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Effective aspect ratio of helices in shear flow
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We report the results of simulations of rigid colloidal helices suspended in a shear flow, using dissipative
particle dynamics for a coarse-grained representation of the suspending fluid, as well as deterministic trajectories
of non-Brownian helices calculated from the resistance tensor derived under the slender-body approximation.
The shear flow produces nonuniform rotation of the helices, similarly to other high aspect ratio particles, such
that more elongated helices spend more time aligned with the fluid velocity. We introduce a geometric effective
aspect ratio calculated directly from the helix geometry and a dynamical effective aspect ratio derived from the
trajectories of the particles and find that the two effective aspect ratios are approximately equal over the entire
parameter range tested. We also describe observed transient deflections of the helical axis into the vorticity
direction that can occur when the helix is rotating through the gradient direction and that depend on the rotation
of the helix about its axis.
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I. INTRODUCTION

The behavior of flowing suspensions of fibers and other
high aspect ratio particles plays an important role in a wide
range of commercially important processes and consequently
has been intensively investigated [1,2]. Fibers with intrinsic
curvature, including those with helical shapes, appear in many
contexts [2–4], and their behavior under flow represents an
interesting and challenging fundamental problem [5].

A number of studies have specifically investigated the
behavior of rigid helices in shear flow experimentally and
computationally [6–11]. Like other high aspect ratio particles
such as rods or ellipsoids, shear flow will cause helical fil-
aments to rotate about an axis perpendicular to the velocity
gradient and the flow directions (the vorticity axis) with a
nonuniform rotation rate, with the particles spending more
time with their long axis parallel to the flow than parallel to the
shear gradient. For rotationally symmetric ellipsoids at low
Reynolds number and in the absence of Brownian motion,
the trajectories represent closed orbits (Jeffery orbits) with
analytic solutions that depend only on the particle’s aspect
ratio and its orientation with respect to the gradient axis, with
no net motion in the vorticity direction [12]. More generally,
most axisymmetric bodies with fore-aft symmetry will also
follow Jeffery orbits in shear flow, with an effective aspect
ratio that is determined by the square root of the ratio of the
torque exerted on the body when it is held at rest with its
axis along the gradient direction to the torque with its axis
along the flow direction [13], although there are interesting
exceptions in special cases [14].

Helical particles, by contrast, do not follow closed orbits,
even in the absence of thermal fluctuations [6,8]. Furthermore,
the particles experience a net drift in the vorticity direction
with a sign dependent on the helicity, a phenomenon which
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has been exploited to use shear flows to separate chiral ob-
jects [6,8–10,15,16]. While considerable progress has been
made understanding the average long time behavior of helices
in shear flow in the presence of thermal fluctuations, we
currently lack the ability to predict the short term dynamics of
helical filaments, information that is critical for understanding
the role of helical particles in suspension rheology or the
behavior of particles in complex flows such as turbulence [15].

In this work, we report the results of dissipative particle
dynamics (DPD) computer simulations of rigid helices in
the presence of a shear flow. The DPD technique produces
stochastic forces similar to thermal fluctuations and we ob-
serve that the orbits of the helices are qualitatively similar
to noisy Jeffery orbits. We compare the simulated trajecto-
ries with the deterministic trajectories calculated from the
equation of motion for non-Brownian helices in the slender-
body approximation and report analytic expressions for the
forces, torques, resistance tensor, center-of-mass velocity, and
angular velocity of a general helix in arbitrary orientation.
We derive an analytic expression for a geometric effective
aspect ratio calculated directly from the helix geometry and
compare that to a dynamical effective aspect ratio calculated
from the trajectories of the helices in the simulations and
the deterministic trajectories. Over the entire parameter range
tested, the geometric aspect ratio matches the measured dy-
namical aspect ratio in the simulations, within the statistical
uncertainty, and accurately predicts the dynamical aspect ratio
calculated from the deterministic trajectories. Finally, we
discuss the origins of transient deflections of the helical axis
into the vorticity direction that occur while the helix is rotating
through the gradient direction in some, but not all, of the
trajectories.

