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Subject to an applied electric field, soft dielectrics with intrinsic low moduli can easily achieve a large defor-
mation through the so-called electrostatic Maxwell stress. Meanwhile, the highly nonlinear electromechanical
coupling between the mechanical and electric loads in soft dielectrics gives a variety of failure modes, especially
pull-in instability. These failure modes make the application of soft dielectrics highly limited. In this paper, we
investigate the large deformation, pull-in instability, and electroactuation of a graded circular dielectric plate
subject to the in-plane mechanical load and the applied electric load in the thickness direction. The results
obtained herein cover, as special cases, the electromechanical behaviors of homogeneous dielectrics. There
is a universal physical intuition that stiffer dielectrics can sustain higher electromechanical loads for pull-in
instability but achieve less deformation, and vice versa. We show this physical intuition theoretically in different
homogeneous dielectrics and graded dielectrics. Interestingly, we find that the ability to sustain a high electric
field or a large deformation in a stiff or soft homogeneous circular dielectric plate can be achieved by just using a
graded circular dielectric plate. We only have to partly change the modulus of a circular plate, with a stiff or soft
outer region. The change makes the same electromechanical behavior as that of a homogeneous dielectric, even
increases the maximum electroactuation stretch from 1.26 to 1.5. This sheds light on the effects of the material
inhomogeneity on the design of advanced dielectric devices including actuators and energy harvestors.
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I. INTRODUCTION

Soft dielectrics have intrinsically low elastic stiffness and
can be easily deformed to achieve significantly large deforma-
tions by applying an external electric field. The mechanism for
the large deformation can be attributed to the highly nonlinear
electromechanical coupling between mechanical and electric
fields. By harnessing the electrically activated large defor-
mation and the rich variety of electromechanical behaviors,
soft dielectrics have been investigated for numerous tanta-
lizing applications in soft actuators [1–5], humanlike robots
[6,7], stretchable electronics [8,9], energy harvesters [10–15],
among others.

Large deformations in soft dielectrics invariably lead to the
possibility of electromechanical failure. Some standard modes
of failure are briefly listed here, for example, the electrome-
chanical instability [16–32], rupture by stretch [17,33], and
electric breakdown [1,16,17,34,35]. Moreover, the electrome-
chanical instability can be simply classified into a number
of types: pull-in instability [16–19,21–24], electrobuck-
ling [25–27], electrowrinkling [28–30], and electrocreasing
[30,31], bursting drops in solid dielectrics [32], among oth-
ers. Electromechanical instabilities are often thought to be
detrimental to the functionality of the device composed of
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dielectric electroactive polymers (EAPs); therefore, a num-
ber of approaches have been used to suppress or avoid the
electromechanical instabilities in soft dielectric devices. On
the other hand, instabilities can be harnessed for numerous
applications such as producing true musclelike actuation [36],
generating hierarchical topographical patterns [37], achieving
giant voltage-triggered deformation via snap-through [38,39],
among others [40–42].

In this paper, we focus on large deformation, pull-in in-
stability, and electroactuation of a circular plate of dielectric
elastomers. Consider a simple but classic dielectric elastomer
actuator [1,2,23] that is made of a dielectric thin film sand-
wiched between two compliant electrodes. Upon application
of a voltage difference between the top and bottom electrodes,
the dielectric film thins down in thickness and expands in area
due to the so-called Maxwell stress. When the applied voltage
increases up to the threshold, the dielectric film cannot sustain
the electric load any more and then pull-in instability occurs.

To make a better understanding of the large deformation
of a dielectric film actuator, we plot a schematic (see Fig. 1)
to show how the circular dielectric plate deforms under the
combination of the electromechanical loads. Detailed descrip-
tions can be found in the caption. Theoretical results [18,41]
show that in the absence of the prestress the maximum actu-
ation stretch is 1.26. The functionality of a dielectric actuator
is highly restricted by the maximum actuation stretch and
the critical nominal electric field. Therefore, elaborate efforts
have been made to suppress or avoid the onset of pull-in
instability, and then increase the maximum electroactuation
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FIG. 1. Schematic of the large deformation and pull-in instability
of dielectric elastomers subjected to electromechanical loads. An
undeformed circular dielectric plate with radius R is marked by a
square (�) on the horizontal axis at λ = 1. In stage one, the circular
plate is only subjected to a purely mechanical load and the radius
continuously increases to λpR as the force increases to F , which is
marked by a circle (•). In stage two, we keep the magnitude of the
force F and begin to increase the applied voltage � in the thickness
direction. As the applied voltage increases to the threshold [marked
by a star (�) on the curve], the circular dielectric plate expands its
radius to λ�R and cannot sustain the applied voltage any more. At this
moment, pull-in instability occurs and then the circular plate thins its
thickness quickly and expands its in-plane area dramatically until the
occurrence of electric breakdown. The schematic of the molecular
chains at three different states are also plotted.

