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Effect of a product on spontaneous droplet motion driven by a chemical reaction of surfactant
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We focus on the self-propelled motion of an oil droplet within an aqueous phase or an aqueous droplet
within an oil phase, which originates from an interfacial chemical reaction of surfactant. The droplet motion
has been explained by mathematical models, which require the assumption that the chemical reaction increases
the interfacial tension. However, several experimental reports have demonstrated self-propelled motion with the
chemical reaction decreasing the interfacial tension. Our motivation is to construct an improved mathematical
model, which explains these experimental observations. In this process, we consider the concentrations of the
reactant and product on the interface and of the reactant in the bulk. Our numerical calculations indicate that the
droplet potentially moves in the cases of both an increase and a decrease in the interfacial tension. In addition,
the reaction rate and size dependencies of the droplet speed observed in experiments were well reproduced using
our model. These results indicate the potential of our model as a universal one for droplet motion.

DOI: 10.1103/PhysRevE.102.023102

I. INTRODUCTION

Interfacial chemical reaction generates variety of interest-
ing phenomena, e.g., convection and fingering pattern forma-
tion [1–3], self-division of droplets [4], growing chemical gar-
dens [5], and self-propelled droplets. There are many reports
on self-propelled objects moving on a liquid-solid interface
or in a liquid phase [6–11]. For example, a solid disk or
liquid droplet can potentially show spontaneous motion on a
water surface [12–19]. Although the substances from which
these objects are composed are different for each experiment,
they all decrease the surface tension of water by dissolving
surfactant molecules from the object [7]. In addition, these
molecules are removed from the water surface by sublimation
and/or dissolution, which forms a concentration gradient on
the water surface resulting in a surface tension gradient. The
ideal symmetric profile is broken by small fluctuations, which
generate a driving force on the object toward the lower-
concentration region, i.e., higher-surface-tension region. The
asymmetric profiles of the concentration and surface tension
around the object are further enhanced by its movement,
namely, the object continues to move. These spontaneous
motions are also observed in an oil droplet sliding on a
solid plate in a surfactant solution [20–25]. In this case, the
hydrophobicity of the plate increases with time due to the
adsorption of the surfactant and decreases due to desorption
from the plate into the oil droplet. In both cases, spontaneous
motion originates from the imbalance between the concentra-
tion fields coupled with the object motion.

We now focus on the self-propelled motion of an oil
droplet in an aqueous phase or an aqueous droplet in an
oil phase, which originates from an interfacial chemical
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reaction of the surfactant [26–31]. The droplet motion is
phenomenologically understood as follows. The surfactant
adsorbs onto the oil/aqueous interface homogeneously, and an
interfacial chemical reaction occurs. At this point, once small
fluctuations break the homogeneous surfactant distribution,
Marangoni flow is generated on the interface due to the
interfacial tension gradient. If the flow enhances the initial
fluctuation, the amplitude of the inhomogeneity increases with
time, i.e., a positive feedback process occurs, and this results
in steady flow, which drives the droplet stably. The question is
how the flow enhances the initial fluctuation.

Several mathematical models have been developed to an-
swer this question. Thutupalli et al. suggested a simple math-
ematical model focusing on the surface concentrations of the
surfactants, which are both the reactant and the product of the
interfacial chemical reaction [28]. In this model they assumed
that the sum of the surface concentrations of the reactant
and the product is homogeneous in space and constant in
time. Namely, the chemical reaction changes only the ratio
of the reactant and product. Marangoni flow is generated
toward the region of higher interfacial tension. Thus, if the
interfacial chemical reaction increases interfacial tension, the
flow carries the products to the region with a high product
ratio. However, in the opposite case, the initial fluctuation is
suppressed. Therefore, the droplet motion requires that the
chemical reaction of the surfactant increases the interfacial
tension. The experimental system had also been modeled by
Schmitt and Stark based on the diffusion-advection-reaction
equation for the covering density difference between the
product and the reactant at the interface [32]. The basic setup
of this model is similar to the Thutupalli model, and thus, the
Schmitt model also required the increase of interfacial tension
for the droplet motion.