II. METHODS

A. Simulations

There have been many simulations of fibers in fluid flow
using various approximations of hydrodynamic and contact
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interactions, employing a variety of techniques available with
varying degrees of complexity and accuracy [17]. For these
studies, we have used DPD [18,19], an efficient coarse-
grained fluid representation that can capture many aspects of
the complex hydrodynamic interactions between the helical
filament and the surrounding fluid and the effects of thermal
fluctuations [20,21] and is relatively simple to implement.
The DPD implementation is similar to one we have used
previously to study shear induced aggregation of straight
rods [22] and is briefly summarized below.

In DPD, the coarse-grained fluid is represented by soft par-
ticles interacting via three pairwise forces: a repulsive force
that determines the compressibility of the fluid, a dissipative
force that models viscous dissipation, and a random force that
determines the steady-state temperature of the system.

Thus the total force on particle i is

Fi =
∑
j �=i

(
FC

i j + F R
i j + F D

i j

)
r̂i j,

where

FC
i j = Aw(ri j ),

is the conservative, soft repulsion contribution to the force
exerted by particle j on particle i, where ri j = ri − r j and
ri j = |ri j |. The dissipative force is

F D
i j = −γw2(ri j )(r̂i j · vi j ),

where vi j = dri j/dt , and the random force is

F R
i j = σw(ri j )αi j/

√
�t,

where αi j is a random variable with unit variance Gaussian
statistics, and w(r) is a weighting function given by

w(r) =
{

1 − r/rc r � rc

0 r > rc
.

Following Groot and Warren [19], we set the repulsive
parameter A = 18.75, the density ρ = 4, the random force
coefficient σ = 3, the force cutoff radius rc = 1, and the
dissipation coefficient γ = 4.5. The combination of ρ and A
determines the compressibility, and values chosen are consis-
tent with the compressibility of water. The combination of
the strength of the random force σ and the dissipation coef-
ficient γ determines the steady-state kinetic energy (effective
temperature) of the DPD system. For the values used here,
T = 1 in simulation units, which determined the appropriate
time step for the calculations (we use �t = 0.01) [19]. All
numerical values are given in simulation units, with the rel-
evant length scale being the particle size (unit diameter) and
the timescale set by the applied shear.

With parameters in this range, DPD has been shown to
reproduce correct hydrodynamics at long length scales [23].
The helix length scales simulated in this work are not large
compared to the DPD particle size, however, so quantita-
tive agreement with Navier-Stokes hydrodynamics is not ex-
pected.

Shear flow is generated by directly simulating moving
boundaries at the top and bottom of the simulated fluid.

Specifically, referring to Fig. 1, fixed walls one particle
diameter thick in the horizontal (x, z) plane are moved at

FIG. 1. Schematic of simulation domain. Fixed walls one particle
diameter thick in the horizontal (x, z) plane (red spheres) are moved
at constant, opposite speeds in the x direction, thus producing simple
shear with (x, y, −z) = (flow, gradient, vorticity) directions. Periodic
boundaries are employed in the x and z directions.

constant, opposite speeds (vwall = 1.5) in the x direction, thus
producing simple shear with (x, y,−z) = (flow, gradient,
vorticity) directions. Periodic boundaries are employed in the
x and z directions. For the simulations below, the simulated
domain is cubic with a size that is adjusted according to the
parameters of the helix being simulated to minimize self-
interactions across periodic boundaries as well as contact with
walls. The side length of the box was normally set as 1.5 times
the helix length, rounded up to the nearest increment of five
units. No contact with walls was observed for any simulations
reported here.

Helices are simulated by rigid strands of spherical particles
with centers separated by a fixed spacing of half-unit length in
simulation units. The particles interact with the fluid particles
by the same DPD interactions described above. The initial
helix configuration was set to be⎛

⎝x(u)
y(u)
z(u)

⎞
⎠ =

⎛
⎝ r cos(2πnu/�c)

�u/�c

hr sin(2πnu/�c)

⎞
⎠ with

0 � u � �c

h = ±1 , (1)

which gives a left- (right-) handed helix when h = 1(h =
−1) of filament length �c = √

�2 + 4π2n2r2 with n turns,
radius r, end-to-end length l , and pitch p = l/r, initially
oriented parallel to the gradient direction such that a perpen-
dicular from the helical axis to the first bead on the +y end
of the helix was in the positive flow direction [(φ, θ, ψ ) =
(0, 0, 0), see Fig. 2]. All parameter sets were run for 50 000
time steps and then extended until at least two “flips” were
observed, representing at least one full orbit.