and the critical nominal electric field. For instance, either a
pre-stretch [15,18,24,43] or a material with load-dependent
stiffening [44,45] can be used to suppress or delay pull-in
instability and then increase the actuation strain.

Motivated by the theoretical thresholds of the maximum
actuation stretch and the critical nominal electric field of a ho-
mogeneous dielectric film in the work [18,41], we investigate
the effects of material heterogeneity on the large deformation,
pull-in instability, and electroactuation of an inhomogeneous
dielectric film. To avoid a complicated mathematical pre-
sentation and highlight the physical implications behind the
material heterogeneity, we consider an inhomogeneous cir-
cular dielectric plate whose modulus varies along the radial
direction in our theoretical model. The idea of a graded mod-
ulus can also be found in the analysis of surface instability
of compressed soft materials [46]. In this paper, we would
like to seek how the varied modulus affects the nonlinear
electromechanical coupling, and under which condition pull-
in instability can be delayed and the circular dielectric plate
can achieve a relatively large electroactuation strain.

This paper is organized as follows. Section II is about
the basic formulation of the electromechanical coupling of a
graded circular dielectric plate subjected to an in-plane trac-
tion force and an applied voltage in the thickness direction. In
Sec. III, we carry out our analysis by considering a graded
neo-Hookean solid. We solve the boundary-value problem
analytically and then use the linear bifurcation analysis to
derive the condition for the onset of pull-in instability. Results

FIG. 2. Schematic of the deformation of a circular dielectric
plate subjected to an electric voltage � in the thickness direction and
a dead load S in the radial direction. The modulus of the dielectric
elastomer can vary with the radius, i.e., the shear modulus μ(R) is
a function of the radius R. The circular plate is coated with two
compliant electrodes on the top and bottom surfaces. (a) Undeformed
circular plate with radius B and thickness H . (b) Deformed circular
plate with thickness h = λ3H and each electrode gains an electric
charge of magnitude Q.

and discussions are given in Sec. IV. Concluding remarks and
possible future research are given in Sec. V.

II. FORMULATION

Consider a circular dielectric plate with radius B and thick-
ness H in the undeformed state (see Fig. 2). Taking the
cylindrical coordinates (R,Θ, Z ) with an orthonormal basis
(eR, eΘ, eZ ), the domain of the circular dielectric plate in the
reference configuration is represented by

�R = {(R,Θ, Z ) ∈ R3 : 0 � R � B,

0 � Θ < 2π, 0 � Z � H}. (1)

The mechanical boundary condition on the lateral surface
is

TeR = SeR at R = B, (2)

where T is the total nominal stress and S is the traction force
on the lateral surface. On the top and bottom surfaces, the
mechanical boundary conditions are

TeZ = 0 at Z = 0, H, (3)

while the electric boundary conditions are

ξ = 0 at Z = 0 and ξ = � at Z = H, (4)

where ξ is the electric potential and � is an applied voltage.
The nominal electric field is defined as

Ẽ = �

H
eZ = ẼeZ . (5)

Note that Ẽ in (5) comes from the Maxwell equations Ẽ =
−∇ξ and ∇ · D̃ = 0, the relation between Ẽ and D̃, as well as
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the electric boundary conditions (4). Here we omit the tedious
mathematical calculations for simplicity.

A. Large deformation

Subject to the nominal electric field Ẽ in the thickness
direction (the Z direction) and a uniform traction force S in
the radial direction1, the circular dielectric plate expands its
in-plane area and decreases its thickness from H to h = λ3H .
Here the stretch λ3 is assumed to be a constant that is in-
dependent of the position. Therefore, only the homogeneous
thinning phenomena of electromechanical couplings are ad-
dressed in this paper. Generally, the deformed thickness of
the dielectric elastomer can vary with the coordinates, which
makes the inhomogeneous thinning possible, for example, the
electrocreasing instabilities in soft electroactive elastomers
[31].

