+ − 1

2
{tanh[a(η − b)

] + 1}, v = v̂−/ρ,

Ttr = Tint = [1 + 2v̂−(v̂− − v)]/ρ, (85)

where a and b are the parameters that adjust the position and
gradient of the initial wave front and are chosen appropriately
depending on the computational conditions. The v and T (=
Ttr = Tint) in Eq. (85) are determined using the first two lines
of ∂F/∂η = 0 [cf. Eq. (83a)].

We solve this problem by a finite-difference method with
the MacCormack scheme [56,57]. We restrict the domain to
−Dn � η � Dp and set the grid points ηi (i = −Nn, −Nn +
1, . . . , 0, . . . , Np − 1, Np) in such a way that η−Nn = −Dn,
η0 = 0, and ηNp = Dp. Let ηi−1/2 denote the middle point of
the interval [ηi−1, ηi], i.e., ηi−1/2 = (ηi−1 + ηi )/2, �ηi the
length of the grid interval [ηi−1, ηi], i.e., �ηi = ηi − ηi−1, and
tn (n = 0, 1, 2, . . . ) the discrete time, i.e., tn = n�t with �t
being the constant time step. In addition, we denote by hn

i the
value of the function h(t, η) at t = tn and η = ηi, where h
indicates ρ, v, Ttr, etc. That is,

hn
i = h(tn, ηi ) (h = ρ, v, Ttr, Tint, T, U, F, G, and H ),

(86)

with i = −Nn, −Nn + 1, . . . , 0, . . . , Np − 1, Np and n =
0, 1, 2, . . . .

We discretize Eq. (82) using the MacCormack scheme with
a predictor-corrector step. That is, for i = −Nn + 1, −Nn +
2, . . . , 0, . . . , Np − 2, Np − 1,

U ∗
i =

{
U n

i − �t
�ηi

(
F n

i − F n
i−1

)
(for U = ρ, i = Np − 1),

U n
i − �t

�ηi+1

(
F n

i+1 − F n
i

) + �t
�ηi+1/2

(
Gn

i+1/2 − Gn
i−1/2

) + �t θHn
i (otherwise),

(87a)

U n+1
i = 1

2

[(
U n

i + U ∗
i

) − �t
�ηi

(
F ∗

i − F ∗
i−1

) + �t
�ηi+1/2

(
G∗

i+1/2 − G∗
i−1/2

) + �t θH∗
i

]
, (87b)

where F ∗
i , G∗

i , and H∗
i are the values of Fi, Gi, and Hi based on the values of U ∗

i (or the corresponding values of ρ∗
i , v∗

i , T ∗
tr,i,

T ∗
int,i, and T ∗

i ), and

Gn
i−1/2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

2

3(1 − ν)

T n
tr,i−1/2

Ac(T n
i−1/2)

vn
i − vn

i−1

�ηi

5

4

T n
tr,i−1/2

Ac(T n
i−1/2)

T n
tr,i − T n

tr,i−1

�ηi
+ 4

3(1 − ν)

T n
tr,i−1/2

Ac(T n
i−1/2)

vn
i−1/2

vn
i − vn

i−1

�ηi

1

2

T n
tr,i−1/2

Ac(T n
i−1/2)

T n
int,i − T n

int,i−1

�ηi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (88)

As we see below, U ∗
i is the predicted value, and U n+1

i is the corrected value at time tn+1.
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Corresponding to the initial condition (85) and the condi-
tion at infinity (84), we set, for any i,

ρ0
i = 1 + ρ̂+ − 1

2
{tanh[a(ηi − b)] + 1},

v0
i = v̂−/ρ0

i ,

T 0
tr,i = T 0

int,i = [1 + 2v̂−(v̂− − v0
i )]/ρ0

i , (89)

and, for any n,

ρn
−Nn

= 1, vn
−Nn

= v̂−,

T n
tr,−Nn

= T n
int,−Nn

= T n
−Nn

= 1, (90a)

ρn
Np

= ρ̂+, vn
Np

= v̂+,

T n
tr,Np

= T n
int,Np

= T n
Np

= T̂+. (90b)

Suppose that the values of hn
i at time tn are known, where

h = ρ, v, Ttr, Tint, and T , and i = −Nn, −Nn + 1, . . . , Np −
1, Np. Then, the values hn+1

i at time tn+1 are obtained by the
following procedure:

(i) We obtain the values vn
i−1/2, T n

tr,i−1/2, T n
i−1/2 (i = −Nn +

1,−Nn + 2, . . . , Np) at the middle points ηi−1/2 by the linear
interpolation.