One hundred and five simulations of isolated helices with
varying pitch (p), radius (r), and length (�) were performed
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FIG. 2. Coordinates used for measuring helix orientation relative
to shear flow (Fig. 1) and parameters used for specifying helices.

using the Large-scale Atomic/Molecular Massively Paral-
lel Simulator (LAMMPS) [24] environment, including the
LAMMPS implementation of DPD and the LAMMPS rigid-
body integrator for calculating net forces and torques on the
helices. The resulting dynamical equations were solved using
the velocity-Verlet integration scheme.

B. Analytic methods

We also present results from deterministic trajectories cal-
culated with the slender-body approximation, appropriate for
thin filaments in Stokes (low-Reynolds-number) flow. The
equations of motion are determined from the resistance tensor
for the helix under the conditions of zero net force and torque.

The force on the helix from slender-body theory is given
by

F =
∫ �c

0
du

(
αtv

t
r + αnv

n
r

)
, (2)

and the torque by

τ =
∫ �c

0
dur × (

αtv
t
r + αnv

n
r

)
, (3)

where vr is the velocity of the fluid relative to the helical fiber,
with superscript t (n) representing the component tangent
(normal) to the fiber, αt (αn) is the drag coefficient for flow
tangent (normal) to the fiber, and r is the vector from the helix
center to a point on the fiber. Being in a Stokes flow regime
immediately implies that F = τ = 0.

We can break vr into contributions from the flow and from
the helix’s motion as vr = v f − vc.m. − ω × r, where v f is the
fluid velocity, vc.m. is the helix center-of-mass velocity, and ω

is the angular velocity of the helix. This allows us to recast
Eqs. (2) and (3), defining vh ≡ vc.m. + ω × r and dropping the
integration bounds as∫

du
(
αtv

t
f + αnv

n
f

) =
∫

du
(
αtv

t
h + αnv

n
h

)
(4)

and∫
dur× (

αtv
t
f + αnv

n
f

) =
∫

dur× (
αtv

t
h + αnv

n
h

)
. (5)

Together these two equations may be written as a single matrix
equation, (

F f

τ f

)
= R ·

(
vc.m.

ω

)
, (6)

where F f and τ f are the force and torque on a motionless
(i.e., anchored in place) helix due to the unperturbed fluid

flow, and R is the 6 × 6 symmetric resistance tensor for the

helix. We are able to analytically find F f , τ f , and R and then
solve Eq. (6) to find vc.m. and ω for an arbitrary helix in an
arbitrary orientation.

A helix in an arbitrary orientation can be described by the
vector H, obtained by applying rotation matrices for the three
angles (φ, θ, ψ ) to the vector described by Eq. (1).

The drag on the segments of the filament that compose
the helix is anisotropic. From slender-body theory at low
Reynolds number, the drag coefficient for flow normal to
the filament is twice the drag coefficient for flow tangent to
the filament, i.e., αn/αt = 2 [25]. Allowing for a nonzero
filament thickness results in αn/αt = 2 to within a logarithmic
correction term [26,27]. We take αn = 2αt following slender-
body theory throughout the rest of the paper unless explicitly
stated otherwise.

We decompose the unperturbed fluid flow, given by v f =
γ̇ (H · ŷ)x̂, into tangent, vt

f = (v f · t̂ )t̂ , and normal, vn
f =

v f − vt
f , components where t̂ is a unit vector parallel to the

filament (i.e., in the direction of dH
du ). The drag force per unit

length is given by

f d = αtv
t
f + αnv

n
f = αnv f + (αt − αn)vt

f , (7)

and so the force and torque on the fixed helix are

F f =
∫ �c

0
du f d and τ f =

∫ �c

0
duH × f d . (8)

The resulting expressions are very messy but can be easily
evaluated for any helix parameters and orientation and are
provided in the Supplemental Material [28].