In addition to the homogeneous thinning, i.e., a constant
stretch λ3, we consider the cylindrical deformation in which
the deformation x has the following component form:

r = r(R), θ = Θ, z = λ3Z. (6)

We remark that the cylindrical deformation is just one of
the admissible deformations. Other deformations may also
exist during the homogeneous thinning of the dielectric elas-
tomer, but they are out of the scope of this paper.

By the cylindrical deformation (6), the deformation gra-
dient F in the cylindrical coordinates has the following
component form, which is represented by a diagonal matrix,

F := diag
(

r′,
r

R
, λ3

)
. (7)

Here and henceforth, the prime denotes the partial derivative
with respect to R. For simplicity, we take the following nota-
tions:

x = x(R) = r′ and y = y(R) = r

R
. (8)

Incompressibility requires that the Jacobian J must be one,
i.e.,

J = det F = r′ r

R
λ3 = xyλ3 = 1. (9)

B. Mechanical and electric stresses

The total nominal stress T is denoted by

T = ∂W e

∂F
+ T M − κF−T . (10)

Here W e is the strain-energy function of the purely elas-
tic part, T M is the nominal Maxwell stress, κ serves as the
Lagrange multiplier, and F−T is the inverse of the transpose
FT . For a linear dielectric (see, for example, [41,47]), the
dielectric constant ε is constant2 and the nominal Maxwell

1The resultant force on the outer surface is equal to S 2πBH . We
remark that the nominal electric field Ẽ and the dead load S are
constant during the thinning of the circular dielectric plate.

2The dielectric constant can vary with the strain, which is known
as electrostriction; see, for example, [49,50]. The varied dielectric
constant is not considered in this paper.

stress T M can be expressed as

T M = 1

εJ
(FD̃) ⊗ D̃ − 1

2εJ
|FD̃|2F−T , (11)

where “⊗” denotes the tensor product and D̃ is the nominal
electric displacement. The relation between D̃ and the nominal
electric field Ẽ for a linear dielectric is

D̃ = εJC−1Ẽ, (12)

where C−1 is the inverse of the right Cauchy-Green tensor C =
FT F.

Since the deformation gradient F is represented by a di-
agonal matrix in (7), the right Cauchy-Green tensor is C :=
diag (x2, y2, λ2

3) and its inverse is C−1 := diag (x−2, y−2, λ−2
3 ).

By (5), the nominal electric displacement in (12) is

D̃ = εẼλ−2
3 eZ , (13)

and then the nominal Maxwell stress in (11) is

T M := εẼ2λ−2
3

2
diag

( − x−1,−y−1, λ−1
3

)
. (14)

Assuming isotropy, the strain-energy function W e(F ) de-
pends on the deformation gradient F through the principal
stretches x, y, and λ3 in (7), i.e., W e(F ) = W e(x, y, λ3). Then
the elastic stress tensor can be expressed as

∂W e

∂F
− κ (R)F−T := diag

(
∂W e

∂x
− κ (R)x−1,

∂W e

∂y
− κ (R)y−1,

∂W e

∂λ3
− κ (R)λ−1

3

)
. (15)

It follows from (14) and (15) that the total nominal stress T in
(10) is

T := diag (T1, T2, T3), (16)

where the principal stresses are

T1 = ∂W e

∂x
−

(
κ (R) + εẼ2λ−2

3

2

)
x−1,

T2 = ∂W e

∂y
−

(
κ (R) + εẼ2λ−2

3

2

)
y−1,

T3 = ∂W e

∂λ3
−

(
κ (R) − εẼ2λ−2

3

2

)
λ−1

3 . (17)

C. Equilibrium equation and boundary conditions

Without the body force, the equilibrium equation reads
Div T = 0. By (16) and the divergence in cylindrical coordi-
nates, we obtain the only nontrivial equation,

∂T1

∂R
+ T1 − T2

R
= 0. (18)

By (16), the boundary conditions (2) read

T1 = S at R = B, (19)

and the boundary conditions (3) are

T3 = 0 at Z = 0, H. (20)
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Note that T1, T2, and T3 in (18) are defined by (17). Here we
would like to further simplify expression of the equilibrium
equation. Consider the following term,

d

dR
(x−1) + 1

R
(x−1 − y−1) = −x−2 dx

dR
+ 1

R
(x−1 − y−1).