(ii) We obtain U n
i , F n

i , and Hn
i (i = −Nn, −Nn +

1, . . . , Np) from Eq. (83) and Gn
i−1/2 (i = −Nn + 1, −Nn +

2, . . . , Np) from Eq. (88).
(iii) We obtain U ∗

i (i = −Nn + 1, −Nn + 2, . . . , Np − 1)
from Eq. (87a).

(iv) We obtain h∗
i (i = −Nn + 1, −Nn + 2, . . . , Np − 1)

from the first equation of Eq. (83a). Here, we assume that
h∗

−Nn
= hn

−Nn
and h∗

Np
= hn

Np
.

(v) Similarly to the processes (i) and (ii), we obtain
F ∗

i , H∗
i (i = −Nn, −Nn + 1, . . . , Np) and G∗

i−1/2 (i = −Nn +
1, −Nn + 2, . . . , Np).

(vi) We obtain U n+1
i (i = −Nn + 1, −Nn + 2, . . . , Np −

1) from Eq. (87b) and hn+1
i (i = −Nn + 1, −Nn +

2, . . . , Np − 1) from the first equation of Eq. (83a).
Starting from n = 0, we repeat the processes (i)–(vi) until

the solution can be regarded as the steady solution. In this way,
we obtain the solution of Eqs. (77) and (78).

We should note that the scheme for ρ∗
i at i = Np − 1 [the

first line of Eq. (87a)] uses a backward finite difference for
the η derivative in contrast to the other cases [the second
line of Eq. (87a)] where a forward difference is used. This
is because the constraint ρn

Np
= ρ̂+ is not compatible with the

hyperbolic equation, the first row of Eq. (82), with positive
v. If a forward difference for the η derivative is used in the
first line of Eq. (87a), the constraint ρn

Np
= ρ̂+ causes an

oscillation, which propagates upstream. This inconvenience
can be avoided by the scheme (87a) with the backward finite
difference.

We can, in principle, solve the steady system, Eqs. (77) and
(78), directly to obtain the steady shock profile by using the
Runge-Kutta method. However, perhaps because of the weak
stability of the downstream equilibrium state, this approach
turned out to be quite difficult. The same is true for the or-
dinary Navier-Stokes equations (with one temperature) [58].
Therefore, we adopted the time-dependent approach.

D. Numerical result

In this section, we show some results for CO2 gas obtained
using the two-temperature Navier-Stokes equations. In order
to compare the results with those based on the kinetic ES
model obtained in [31], we use the same parameter setting
as in [31]. To be more specific, we let δ = 4 (γ = 9

7 ), Pr =
0.761, and Ac(T ) = const [i.e., Âc(T̂ ) = 1]. As mentioned in
Sec. II E, the ratio μb/μ of the bulk viscosity μb to the viscos-
ity μ is as large as 1000 for CO2 gas [42]. In [31], however,
an artificial CO2 gas, called pseudo-CO2 gas, with variable
ratio μb/μ was considered for the purpose of studying the
behavior of the shock profiles when μb/μ becomes large. In
this study, we also consider the pseudo-CO2 gas with μb/μ =
10, 100, and 1000, which correspond to θ = 5.01 × 10−2,
5.01 × 10−3, and 5.01 × 10−4, respectively [cf. Eq. (16)].
However, we will mainly show the result for μb/μ = 1000
in this paper.