Using the same method as described above, we decompose
the helix velocity, v = vc.m. + H × ω, into normal and tangent
components. This allows us to evaluate the right-hand side of

Eqs. (4) and (5) from which R may be directly read off from

the coefficients of vc.m. and ω. The full expression for R is pro-
vided in the Supplemental Material [28]. To our knowledge,
this is the first explicit expression for the resistance tensor of
an arbitrary helix in an arbitrary orientation.

We then solve Eq. (6) for vc.m. and ω. The resulting
expressions are too cumbersome to report but are available
in the Supplemental Material as a Mathematica binary [28].
Having analytic expressions for the center of mass and angular
velocities enabled us to numerically integrate the coupled
differential equations governing the dynamics of the helix at
a significantly lower computational cost than was previously
possible. We are thus able to compare the noisy DPD simu-
lations with the dynamics determined from numerically inte-
grating the solution to the deterministic equations of motion
for Stokes flow in the slender-body approximation.
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FIG. 3. Geometric effective aspect ratio [rψ from Eq. (9)] as a
function of a = �/r for integer n from n = 1 to n = 10. The value of
ψ is indicated by color. The dependence on ψ is only significant at
small n (large pitch) and large a.

III. GEOMETRIC EFFECTIVE ASPECT RATIO

As described in the Introduction, the trajectories of an
axisymmetric body with fore-aft symmetry in viscous shear
flow are given by Jeffery orbits that are fully determined by
the ratio of the torque exerted on the body when it is held
at rest with its axis along the gradient direction to the torque
with its axis along the flow direction [13]. Inspired by this
result, we use this quantity for helices to define a geometric
effective aspect ratio for helices, despite the fact that they are
not axisymmetric, nor do they have fore-aft symmetry.

Following Cox [13], we define a (ψ-dependent) geometri-
cal aspect ratio for the helix as

rψ =
√

τ1

τ2
=

√
2

3

�

r

√
3r2[π2n2 + cos(2ψ )] + �2

(4πnr)2 + �2[2 + cos(2ψ )]
, (9)

where τ1 is τ f · ẑ [as defined in Eq. (3)] when the helical axis
is parallel to the gradient direction ŷ (φ = 0, θ = 0) and τ2 is
τ f · ẑ when the helical axis is parallel to the flow direction x̂
(φ = π/2, θ = 0).

Unlike the axisymmetric bodies studied by Cox, this def-
inition does not uniquely specify the aspect ratio for a given
geometry due to the dependence on the angle ψ . Moreover,
given that ψ will change during an orbit, the situation is
clearly more complicated, and the simple ratio of torques at
fixed position will not be sufficient to precisely determine the
trajectory. Nonetheless, we can still use Eq. (9) as an aspect
ratio that depends only on the geometry and ψ and investigate
the extent to which that quantity is a useful predictor of the
actual trajectories. Figure 3 shows how rψ [Eq. (9)] varies with
a = �/r, n, and ψ .

Our goal is to find an aspect ratio based solely on the
geometry of the helix that is a good predictor of the fraction
of time helices spend aligned with the shear flow for a wide
range of helical parameters. We note that for large n and a,
rψ ≈ a/(2

√
2) ≈ 0.35a, with significant deviations only for

small n (large pitch). Indeed limn→∞ rψ = a/(2
√

2) for all a
and ψ . This suggest an approximate geometrical aspect ratio
based solely on a, ra = a/(2

√
2). As can be seen in Fig. 3,

FIG. 4. Jeffery orbit for a non-Brownian ellipsoid in a shear
flow. The top image shows successive orientation snapshots (ũ) for a
particle of aspect ratio 4, with a small center of mass velocity from
left to right for clarity, colored from white (early times) to black (late
times). The graph displays angles relative to gradient (φ, solid black)
and vorticity (θ , dashed red) directions and square of the gradient (y)
component of the orientation unit vector (ũ2

y , dotted blue) vs. strain.

rψ ≈ ra for n � 5. However, as discussed below, we find that
ra is not a good predictor of the fraction of time helices spend
aligned with the shear flow for much of the parameter range
consider here.