Another mathematical model was suggested by Yoshinaga
et al., in which both the bulk and interfacial concentra-
tions of the surfactant were considered and a decomposition
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reaction of the surfactant was assumed [33]. In this case, due
to the decomposition reaction, the surfactant concentration
in the bulk decreases in the vicinity of the droplet. If the
droplet is slightly perturbed, the bulk concentration profile
is distorted. In this time, the bulk concentration around the
droplet increases in the direction of motion, which we call
here the front, and that in the opposite direction decreases.
Therefore, the interfacial tension decreases further in the front
direction, and Marangoni flow is generated from the front to
the back. This flow propels the droplet in the same direction
as the initial perturbation because of momentum conservation.
Hence, the initial perturbation increases with time and the
droplet continuously moves. In this case, the decomposition
reaction at the interface increases the interfacial tension.
Namely, based on both of the mathematical models suggested
previously, the interfacial chemical reaction must increase
interfacial tension for the droplet motion. However, there
are several experimental reports that demonstrate evidence of
the opposite.

One example is a nitrobenzene droplet including di(2-
ethylhexyl) phosphoric acid (DHEPA), which spontaneously
swims in a high-pH aqueous phase where a deprotonation
reaction of DHEPA occurs on the interface [29]. The equi-
librium interfacial tension decreases with an increase in
the surface concentration of deprotonated DHEPA. Namely,
the chemical reaction decreases the interfacial tension. The
droplet, however, spontaneously moves. Another example
is observed in an aqueous droplet of a bromine solution
swimming in a squalane oil phase including the surfactant
monoolein (MO) [28]. In this case, bromination of MO drives
the droplet motion. Systematic measurement of the time series
of interfacial tension revealed that the bromination reaction
decreases the interfacial tension [34]. The droplet, however,
spontaneously moves.

This conflicting experimental evidence demands modifica-
tion of the mathematical model for a self-propelled droplet
driven by an interfacial chemical reaction. Here we modify
the Yoshinaga model to construct an alternative mathematical
model. As we phenomenologically explain above, the essence
of the Yoshinaga model is that the profile of the surfactant
concentration in the bulk drives the droplet motion. In fact,
in the case of the original Yoshinaga model, the chemical
reaction increases the interfacial tension. However, this is a
collateral effect originating from the decomposition reaction.
Thus, if we consider a chemical reaction other than the de-
composition reaction, it may not be a necessary condition that
the chemical reaction increases interfacial tension. To verify
the above hypothesis, we additionally consider the effect
of the product of the interfacial chemical reaction. We expect
the improved model to lead to a universal understanding of
self-propelled objects.

II. MATHEMATICAL MODEL

A. Model

We now modify the Yoshinaga model [33] to expand the
phenomenological explanation of spontaneous droplet motion
to cover various kinds of chemical reactions. In particular,
our purpose is to discuss the droplet motion that occurs

when the interfacial tension decreases after a chemical reac-
tion. Namely, we aim to additionally consider the effect of
the product induced by the chemical reaction. We consider
an axisymmetric droplet system in the bulk, which has a
surfactant concentration c(r, θ ) and velocity field �v(r, θ ) =
(vr (r, θ ), vθ (r, θ )) in the comoving frame with the droplet.
Several assumptions are incorporated into our model, includ-
ing that there are two kinds of surfactants at the interface,
reactant �1(θ ) and product �2(θ ). The adsorption of the
reactant is expressed by the diffusion coefficient D, and the
product �2 is induced by the chemical reaction with reaction
coefficient κ2. Because of the low concentration of the product
in the bulk, adsorption of the products is negligible. There
are no surfactants in the droplet due to their low solubility.
A linear relationship between the interfacial tension γ and
the interfacial concentrations �1 and �2 is assumed as γ =
γ0 − (α�1 + β�2), where γ0 is the interfacial tension without
a surfactant and both α and β are positive constants. Assuming
the shorter relaxation time of fluid dynamics rather than that of
chemical dynamics at the interface, we consider the fluid as in
a steady state induced by the flow at the interface of the droplet
(Marangoni flow). As we are interested in the dynamics near
the critical point of the drift bifurcation, we assume low-
Reynolds hydrodynamics. In this condition, the steady flow
can be obtained as a solution of the Stokes equation with
the interfacial tension gradient as the boundary condition [35]
(see the Supplemental Material for advection velocity [36]).