(21)
By (8), we have the derivative y′ = 1

R (r′ − r
R ) = 1

R (x − y).
In addition, taking the partial derivative of the constraint (9)
with respect to R, we have x′y + xy′ = 0. Thus, we obtain
x′ = −xy′/y = − x(x−y)

Ry and −x−2x′ = (x−y)
Rxy = 1

R (y−1 − x−1).
Hence, the term (21) is equal to zero and the equilibrium
equation (18) is then written as

∂

∂R

(
∂W e

∂x
− κx−1

)

+ 1

R

(
∂W e

∂x
− ∂W e

∂y
− κ (x−1 − y−1)

)
= 0. (22)

By the chain rule, we have ∂
∂R = ∂y

∂R
∂
∂y = 1

R (x − y) ∂
∂y ,

where the derivative ∂y
∂R = 1

R (x − y) is used. Therefore, the
equilibrium equation (22) can be further recast as

(x − y)
∂

∂y

(
∂W e

∂x
− κx−1

)

+
(

∂W e

∂x
− ∂W e

∂y
− κ (x−1 − y−1)

)
= 0. (23)

D. Summary of the boundary-value problem

Based on the analysis in Secs. II A–II C, we summarize the
boundary-value problem (BVP) of the nonlinear electrome-
chanical coupling of a deformable graded circular plate in the
reference configuration as follows:

Kinematics :

x = r′, y = r

R
, xyλ3 = 1,

Equilibrium equation :

(x − y)
∂

∂y

(
∂W e

∂x
− κx−1

)

+
(

∂W e

∂x
− ∂W e

∂y
− κ (x−1 − y−1)

)
= 0,

Mechanical BCs :

∂W e

∂x
−

(
κ (R) + εẼ2λ−2

3

2

)
x−1 = S at R = B,

∂W e

∂λ3
−

(
κ (R) − εẼ2λ−2

3

2

)
λ−1

3 = 0 at Z = 0, H. (24)

In the following sections, we specialize the above BVP
(24) to a graded neo-Hookean dielectric and discuss the
electromechanical behavior including the large deformation,
pull-in instability, and the electroactuation. Note that the neo-
Hookean model is able to give good agreement with the
experiment data at small and moderate strains. However, an
apparent discrepancy is found at large strains. The Gent model
is usually used to capture the stress-strain relation of an elas-
tomer with nearly full stretched molecular chains [48].

III. GRADED NEO-HOOKEAN DIELECTRICS

Consider a graded neo-Hookean dielectric of which the
strain-energy function is

W e(F, X ) = μ(X )

2
(|F|2 − 3), (25)

where μ(X ) is the shear modulus. Note that μ(X ) is no
longer a constant. It can vary with respect to the cylindrical
coordinates R, Θ , and Z .

In this paper, we consider the cylindrical deformations (6)
and the related deformations have cylindrical symmetry. To
simplify the mathematical derivations, we reduce the gener-
ally graded shear modulus μ(X ) as a function of only the
radius R, i.e., see μ(R) in Fig. 2; however, the spirit of the
effects of graded materials on the nonlinear electromechanical
coupling is still kept. By (7) and (8), we have |F|2 = F : F =
Fi jFi j = x2 + y2 + λ2

3, then the strain-energy function (25)
can be expressed as

W e = μ(R)

2

(
x2 + y2 + λ2

3 − 3
)
. (26)

By substituting (26) into the BVP (24), the equilibrium equa-
tion is

(x − y)
∂

∂y
(μx − κx−1) + (μ(x − y) − κ (x−1 − y−1)) = 0,

(27)
the mechanical boundary conditions are

μx −
(

κ + εẼ2λ−2
3

2

)
x−1 = S at R = B, (28)

and

μλ3 −
(

κ − εẼ2λ−2
3

2

)
λ−1

3 = 0 at Z = 0, H. (29)

The boundary condition (29) indicates that the Lagrange
multiplier κ (R) has the following relation with respect to the
graded shear modulus, namely

κ (R) = μ(R)λ2
3 + εẼ2λ−2

3

2
. (30)

It follows from (28) and (30) that

μ(B)x − (
μ(B)λ2

3 + εẼ2λ−2
3

)
x−1 = S at R = B. (31)

Now the BVP only consists of (27) and (31) as well as the
equations for kinematics.