It is perhaps not surprising that helix parameters beyond
the bounding cylinder aspect ratio need to be taken into
account to accurately describe the tumbling trajectories. Thus
we introduce an alternative purely geometrical aspect ratio,
which we denote as rG, produced by taking ψ = π/4 in
Eq. (9). rG can be calculated from Eq. (9) and is given by

rG = rψ=π/4 = a√
3

√
a2 + 3π2n2

a2 + 8π2n2
. (10)

Below we show that rG works quite well as a predictor of
the fraction of time helices spend aligned with the shear flow
for all of the parameters studied here, despite the variation of
ψ during a trajectory.

IV. RESULTS

A. Jeffery-like orbits

Trajectories for isolated helices were initialized with their
helical axis oriented in the gradient direction. In this config-
uration the shear flow exerts a torque on the helix parallel to
the vorticity axis, resulting in a rapid rotation into the flow
direction. The torque is reduced as the helix aligns with the
flow, so the rotation rate decreases, reaching a minimum when
the axis of the helix is perpendicular to the gradient (y) axis.
This behavior is qualitatively similar to Jeffery orbits of non-
Brownian axisymmetric ellipsoids, which are deterministic,
closed orbits with a fixed angle, θ , relative to the vorticity
direction. As an example, Fig. 4 displays an orbit for an
ellipsoid of revolution with aspect ratio re = a/2 = 4 in a
series of orientation snapshots and plots of φ and θ vs. time.

An alternative way to visualize the trajectories is to track
the evolution of components of the orientation vector, û, a
unit vector aligned with the axis of the helix. We define ũ, the
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FIG. 5. Trajectories of helical filaments from DPD simulations
and deterministic calculations. Top: Snapshots of ũ as in Fig. 4
from deterministic trajectory of a helix with a = 5 and n = 9, and
φ, θ , and ũ2

y , from the deterministic (open) and simulated (filled)
trajectories. Bottom: Orientation snapshots, φ, θ , and ũ2

y , for a helix
with a = 15, n = 14.

normalized projection of û onto the flow-gradient (xy) plane,
to more easily visualize the rotation of the helix about the
vorticity (−z) axis. It is then easy to characterize the orbiting
behavior of the helix using ũy ≡ ũ · ŷ = û · ŷ/ cos θ = cos φ

and the deflections into the vorticity direction by uz ≡ û · ẑ =
sin θ . The dotted blue curve in Fig. 4 shows ũ2

y , vs. strain (γ̇ t ),
where the relatively slow rotation rate when the particle is
aligned in the flow direction produces an extended period of
time when u2

y is small.
Figure 5 displays results from two representative helical

geometries, each showing a deterministic calculation (open
circles) and a DPD simulation (filled), revealing both the
nonuniform rotation rates and the stochastic variations that
arise in the DPD simulations. As expected, we observe that
squat helices, with smaller length to radius (a = �/r) values,
display relatively small variation in their rotation rates (top
panel, a = 5), whereas helices with high values of a show
rotation rates that slow down dramatically when aligned in
the flow direction (bottom panel, a = 15).

For the parameter regimes investigated here, the stochastic
component of the motion in the simulations is relatively small,
suggesting that the effective rotational Peclet number, the
ratio of the shear rate to the rotation diffusion coefficient,
Dr , is large. We reported previously that for a rigid rod
of 21 particles under identical conditions, Dr = 4 × 10−6 in
simulation units [22], and in general for rods, Dr ∝ L−3.