In the following, we show the profiles of the density ρ, the
flow velocity v1 (the X1 component), and the temperatures T ,
Ttr , and Tint normalized in the conventional way, that is,

ρ̌ = ρ − ρ−
ρ+ − ρ−

, v̌ = v1 − v+
v− − v+

, Ť = T − T−
T+ − T−

,

Ťtr = Ttr − T−
T+ − T−

, Ťint = Tint − T−
T+ − T−

. (91)

We first show the profiles of the macroscopic quantities at
M− = 1.05 for μb/μ = 1000 in Fig. 1: Fig. 1(a) shows the
profiles of ρ̌, v̌, and Ť , and Fig. 1(b) those of Ťtr, Ťint, and Ť .
In Fig. 1(a), the red solid line indicates ρ̌, the green dashed
line v̌, and the blue dotted-dashed line Ť , and in Fig. 1(b), the
red solid line indicates Ťtr, the green dashed line Ťint, and the
blue dotted-dashed line Ť . The origin X1 = 0 is chosen in such
a way that ρ̌ = 1

2 at X1 = 0. The curve of Ť almost coincides
with that of ρ̌. The profiles are smooth, but the shock wave
is very thick and extends over 40 000 mean free paths. This
type of profile, which is called type A in [33–35], appears
for M− close to unity. For μb/μ = 10 and 100 (the results
are not shown here), the profiles are similar, but the thickness
becomes 1

100 and 1
10 , respectively. The profiles obtained by

the direct numerical analysis of the ES model in [31] agree
perfectly with those in Fig. 1, so that the results are not shown
in the figure.

Figure 2 shows the profiles of the macroscopic quantities at
M− = 1.138 for μb/μ = 1000: Fig. 2(a) shows the profiles of
ρ̌, v̌, and Ť , and Fig. 2(b) those of Ťtr, Ťint, and Ť . The types of
the lines are the same as those in Fig. 1. The origin X1 = 0 is
taken in such a way that ρ̌ = 0.05 at X1 = 0. The value M− =
1.138 . . . corresponds to the case of M̃− = v−/(5RT−/3)1/2 =
1, where M̃− is the upstream Mach number when the gas is
regarded as a monatomic gas. In contrast to Fig. 1, the profiles
start suddenly, and each profile, except Ťint, exhibits a corner
at the starting point. This type of profile is called type B
in [33–35]. As was shown in [31], M̃− plays an important
role for the classification of the types of the profiles, and
type-A profiles appear for M̃− < 1 < M− and type-B profiles
for 1 = M̃− < M−. The profiles extend over 15 000 mean free
paths. As μb/μ is smaller (100 → 10) (the results are not
shown here), the thickness reduces, and the start of the profiles
becomes milder. Also in the present case, the profiles based
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FIG. 1. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 1.05 for μb/μ = 1000. In (a), the red solid line indicates ρ̌, the green dashed line v̌, and
the blue dotted-dashed line Ť , and in (b), the red solid line indicates Ťtr, the green dashed line Ťint, and the blue dotted-dashed line Ť .

on the ES model are indistinguishable from those in Fig. 2, so
that they are omitted in the figures.

In Fig. 3, we show the profiles at M− = 1.2 for μb/μ =
1000: Figs. 3(a) and 3(b) show the profiles of ρ̌, v̌, and Ť ,
and Figs. 3(c) and 3(d) those of Ťtr, Ťint, and Ť . The types
of the lines are the same as those in Fig. 1, and Figs. 3(b)
and 3(d) are, respectively, the magnified figures of Figs. 3(a)
and 3(c). In addition, the dotted lines of the same color as
the respective macroscopic quantities in Figs. 3(b) and 3(d)
indicate the profiles obtained from Eq. (77) with θ = 0 (i.e.,
μb/μ = ∞). Each profile consists of a thin front layer with
a sharp change, which looks like a discontinuity in Figs. 3(a)
and 3(c), and a thick rear layer with a slow relaxation. This
type of profile is called type C in [33–35]. The numerical
analysis based on the ES model carried out in [31] shows that
the thin front layer for small θ is nothing but the shock profile
for θ = 0, which satisfies the Rankine-Hugoniot relations