Numerical simulations are performed using polar coordi-
nates for an axisymmetric two-dimensional system. Under the
above assumptions, our modified model is expressed as
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∂t
+ �v · �∇c = D∇2c − κ (c − c∞), (3)

where (1/R)∂/∂θ is the surface derivative for a sphere, and
κd represents the desorption rate of the product. κ is the
relaxation rate of the reactant concentration in the bulk, and
c∞ is the concentration of the surfactant far from the droplet.
The boundary condition for the bulk is the Dirichlet condition
c(r∞) = c∞, where r∞ indicates the distance far from the
interface, and the linear relation with Henry’s constant κH

at the interface is κH c(R, θ ) = �1(θ ). Because of the linear
relation between the interfacial tension and the concentrations
of the surfactants,

γ = γ0 − (α + β )[(1 − ρ)�1 + ρ�2], (4)

where we set ρ = β/(α + β ). Here, in the case of ρ > 0.5,
the product decreases the interfacial tension more than the
reactant. It means that the chemical reaction of the surfactant
significantly decreases the interfacial tension. In contrast, with
ρ < 0.5, the interfacial tension of the O/W interface with the
reactant is much smaller than that with the product. Hereafter,
we will refer the former case as a “decrease of interfacial ten-
sion after the chemical reaction” and the latter as an “increase
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of interfacial tension after the chemical reaction.” In both
cases, the interfacial tension γ with a surfactant is smaller than
that of pure interface γ0, because the surfactant must decrease
the interfacial tension. In other words, we consider only the
positive values of α and β in this paper.

Let us normalize Eqs. (1)–(3) with dimensionless variables
�̃i = (

√
D/κ/c∞)�i, c̃ = c/c∞, t̃ = κt, r̃ = √

κ/Dr, and
�̃v = �v/

√
Dκ as
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where K1 = κd/κ, K2 = κ2/κ, R̃ = R
√

κ/D, and D̃ = Ds/D.
We also normalize the boundary conditions with constant
KH = κH

√
κ/D as

c̃(r̃∞) = 1, KH c̃(R̃, θ ) = �̃1(θ ), (8)

and advection velocity as
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Here ṽ0 is a function of inverse proportional to viscosity, that
is, ṽ0 represents the mobility of bulk.

B. Results

We assume that the relaxation rate of the reactant in the
bulk κ is significantly faster than the desorption rate of the
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FIG. 1. (a) Typical example of the concentration field c̃(r̃, θ )
(color map) and stream line (red arrows). A white circle at the center
indicates the droplet, and a blue arrow in the circle indicates the
direction of motion. (b) Surfactant profile in the bulk c̃(r̃). The red
solid line shows the concentration at the front [along the red solid
line in (a)], and the blue broken line shows that at the rear [along the
blue broken line in (a)]. Data were obtained from ρ = 0.7, ṽ0 = 5.

product κd , K1 = 0.01, and the reaction rate κ2, K2 = 0.1.
Moreover, the diffusion in the bulk D is faster than that on the
interface Ds, D̃ = 0.1, and Henry’s constant KH = 102. The
initial conditions are given as c̃(r̃, θ ) = 1, �̃1(θ ) = 0.01(1 −
cos θ ), and �̃2(θ ) = 0. Because we want to understand fun-
damental mechanism of the translational motion, we consider
only the simplest case, m = 1, in the advection velocity. Note
that with the higher order solution, a variety of motions such
as rotational or oscillational motion are reported in previous
models [32,35]. The above parameters are fixed as constants
through the simulation.

Initially, to verify our model, we make numerical calcu-
lations with ρ = 0, which means the product has no effect
on the interfacial tension. This situation corresponds to the
Yoshinaga model [33]. As with the previous report [33],
the bifurcation from no motion to continuous motion occurs
with changing bifurcation parameter ṽ0 (see Fig. S1 in the
Supplemental Material [36]). As the dynamics of a droplet
are enhanced by momentum conservation for hydrodynam-
ics, the maximum speed of the fluid at the interface ṽd =
max ṽθ (R̃, θ ) is regarded as the speed of the droplet. Above the
critical value, ṽd increases with ṽ0. Hereafter, we set ṽ0 = 5,
which is sufficiently large to observe the droplet motion.