B. Effective aspect ratio

For ideal Jeffery orbits, the angle φ of the particle rel-
ative to velocity direction is related to the aspect ratio re

according to

re = 1

〈cos2 φ〉 − 1, (11)

where brackets represent the long time average. Experimen-
tally or computationally accessing the long time average is
clearly difficult, but we observe that from Jeffery’s equations
(and as visualized in Fig. 4), cos2 φ is periodic with a period of
half an orbit. Furthermore, each half orbit is mirror symmetric
about its midpoint. This means that the long time average, for
particles obeying Jeffery’s equations, of cos2 φ is equal to the
average over an integral number of quarter orbits.

A spherical particle (re = 1) has a uniform rotation rate,
producing 〈cos2 φ〉 = 1/2. As re increases, the particle spends
a longer fraction of its orbit aligned in the flow direction, so
〈cos2 φ〉 (and 〈ũ2

y〉) decreases. Note that this result is indepen-
dent of θ , the angle with respect to the gradient-velocity plane
(which is constant for a Jeffery orbit and therefore determined
uniquely by the initial conditions).

Equation (11) can be easily generalized to calculate an
effective aspect ratio from our simulated trajectories (as in
Ref. [22]), with a couple of caveats. One is that θ is not
constant, varying due to both thermal fluctuations and torques
with components in the flow-gradient plane. When θ ap-
proaches π/2 (helix aligned in the vorticity direction), thermal
noise causes φ to fluctuate erratically. This issue does not
create difficulties in this work, where we focus on relatively
short trajectories with initial conditions of θ = 0. A second
caveat is that, as discussed above, the effective aspect-ratio
calculation from measured trajectories requires an integral
number of quarter orbits, which can create selection bias for
finite length trajectories. In order to minimize this effect,
we have included only parameter ranges where all simulated
trajectories included at least one full rotation. We further
discard the first half rotation to mitigate any possible transient
effects in the simulation.

Here we seek to determine whether the empirical effective
aspect ratio re, calculated from Eq. (11), can be simply related
to geometric parameters of the helix. Figure 6(a) shows a
scatter plot of re, determined from the simulations, versus
rG, defined by Eq. (10), for a range of helix parameters.
Although there is considerable scatter in the data, there is a
strong correlation between the two quantities, with no evident
dependence on either � or p (indicated by the size and color
of the points, respectively). A least-squares fit to log re vs.
log rG produces re = 1.01r1.02

G and is consistent with the two
quantities being equivalent [re = Arα

G, with α = {0.93, 1.10}
and A = {0.89, 1.15} at a 95% confidence level (Cl)].
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(a) (b) (c)

FIG. 6. (a) Plot of the effective aspect ratio re [Eq. (11)] from simulations versus the geometric aspect ratio rG [Eq. (10)] for a range of helix
parameters. Marker size is indicative of helix length, (min,max) = (8,60), and marker color is indicative of pitch with white corresponding
to p = 1 to black (dark) with p = 30. The solid line is re = rG (all three panels). (b) Plot of re from deterministic trajectories versus rG for a
range of helix parameters and different initial values of ψ (c) data from (b) plotted vs. rψ [Eq. (9)], calculated using the initial values of ψ for
that run.

While the geometric aspect ratio defined by Eq. (10) does
a remarkably good job of predicting re, it is worth noting
that, as discussed above, over much of the parameter range,
rG is close to ra = a/(2

√
2) (see Fig. 3). A plot of re vs. ra

looks qualitatively similar to Fig. 6(a) but shows systematic
deviations for small n. Our results are inconsistent with re =
ra (re = A1rα1

a ), with α1 = {1.04, 1.22} and A1 = {0.84, 1.08}
at a 95% Cl.

We find that re and rG are similarly closely related for
the deterministic helix trajectories, as shown in Fig. 6(b), for
the same helix parameters used in Fig. 6(a), but with initial
values of ψ distributed between 0 and 2π . A least-squares fit
to log re vs. log rG here produces re = 1.01r1.01

G . The scatter in
the data clearly shows that re depends on ψ , suggesting that
the scatter in Fig. 6(a) arises from a combination of the effects
of Brownian motion and the limitations of the definition of a
ψ-independent rG. Figure 6(c) shows the result of plotting the
same data for re versus rψ , the ψ-dependent geometric aspect
ratio calculated from Eq. (9), using the initial value of ψ for
each trajectory. This appears to reduce the scatter and gives
a least-squares fit to log re vs. log rψ as re = 1.01r1.00

ψ . Note
that ψ can change significantly over the course of the orbit, as
shown below.