different from Eq. (72) [see Eq. (A20) in [31]]. It is seen from
Figs. 3(b) and 3(d) that this statement is also true in the level
of the two-temperature Navier-Stokes equations. By the way,
in Fig. 3 and Figs. 4–9 below, the origin X1 = 0 is chosen in
such a way that ρ̌ = ρ̌∗/2 at X1 = 0, where ρ̌∗ is the value
of ρ̌ corresponding to the downstream density of the shock
wave with θ = 0. As in the previous cases, the profiles based
on the ES model are not shown in the figure because they are
indistinguishable from the profiles in Fig. 3.

Figures 4–6 show the profiles at M− = 2 for μb/μ = 10,
100, and 1000, respectively. Figures 4(a), 5(a), 5(b), 6(a), and
6(b) show the profiles of ρ̌, v̌, and Ť , and Figs. 4(b), 5(c),
5(d), 6(c), and 6(d) those of Ťtr, Ťint, and Ť . The types of the
lines are the same as those in Fig. 1, and Figs. 5(b), 5(d), 6(b),
and 6(d) are, respectively, the magnified figures of Figs. 5(a),
5(c), 6(a), and 6(c). In addition, the dotted lines of the same
color as the respective macroscopic quantities in Figs. 6(b)

FIG. 2. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 1.138 for μb/μ = 1000. See the caption of Fig. 1.
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FIG. 3. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 1.2 for μb/μ = 1000. Panels (a) and (c) show profiles for −2000 � X1/l− � 15 000; (b)
and (d) those for −30 � X1/l− � 300. In (a) and (b), the red solid line indicates ρ̌, the green dashed line v̌, and the blue dotted-dashed line Ť ,
and in (c) and (d), the red solid line indicates Ťtr, the green dashed line Ťint, and the blue dotted-dashed line Ť . The dotted lines of the same
color as the respective macroscopic quantities in (b) and (d) indicate the profiles obtained from Eq. (77) with θ = 0 (i.e., μb/μ = ∞).

and 6(d) indicate the profiles obtained from Eq. (77) with
θ = 0 (i.e., μb/μ = ∞). These profiles are also of type C.
The changes across the thin front layer in Fig. 6 are larger
than those in Fig. 3. In Figs. 5(a)–5(d) and 6(a)–6(d), we
show by × the profiles based on the ES model. Although
there are small discrepancies between the profiles based on the
two-temperature Navier-Stokes equations and those based on
the ES model at the onset of the thin front layer, the agreement
is very good on the whole.

In Fig. 7, the profiles at M− = 5 for μb/μ = 1000 are
shown: Figs. 7(a) and 7(b) show the profiles of ρ̌, v̌, and Ť ,
and Figs. 7(c) and 7(d) those of Ťtr, Ťint, and Ť . The types
of the lines are the same as those in Fig. 1, and Figs. 7(b)
and 7(d) are, respectively, the magnified figures of Figs. 7(a)
and 7(c). In addition, the dotted lines of the same color
as the respective macroscopic quantities in Figs. 7(b) and
7(d) indicate the profiles obtained from Eq. (77) with θ = 0

(i.e., μb/μ = ∞). Although the thickness of the rear layer
is reduced compared with Fig. 6, it still extends over 2000
mean free paths. In Figs. 7(a)–7(d), the profiles based on
the ES model are also shown by ×. There is a significant
difference between the profiles based on the two-temperature
Navier-Stokes equations and those based on the ES model in
the thin front layer. The ES model gives a milder and thicker
front layer. Nevertheless, both results agree very well in the
thick rear layer.

Finally in Figs. 8 and 9, we show the profiles at M− = 2
for μb/μ = 1000 in the case of different values of the number
of the internal degrees of freedom δ, that is, Fig. 8 is for
δ = 3 and Fig. 9 for δ = 5. The figures correspond to Fig. 6,
so that we omit the explanation of the figures. Since the
agreement between the profiles based on the two-temperature
Navier-Stokes equations and those based on the ES model is
in the same level as in Fig. 6, we omit the latter in the figures.
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FIG. 4. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 2 for μb/μ = 10. See the caption of Fig. 1.