Next, we consider the situation ρ = 0.7, in which the
product rather than the reactant decreases the interfacial ten-
sion. Figure 1 shows the concentration field c̃(r̃, θ ) and the
velocity field �̃v(�r, θ ) near the droplet in the steady state. Due
to momentum conservation, the droplet moves from right to
left in Fig. 1(a). There is a certain difference between the
concentration in the direction of motion (front) and that in
the opposite direction (rear). In Fig. 1(b), c̃(r̃) has a steeper
gradient at the front than at the rear. In addition, both concen-
trations, �̃1 and �̃2, have their maximum values at the front
and their minimum values at the rear. These inhomogeneous
distributions lead to a spatial gradient of interfacial tension
and consequently Marangoni flow; thus, the droplet starts
to move.

Here we consider the effect of the activity of surfactants
at the interface ρ and the reaction rate K2 on the droplet
motion. The ρ dependency of the droplet speed ṽd is shown in
Fig. 2(a) for different values of K2. The value of ṽd decreases
as the activity of the products increases at low values of
K2. In contrast, the relation between ṽd and ρ is reversed
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FIG. 2. (a) Droplet speed ṽd dependence on ρ for lower K2

(broken lines with open symbols) and higher K2 (solid lines with
filled symbols). (b) Droplet speed ṽd against K2 with various ρ.
Broken lines with open symbols indicate β < 0.5, and solid lines
with filled symbols indicate ρ � 0.5. Dashed vertical line indicates
Kc

2 ∼ 10.

for high values of K2; positive correlations between ṽd and
ρ are observed. The same data are replotted against K2 in
Fig. 2(b). The K2 dependency of ṽd depends on the value
of ρ; ṽd has a peak at approximately K2 = 1 for ρ < 0.5,
whereas ṽd monotonically increases with the value of K2 for
ρ > 0.5. This monotonic increase is due to compensation
of the decrease of the interfacial tension by the reactant.
Although at higher K2, the concentration of the reactant �1

decreases because of saturation of the reaction and that of the
product �2 increases, and it causes a further decrease of the
interfacial tension at the front. In addition, for all values of ρ,
the droplet does not move in the low-K2 region and ṽd appears
to plateau in the high-K2 region. The lack of motion at a
negligible reaction rate K2 = 10−3 indicates that the chemical
reaction is required for droplet motion. As shown in Fig. 2(a),
the negative correlation between ṽd and ρ turns into a positive
one at the crossing point Kc

2 ∼ 10 [Fig. 2(b)], where the
value of speed ṽd is independent of ρ. Here the amounts of
the surfactants at the interface, �̃1 and �̃2, are key factors
because the velocity of the surrounding fluid is calculated as a
function of them in our model.

Because Marangoni flow is originally caused by the chem-
ical gradients, the simple approximation of the chemical gra-
dient ��̃ = max �̃ − min �̃ is an effective way of discussing
the droplet motion. The gradient of the reactant ��̃1 against
K2 has a peak around K2 = 1, and that of the product ��̃2

monotonically increases with the value of K2 except for at
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FIG. 3. Differences between the maximum and minimum values
of surfactants at the interface, ��1 (filled symbols with solid lines)
and ��2 (open symbols with broken lines), against K2 for various
values of ρ.

ρ = 0 (Fig. 3). With K2 smaller than the critical value, ��̃1 is
larger than ��̃2, and the relationship is reversed with the value
of K2 overcoming the critical one. This critical value is of the
same order as the crossing point Kc

2 [Fig. 2(b)]. Moreover,
��̃1 and ṽd seem to have peaks at similar values of K2 for
ρ < 0.5, where the reactant plays a more important role for
decreasing the interfacial tension than the product. In contrast,
ṽd monotonically increases with K2 for ρ > 0.5. These results
indicate that the droplet speed is determined by the interfacial
chemical gradient. In addition, the plateau region for high
values of K2 can also be explained in terms of the chemical
gradient as follows. For high values of K2, almost all reactant
molecules on the interface immediately change to the product,
and the amount of reactant is restricted by the adsorption rate.
This is how the value of max �̃2 is limited, and it confines
the gradient to a finite value. It should be mentioned that
the amount of product desorbed from the interface into the
bulk cannot be ignored in the higher K2 region; hence, we
should consider the concentration of the product in the bulk.
Note that, in the cases of K2 � 102 with ρ = 0 or K2 � 10−3

with any value of ρ, no chemical gradient ��̃i = 0 (i = 1, 2)
causes any motion of the droplet. Isotropic distribution of the
surfactant around the droplet is developed in these situations.