These results show that rG provides a reasonably robust
estimate of re for both the DPD simulations and the de-
terministic trajectories calculated using slender-body theory
but that the absence of axisymmetry manifests itself in a
dependence on the angle ψ that cannot be easily captured.
To our knowledge, this is the first test of an effective aspect
ratio of helices in shear flow. Marcos et al. [9] numerically
calculate effective aspect ratios for helical bacteria based on
the ratio of rotation rates for φ = 0 and π/2, which produces

very similar results to the rG defined here but is a significantly
messier expression [28].

C. Deflections in vorticity direction

Although the primary focus of this study is the rotation
about the vorticity axis, we close by noting an interesting
behavior that occurs in many, but not all, of the simulated
and deterministic trajectories. Figure 7 shows the evolution
of ũ2

y and u2
z for a representative trajectory from the simu-

lation, where we find a transient deflection in the vorticity
direction that peaks when ũ2

y is maximum, i.e., when φ =
nπ and the rotation rate of the Jeffery-like Orbit is at its
maximum. Similar, albeit smaller, deflections are observed in
the deterministic trajectory for the same initial condition. For
both simulated and deterministic trajectories, the deflections
vary in magnitude and sign, with no obvious pattern, and are
sometimes absent altogether.

We can gain some insight into the origin of these tran-
sient deflections by considering the torque on a fixed he-
lix [left-hand side of Eq. (5)]. The torque causing deflec-
tions into the vorticity direction is given by τθ = τ · θ̂ ≡
τ · [x̂ cos(φ) + ŷ sin(φ)]. This quantity (τθ ) is plotted in the
lower panels of Fig. 7, using the instantaneous values of φ, θ ,
and ψ , alongside plots of θ (t ) and ψ (t ). It is clear that τθ is
highly correlated with θ̇ , although it should be noted that the
exact behavior of the vorticity deflections is characterized by
ωθ ≡ ω · θ̂ which is an extremely complicated expression.

The full expression for τθ itself is quite unruly, but we can
capture some aspects of the relevant behavior if we restrict our
attention to a helix in the gradient-velocity plane (τθ at θ = 0).
This quantity, which we label τ 0

θ , is found to be

τ 0
θ = γ̇ αt r� cos(ψ )(h sin(2φ)

[
9�2 − 6�2

c − 4π2n2r2 cos2(ψ )
] + 3πnr� sin(ψ )[cos(2φ) + 3)]

12πn�c
. (12)
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FIG. 7. Top: Plot of ũ2
y (dashed) and u2

z (solid) vs. time for one
simulated (left) and one deterministic (right) trajectory (� = 58.8,
n = 4, r = 3 for both) demonstrating deflection into the vorticity
direction, and subsequent recovery, as the helix axis rotates past
the gradient direction. Bottom: Plot of ψ (t ) (dotted), τθ in units
of γ̇ αn�

2
cr (thin) and θ (t ) (thick) for the same trajectories. The

deflections into the vorticity direction are well predicted by τθ , while
the variability in size and direction of deflection arises from the
behavior of ψ (t ).

While the full expression for τ 0
θ is still complex,

in the limit of small r it reduces to simply τ 0
θ ≈

γ̇ αt h�2r cos(ψ ) sin(2φ)/(4πn). The sin(2φ) dependence pro-
duces a contribution that has extrema at φ = π/4 and 3π/4,
with a sign change in between, and thus explains the transient
deflection. The origin of this dependence can be understood
by recalling that simple shear can be represented as a su-
perposition of pure shear (or extensional flow) and pure
rotational flow. The contribution from the rotational flow is
φ independent [the very last term in Eq. (12), of order r2].
The extensional flow is outward along the extensional axis
(φ = π/4) and inward along the compressional axis (φ =
3π/4), and thus is responsible for the sin(2φ) term in τ 0

θ . At
φ = π/4 and 3π/4, the axial flow produces drag forces that
are primarily parallel to the helical axis (although tilted toward
the filament normal because of the anisotropic drag) but will
contribute to a ψ-dependent τ 0

θ because the finite radius of
the filament means that each filament element generally has
an rz that is nonzero, so �r × �F can contain elements that
contribute to τ 0

θ . Interestingly, we find that the expression
for τ 0

θ in the limit of small r given above is also valid for
isotropic drag (αt = αn), indicating that the general behavior
can be understood from this geometric argument, without
consideration of the tilting of the drag force relative to the
flow direction.