FIG. 5. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 2 for μb/μ = 100. Panels (a) and (c) show profiles for −40 � X1/l− � 340; (b) and
(d) those for −8 � X1/l− � 30. See the caption of Fig. 3 for the types of the lines. The symbol × indicates the profiles based on the ES model.
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FIG. 6. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 2 for μb/μ = 1000. Panels (a) and (c) show profiles for −500 � X1/l− � 4000; (b) and
(d) those for −20 � X1/l− � 60. See the caption of Fig. 3 for the types of the lines. The symbol × indicates the profiles based on the ES
model.

In summary, the system of the two-temperature Navier-
Stokes equations describes the shock-wave structure for CO2

gas very well when the upstream Mach number is less than
or equal to 2. In this case, it describes even the structure of
the thin front layer in type-C profiles correctly. For M− = 5,
however, it loses the accuracy in describing the structure of
the thin front layer. Nevertheless, it still describes the thick
rear layer with a slow relaxation very well. The data of the
numerical analysis are summarized in Appendix B.

V. CONCLUDING REMARKS

This study is devoted to the derivation of the two-
temperature Navier-Stokes equations, i.e., a system of Navier-
Stokes type equations with two temperatures, one associated
with the translational energy and the other associated with
the energy of the internal modes, for a polyatomic gas with
slow relaxation of the internal modes. The starting point is

the ES model of the Boltzmann equation for a polyatomic
gas, and the desired two-temperature Navier-Stokes system
was obtained by the Chapman-Enskog expansion with an
appropriate setting of small parameters.

The ES model is a simple and overall model that, as
well as other BGK-type models, does not contain detailed
information about molecular structures, such as the atomic
and molecular potentials. However, BGK-type models are
often used for practical applications since the Boltzmann
equation with such detailed information, which depends on
individual gases and is not necessarily available, is extremely
complicated and its use is quite limited. The two-temperature
Navier-Stokes system derived here inherits the simplicity and
the overall nature of the ES model. Therefore, one should not
expect that the system describes the properties that directly
depend on the detailed molecular structure. On the other
hand, the parameters contained in the system are determined
only by the overall properties of gases, such as the viscosity
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FIG. 7. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 5 for μb/μ = 1000. Panels (a) and (c) show profiles for −200 � X1/l− � 2400; (b) and
(d) those for −15 � X1/l− � 50. See the caption of Fig. 3 for the types of the lines. The symbol × indicates the profiles based on the ES
model.

and the bulk viscosity, and can, in principle, be estimated
experimentally. Therefore, it can be applied to practical flow
problems for a wide range of polyatomic gases without the
knowledge of the detailed molecular structures.

In fact, the derived system was applied to the problem of
the structure of a plane shock wave in CO2 gas, and its numeri-
cal solution showed good agreement with that of the ES model
for a moderately strong shock wave (M− = 2). Even for a
stronger shock wave (M− = 5), although not accurate inside
the thin front shock layer, the numerical solution of the two-
temperature Navier-Stokes system describes the thick rear
shock layer accurately. This is one of the promising features of
the system for highly nonequilibrium flows of a gas with slow
relaxation of the internal modes. We plan to investigate, in our
future work, the behavior of the steady shock-wave solution of
the two-temperature Navier-Stokes system for higher Mach
numbers, including the stability properties of the equilibrium
states (cf. the last paragraph in Sec. IV C).

This study is based on the ES model for a gas with constant
specific heats (calorically perfect gas). The ES model has
been extended to a gas with temperature-dependent specific
heats (thermally perfect gas) in a recent paper [18]. If we use
this extended ES model, the two-temperature Navier-Stokes
equations are readily extended to a thermally perfect gas.