We also investigated the dependence of droplet speed ṽd on
the desorption rate K1 and diffusion on an interface D̃. Except
for K1 � 101 with ρ = 1 and D̃ � 1 with any value of ρ, for
which the droplet does not move, these parameters have less
effect on ṽd .

III. EXPERIMENTS

A. Material and method

1-Oleoyl-rac-glycerol (monoolein, MO; purity > 99%)
was purchased from Sigma-Aldrich and used without further
purification. Water was purified using a Milli-Q system (Ul-
trapure Water Direct-Q 3UV, Merck). MO was dissolved in
squalane (10 mM), and the solution was used as the oil phase.
The aqueous phase was a mixture of sodium bromate (0.4 M)
and sulfuric acid (0.0–1.8 M), with ferroin (4.0 mM) as a
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FIG. 4. (a) Trajectory of the droplet motion. The aqueous droplet
is composed of BrO−

3 (0.4 M) and H2SO4 (1.8 M). The color of the
trajectory indicates the time. (b) Time series of speed. (c) Average
speed of droplet motion as a function of concentration of H2SO4.
The error bars indicate standard deviation of speed in time.

redox indicator. An aqueous droplet (0.2 μl) was prepared
and added into the oil phase using a micropipette. Droplet
motion was monitored using an optical microscope (Nikon,
SMZ1000, frame rate 1 fps).

B. Results

The aqueous droplet, which is composed of BrO−
3 and

H2SO4, spontaneously moved with almost constant speed in a
monoolein-squalane solution [Figs. 4(a) and 4(b)]. The speed
of the droplet increased with an increase in the H2SO4 concen-
tration in the aqueous droplet [Fig. 4(c)]. When [H2SO4] =
0.0 M, the droplet speed was almost 1 μm s−1, which was
slow but much faster than the fluctuation (Brownian motion)
of a droplet of 1 mm diameter. The speed gradually increased
with [H2SO4] up to 0.9 M and drastically increased over
0.9 M. In the strong acidic condition, the decomposition
process of the BrO−

3 is accelerated, and, in consequence, the
brominated MO becomes abundant at the interface. Therefore,
we regard the concentration of H2SO4 as a kind of accelerator
of reaction rate. Note that with high concentration of H2SO4

in droplets, fluctuation also drastically increased.

IV. DISCUSSION

In the experiments, H2SO4 and BrO−
3 produce Br2 in the

aqueous phase. In the presence of Br2, the α bromination
of carbonyl compounds of the MO occurs in a highly acidic
solution, and the reaction rate is proportional to the concen-

tration of H2SO4 [34]. It means that κ2 is proportional to the
concentration of H2SO4. The concentration of MO in the bulk
is represented as c in our model, and surface concentration
of MO and brominated MO on the droplet correspond to �1

and �2, respectively. Our observation suggests that a higher
reaction rate induces faster droplet motion [Fig. 4(c)].

Let us compare the numerical results with the experimental
observations to validate our model. As shown previously, our
droplet moves even in the case of ρ > 0.5. This condition
corresponds to the decrease in interfacial tension after the
chemical reaction. In the experiments, with the increase in
the concentration of H2SO4, the droplet speed also increases
[Fig. 4(c)]. According to the previous experimental report
[34], we obtain K2/K1 = κ2/κd ≈ 10[H2SO4], and ρ = 0.75;
that is, the increase in concentration of H2SO4 causes an
increase in the reaction rate K2. In our model, the droplet
speed monotonically increases with reaction rate K2 for ρ >

0.5 (see also magenta triangles with solid line in Fig. 2(b)),
which shows good agreement with the experiments.

Moreover, this K2 dependency can be applied to the pH-
dependent motion of a nitrobenzene droplet including DHEPA
[29]. The droplet spontaneously moves in the high-pH aque-
ous phase, which enhances deprotonation. In the high-pH
condition, deprotonated DEHPA becomes rich at the inter-
face, and only deprotonated DEHPA decreases the interfacial
tension. Namely, the droplet dynamics drastically change
from immobile to spontaneous swimming with increasing pH,
which corresponds to Fig. 2(b) in the case of ρ ∼ 1.