A. Solution of the boundary-value problem

Consider the kinematics in the BVP (24). It follows from
the constraint of incompressibility, xyλ3 = 1, that rdr =
λ−1

3 RdR. Integrating both sides, we have

r(R) =
√

λ−1
3 R2 + C0, (32)

where C0 is the constant of integration. By the fact that the
center point, R = 0, of the circular plate is undeformed during
the electromechanical loading process, i.e., r(0) = 0, we have
C0 = 0. Then (32) is reduced to

r(R) = λ
−1/2
3 R. (33)
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Now the principal stretches in (8) become

x = y = λ
−1/2
3 . (34)

It follows from x = y in (34) that the equilibrium equation
(27) is automatically satisfied. And the only left equation is
(31) that is finally represented by

εẼ2

μ(B)
= (

λ3 − λ4
3

) − S

μ(B)
λ

3/2
3 . (35)

In the algebraic equation (35), if we fix the value of the
dead load S, we can consider the applied nominal electric Ẽ as
an independent variable, while the stretch λ3 in the thickness
direction is the dependent variable. On the other hand, we
can fix the applied nominal electric Ẽ and consider the dead
load S as an independent variable, while the stretch λ3 is also
the dependent variable. To show the above statement, we can
write (35) as follows:

F (λ3; Ẽ , S) = εẼ2

μ(B)
+ S

μ(B)
λ

3/2
3 − (

λ3 − λ4
3

) = 0. (36)

For a given pair of electromechanical loads (Ẽ , S), there
exists one or multiple roots of λ3 in (36). However, only
the roots in the range (0, 1] have physical meanings, i.e., the
circular dielectric plate shrinks its thickness due to both the
dead load in the radial direction and the applied electric field
in the thickness direction. Other solutions may be complex
roots or negative numbers or positive numbers but greater than
1; and these solutions, of course, have no physical meaning.
Therefore, we only consider the roots of λ3 in the range (0, 1].
Unfortunately, there may exist one or multiple roots or even no
roots of λ3 in the range (0, 1]. In the following, we will discuss
the uniqueness of the solution to (36), which is actually the
bifurcation analysis in mathematics but is regarded as the
analysis of pull-in instability in this paper.

B. Stability analysis

The stability analysis here is actually the analysis of the
uniqueness of the solutions to the algebraic equation (36). In
the beginning, we consider the case of zero loads (Ẽ , S) =
(0, 0) in (36), which indicates a root of λ3 = 1, and there is no
deformation in the circular dielectric plate. As the loads (Ẽ , S)
increase, the circular dielectric plate is gradually compressed
in the thickness direction, i.e., the stretch λ3 continually de-
creases from 1.

As the stretch λ3 decreases to the critical value λ�
3 at the

critical loads (Ẽ �, S�), the circular plate cannot sustain the
electromechanical loads any more, and then the thickness de-
creases dramatically if the loads slightly surpass the threshold.
The phenomenon is called the occurrence of pull-in instabil-
ity. The limiting point is denoted by (λ�

3; Ẽ �, S�), which, of
course, satisfy the equilibrium equation (36), such that

F (λ�
3; Ẽ �, S�) = ε(Ẽ �)2

μ(B)
+ S�

μ(B)
(λ�

3)3/2 − [λ�
3 − (λ�

3)4] = 0.

(37)
By the implicit function theorem, the stretch λ3 in (36)

can be written as a function of Ẽ , i.e., λ3 = λ̄3(Ẽ ; S�), in the
neighborhood of Ē � only if the partial derivative ∂F/∂λ3 is
nonzero at the limiting point (λ�

3; Ē �, S�). On the other hand,

the stretch λ3 in (36) can be expressed as a function of S,
i.e., λ3 = λ̂3(S; Ẽ �), around S� only if ∂F/∂λ3 is nonzero
at (λ�

3; Ē �, S�). Therefore, the condition for nonuniqueness
solutions at the critical loads (Ē �, S�) is given by

∂F

∂λ3
(λ�

3; Ẽ �, S�) = 3

2

S�

μ(B)
(λ�

3)1/2 − [1 − 4(λ�
3)3] = 0. (38)

In contrast to the equilibrium equation (37), Eq. (38) is
the necessary condition for the existence of other solutions
bifurcating from the trivial solution. In this paper, Eq. (38)
is regarded as the condition for the occurrence of pull-in
instability.