Another advantage of the present system of two-
temperature Navier-Stokes equations compared with higher-
order moment equations (e.g., [33]) is that it is straightforward
to derive the appropriate slip boundary conditions on the solid
boundary by following the procedure in [41,59]. This would
be a subject of a future study.
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FIG. 8. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 2 for μb/μ = 1000 in the case of δ = 3. Panels (a) and (c) show profiles for −500 �
X1/l− � 4000; (b) and (d) those for −20 � X1/l− � 60. See the caption of Fig. 3 for the types of the lines.
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APPENDIX A: EXPANSION OF Ĝ

In this Appendix, we calculate the terms Ĝ (0) and Ĝ (1) in the
expansion (56) of Ĝ [cf. Eq. (25b)]. Here, let us recall Eq. (33),
i.e.,

θ = αε � 1. (A1)

The leading-order term is Ĝ (0) = Ĝ|ε=0 = Ĝ|θ=0, and as
mentioned in Sec. III B 2, f̂ (0) solves the equation Ĝ (0) −
f̂ (0) = 0. Therefore,

Ĝ (0) = f̂ (0) = ρ̂ Êδ/2−1

(π T̂tr )3/2T̂ δ/2
int �(δ/2)

exp

(
−|ζ − v̂|2

T̂tr
− Ê

T̂int

)
.

(A2)

The first-order term Ĝ (1) is calculated as follows. The
quantities that depend on ε in Ĝ when θ = αε are only T̂rel

and the 3 × 3 matrix T̂. We have already expanded T̂rel and
p̂i j , which is contained in T̂, in Eq. (43). In addition, we need
to expand T̂, T̂−1, and det T̂, that is,

H = H (0) + H (1)ε + · · · (H = T̂, T̂−1, and det T̂).
(A3)

It follows directly from Eqs. (25c) and (50) that
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FIG. 9. Profiles of ρ̌, v̌, Ť , Ťtr, and Ťint at M− = 2 for μb/μ = 1000 in the case of δ = 5. Panels (a) and (c) show profiles for −500 �
X1/l− � 4000; (b) and (d) those for −20 � X1/l− � 60. See the caption of Fig. 3 for the types of the lines.

(T̂(0) )i j = (1 − ν)T̂trδi j + ν

ρ̂
p̂(0)

i j = T̂trδi j, (A4a)

(T̂(1) )i j = α[T̂ − (1 − ν)T̂tr]δi j + ν

ρ̂

(
p̂(1)

i j − α p̂(0)
i j

) = ν

ρ̂
p̂(1)

i j + α(T̂ − T̂tr )δi j, . . . . (A4b)

Noting that T̂T̂−1 = (T̂(0) + T̂(1)ε + · · · )[(T̂−1)(0) + (T̂−1)(1)ε + · · · ] = I, where I is the 3 × 3 unit matrix, we have (T̂−1)(0) =
(T̂(0) )−1, (T̂−1)(1) = −(T̂(0) )−1T̂(1)(T̂−1)(0), etc. This means that

(T̂−1)(0)
i j = 1

T̂tr
δi j, (T̂−1)(1)

i j = − 1

T̂ 2
tr

[
ν

ρ̂
p̂(1)

i j + α(T̂ − T̂tr )δi j

]
, . . . . (A5)

In addition, let us note that (det T̂)(0) = (det T̂)ε=0 = det(T̂(0) ), (det T̂)(1) = [d (det T̂)/dε]ε=0, etc. Therefore, we obtain the
following:

(det T̂)(0) = T̂ 3
tr , (A6a)

(det T̂)(1) = det

⎡⎣(T̂(1) )11 (T̂(0) )12 (T̂(0) )13

(T̂(1) )21 (T̂(0) )22 (T̂(0) )23

(T̂(1) )31 (T̂(0) )32 (T̂(0) )33

⎤⎦ + det

⎡⎣(T̂(0) )11 (T̂(1) )12 (T̂(0) )13

(T̂(0) )21 (T̂(1) )22 (T̂(0) )23

(T̂(0) )31 (T̂(1) )32 (T̂(0) )33

⎤⎦ + det

⎡⎣(T̂(0) )11 (T̂(0) )12 (T̂(1) )13

(T̂(0) )21 (T̂(0) )22 (T̂(1) )23

(T̂(0) )31 (T̂(0) )32 (T̂(1) )33

⎤⎦
=

[
ν

ρ̂
p̂(1)

kk + 3α(T̂ − T̂tr )

]
T̂ 2

tr ,
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TABLE I. Data for numerical computation.