In addition, the effect of droplet size on the swimming
speed is also confirmed in our model. There is a peak in the
droplet speed ṽd for the radius R̃ at any value of ρ (see Fig. S2
in the Supplemental Material [36]). This result corresponds
to the theoretical analysis in the Yoshinaga model [33]. In
previous experimental reports, the larger droplets swam faster
in the bulk [29,37]; the droplet in our model also becomes
faster with increasing R̃ below the peak. These agreements
support the validity of our model.

We should mention the amounts of surfactants at the inter-
face. Here we consider the dominant species at the interface:
the reactant and product. For rough estimation, we ignore
the spatial gradient of the surfactants at the interface; this is
a reasonable assumption because the value of ��̃ is much
smaller than that of �̃. Under the assumption of a homoge-
neous distribution, the ratio of �̃1 and �̃2 in steady states
can be easily obtained from Eq. (6) as ( max �̃1/ max �̃2) ≈
(K1/K2). This rough estimation is verified by the results of
the numerical calculations (see Fig. S3 in the Supplemental
Material [36]). This means that the reactant is dominant at low
values of K2, but the product shifts to become the dominant
species with increasing K2. The dominant species can approx-
imately explain the ρ dependency of ṽd , as shown in Fig. 2(a),
although it should be emphasized that it is inadequate because
negative correlation is still observed for K2 = 10−1, whereas
the dominant surfactant has already reversed at K1 = K2 =
10−2. Note that it takes significantly longer to achieve the
steady states of maximum values max �̃ than those of the
chemical gradients ��̃ and advection velocity �v.

Here we discuss the mechanism of a swimming droplet
in bulk (Fig. 5). The key factor in the droplet dynamics
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FIG. 5. Schematic illustration of the mechanism of droplet motion.

is the gradient of the bulk concentration of surfactant. The
initial fluctuation of the surfactant concentrations in the bulk
induces similar fluctuation at the interface and leads to inho-
mogeneous interfacial tension, resulting in Marangoni flow.
Due to Marangoni flow and momentum conservation, the
droplet moves to the region of higher surfactant concen-
tration. The concentration of the surfactant at the interface
becomes slightly higher at the front than at the rear, there-
fore enhancing the inhomogeneous distribution of the sur-
factant further. Namely, a positive feedback appears between
the concentration gradients and the droplet motion. This
mechanism does not conflict with the previously proposed
ones [34,35].

In the previous models, the increase in interfacial tension
after the chemical reaction was necessary for continuous
droplet motion [28,32,33]. However, as shown by experimen-
tal results [29,34], a droplet potentially shows spontaneous
motion when the interfacial tension decreases after the chem-
ical reaction. As shown above, the droplet moves even in the
case of ρ > 0.5, which corresponds to a decrease in interfacial
tension after the chemical reaction. These results indicate that
the droplet motion is unaffected by whether the interfacial
tension increases or decreases.

V. CONCLUSION

In this paper, we constructed an improved model for spon-
taneous droplet motion in bulk to explain the experimental
observations in which the interfacial tension decreases after
the chemical reaction at the interface. We considered the con-
centration of two kinds of chemical species on the interface,
reactant and product, and the reactant in the bulk. This model
enables us to discuss the effect of the product activity on the
interfacial tension. By varying the ratio of activity of the re-
actant and product, ρ, we revealed that the droplet potentially
moves under any value of ρ. In addition, the droplet speed
monotonically increases with reaction rate K2 when ρ > 0.5,
which agrees with experimental results [29,34]. Because our
motivation is to construct such an improved model, we only
considered the simplest case of the solution with m = 1 in
Eqs. (9)–(12). As mentioned above, the higher order solution
m > 1 causes bifurcation of a droplet motion, e.g., rotation
[32,35]. To evaluate the contribution of the bifurcation of the
droplet motion due to a higher order solution is future work.
Although the phenomenological explanation of the droplet
motion is similar to the previously proposed one [33], our
results indicate that it makes no difference to the droplet
motion whether the interfacial tension increases or decreases
with chemical reaction of the surfactant. This nondependency
allows the restriction of droplet motion that was required
in previous models to be relaxed [28,32,33]. We expect this
moderation of the requirement to provide an explanation for
the droplet dynamics in various kinds of experimental sys-
tems. In addition, the droplet system shows similarity to other
self-propelled systems, e.g. a droplet or disk sliding on a water
surface, from the perspective of the dynamical mechanism.
Namely, the droplet motion occurs via the coupling of the bulk
concentration profile and its movement.
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