Figure 8, which shows a surface plot of τ 0
θ (φ,ψ ) for

a representative set of helix parameters, has a dominant

FIG. 8. Surface plot showing τ 0
θ (in units of γ̇ αn�

2
cr) as defined

in Eq. (12) with � = 58.8, r = 3 and n = 4 as a function of φ and ψ .

sin(2φ) dependence that is modulated by a sinusoidal function
of ψ . This likely underlies the variability in the sign and
magnitude of the observed vorticity deflections. Furthermore,
ψ evolves continuously during the orbit, as can be seen in
Fig. 7, and this evolution presumably leads to the complexity
of the helical trajectories even in the absence of Brownian
motion.

V. DISCUSSION

As described in the Introduction, rigid helical filaments
initially oriented parallel to a shear gradient will rotate about
the vorticity axis with a rotation rate that decreases as the helix
aligns in the flow direction. Our simulations and determin-
istic trajectories show, as expected, that the reduction of the
rotation rate increases with the aspect ratio of the bounding
cylinder (a/2 = l/2r, Fig. 2). We find that a is the primary
determinant of the degree of alignment and therefore that it
is relatively insensitive to the other dimensionless ratios that
describe a particular helix [such as the number of turns, n =
�/p, and the pitch angle (related to r/p)], at least in the range
simulated here (4 < a < 20, 1 < n < 29, 0.07 < r/p < 2).
(The thickness of helical filament itself, one particle diameter,
was not varied.)

Qualitatively, this behavior can be understood as follows:
When the helix is aligned in the gradient direction, the effect
of the fluid drag will cause rotation about the vorticity axis
with a rate that is comparable to the shear rate. When the helix
is aligned in the velocity direction, the torque due to the shear
flow, and therefore the rotation rate, is reduced, as with other
high aspect ratio particles. The ratio of the torques in those
two orientations is mostly determined by a = �/r. Decreasing
the pitch p (or, equivalently, increasing n) for a given � will
increase the torque overall but not the asymmetry.

We do find, however, that there are significant deviations
from the degree of alignment that would be predicted by
only considering �/r, particularly for small values of n. The
geometric aspect ratio defined by Eq. (10), based on the ratio
of the torque exerted on the helix held at rest with its axis
along the shear to the torque with its axis in the flow direc-
tion using slender-body theory appropriate for low-Reynolds-
number flow, accurately accounts for those deviations. In fact,
the data displayed in Fig. 6(a) show that rG is approximately
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equal to re, to within statistical uncertainty over the entire
parameter range simulated. However, there is considerable
scatter in the data for large-aspect-ratio helices because of the
relatively small number of complete orbits observed, leaving
the possibility that the behavior in some regimes is more
complex. Using deterministic trajectories calculated in the
slender-body approximation, we are able to show that there
is an appreciable dependence of re on the angle ψ that is not
accounted for in Eq. (10).

While the extent of the flow alignment of the helices
appears to be relatively insensitive to the pitch, it would likely
impact other important physical quantities. As the pitch gets
very small, the tightly wound helix will approach a rigid
cylindrical shell, which we expect would rotate with nearly
complete fluid entrainment except at the ends. By contrast, if

p is large (compared to r), then the amount of fluid displaced
by the helix will be determined by filament length, with a
logarithmic dependence on the filament thickness, and will be
relatively insensitive to the helix radius. Finally, in this study
we have only considered isolated helices, but interactions
between helices, such as the nature of entanglements, will
likely depend on p/r.
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