M− μb/μ Dn, Nn Dp, Np �ηi �t d

1.05 10 1128, 2000 1128, 2000 0.564a 0.0282 7.6(−7)b

100 11284, 2000 11284, 2000 5.64a 0.226 5.8(−7)
1000 56419, 2000 56419, 2000 28.2a 0.564 2.8(−6)

1.138 10 564, 2000 564, 2000 0.282a 7.05(−3) 6.8(−7)
100 564, 500 5642, 1400 0.282–8.46 7.05(−3) 4.6(−6)

1000 9027, 800 45135, 1440 2.82–84.6 0.113 3.2(−6)

1.2 10 451, 2000 451, 2000 0.226a 4.51(−3) 7.0(−7)
100 564, 500 3385, 1000 0.282–8.46 7.05(−3) 1.0(−6)

1000 2708, 1200 33851, 3960 0.564–16.9 0.0282 3.7(−7)

2 10 56.4, 1000 113, 2000 0.0564a 2.82(−4) 1.2(−6)
100 226, 800 1128, 1440 0.0705–2.11 4.51(−4) 1.2(−6)

1000 564, 2000 11284, 9600 0.0705–2.11 4.51(−4) 1.0(−5)c

5 10 56.4, 1000 90.3, 1600 0.0564a 2.82(−4) 3.8(−6)
100 113, 500 564, 900 0.0564–1.69 2.82(−4) 2.9(−6)

1000 226, 1000 5642, 5800 0.0564–1.69 2.82(−4) 3.0(−6)

aUniform grid.
bRead as 7.6 × 10−7.
cσ = 2.4 × 10−10 in Eq. (B1).

. . . . (A6b)

It follows from Eq. (57) that Ĝ (1) = [Ĝ(d log Ĝ/dε)]ε=0 = Ĝ (0)[d log Ĝ/dε]ε=0 = f̂ (0)[d log Ĝ/dε]ε=0. Therefore, using
Eq. (25b), we have

1

f̂ (0)
Ĝ (1) = −1

2

(det T̂)(1)

(det T̂)(0)
+

(
Ê

T̂ (0)
rel

− δ

2

)
T̂ (1)

rel

T̂ (0)
rel

− (ζi − v̂i )(ζ j − v̂ j )(T̂−1)(0)
i j

= ν

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− 1

2
δi j

]
p̂(1)

i j

ρ̂T̂tr
+ α

[
(ζk − v̂k )2

T̂tr
− 3

2

]
T̂ − T̂tr

T̂tr
+ α

(
Ê

T̂int
− δ

2

)
T̂ − T̂int

T̂int
. (A7)

This gives Eq. (58).

APPENDIX B: DATA FOR NUMERICAL ANALYSIS

The length of the grid interval �ηi is either uniform or variable. In the latter case, the grid point ηi is defined by using Eq.
(B1) in Appendix B of [31]. To be more specific, ηi = (2/

√
π )x(i) = 1.128x(i), where x(i) is given by Eq. (B1) in [31] with

a = p = 3, b = 1, and q = 2. The other parameters and the time step �t are shown in Table I. Starting from the initial condition,
we consider the steady state to have been established when the following condition is satisfied:

max
−Nn<i<Np

∣∣hn
i − hn−1

i

∣∣ < σ = 10−10 (h = ρ, v, Ttr, and Tint ), (B1)

where, as in Eq. (B2) below, the change of notation (81) is used. As a measure of accuracy of the computation, we also show, in
Table I, the value of

d = max
−Nn<i<Np

|(ρn
i vn

i − v̂−)/v̂−|, (B2)

which should be zero theoretically.
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