There are three parameters λ�
3, Ẽ �, and S� in the two al-

gebraic equations (37) and (38). Therefore, either Ẽ � or S�

should be given if we want to solve the two algebraic equa-
tions. Since both the nominal electric field and the dead load
are fixed values during the large deformation, we can track
the onset of pull-in instability in two ways. For the first way,
we can take the dead load as a properly given value S� and
gradually increase the magnitude of the nominal electric field
Ẽ from zero. When Ẽ increases to the threshold Ẽ �, pull-in
instability occurs and the corresponding value of λ3 is denoted
by λ�

3. The values of (λ�
3, Ẽ �) are the solutions to both (37) and

(38) for a fixed S�. In other words, for a properly given S�, Ẽ �

is the critical electric field and λ�
3 is the critical stretch. For

the second way, we can fix Ẽ � at a properly given value and
gradually increase the dead load from zero. When S increases
to the threshold S�, pull-in instability occurs.

IV. RESULTS AND DISCUSSIONS

A. Large deformation and instability of homogeneous dielectrics

For a homogeneous circular dielectric plate (see Fig. 2), the
constant shear modulus is given by μ(R) = μ0, 0 � R � B.
For the stability analysis, the critical stretch λ�

3 at the onset
of pull-in instability is obtained from (37) and (38) as λ�

3 =
( 1

4 )
1/3 = 0.63, and the critical electric field is Ẽ �

√
ε/μ0 =

0.69. These two critical values are reported by Zhao and Wang
in their stability analysis [see the paragraph below Eq. (30) in
the work [41]].

In general, we represent the behaviors of the large defor-
mation of a homogeneous circular dielectric plate in Fig. 3.
The conditions for the onset of pull-in instability correspond
to the peak of each curve.

In Fig. 3(a), we show the change of the stretch λ3 in the
thickness direction with the increase of the dead load S/μ0

under several electric fields, i.e., Ẽ
√

ε/μ0 = 0, 0.1, 0.2, 0.3.
For the curve corresponding to a zero electric field, the stretch
λ3 decreases from 1 as the dead load S/μ0 increase from
zero, which means that the circular plate expands its in-plane
area but shrinks its thickness. Note that the dead load S/μ0

increases monotonically with the decrease of the thickness
(λ3) and there is no peak in the curve corresponding to a zero
electric field. However, the monotonic function only exists for
the case of a zero electric field, and nonmonotonic functions
occur when the applied electric field is nonzero. To show
the effects of the electric field on the large deformation and
pull-in instability, we plot three more curves in Fig. 3(a) and
find that a larger electric field can compress the circular plate
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FIG. 3. Large deformation of a homogeneous circular dielectric plate with shear modulus μ0 subject to electromechanical loads. Under
several nominal electric fields Ẽ/

√
μ0/ε = 0, 0.1, 0.2, 0.3: (a) stretch λ3 vs S/μ0, (b) radial stretch 1/

√
λ3 vs S/μ0. On each curve, the

critical point for the onset of pull-in instability is marked by a star (�). Dashed curves represent the unstable equilibrium states. Under several
mechanical loads S̄ = S/μ0 = 0, 0.5, 1, 2: (c) stretch λ3 vs Ẽ/

√
μ0/ε, (d) radial stretch 1/

√
λ3 vs Ẽ/

√
μ0/ε. On each curve, the critical point

for the onset of pull-in instability is marked by a star (�). Dashed curves represent the unstable equilibrium states.

more easily. When the circular plate is compressed to the
threshold, i.e., the peak denoted by a star “�” on each curve, it
cannot sustain the electromechanical loads any more and then
pull-in instability occurs. In contrast to the solid curves for
the stability parts, the instability parts are plotted by dashed
curves. In Fig. 3(b), we plot the variation of the radial stretch
1/

√
λ3 with the increase of the dead load S/μ0 under the

same electric field. The large expansion of the radius of the
circular plate can make it as an ideal candidate for electric
actuators. Also, the onset of pull-in instability is denoted
by a star “�” and the instability parts are plotted by dashed
curves.

With the increase of the nominal electric field Ẽ
√

ε/μ0

under several dead loads, i.e., S/μ0 = 0, 0.5, 1, 2, we show
the change of the stretch λ3 in Fig. 3(c) and the change
of the radial stretch 1/

√
λ3 in Fig. 3(d). Subject to purely

electric loads, the stretch λ3 decreases from 1 and the radial
stretch 1/

√
λ3 increases from 1 when the nominal electric

field increases from 0. When Ẽ
√

ε/μ0 increases to the thresh-
old, pull-in instability occurs. If one curve corresponds to a
larger dead load S/μ0, the peak in that curve corresponds to a
smaller critical nominal electric field, implying that the dead
load can assist the occurrence of pull-in instability. When the

electromechanical load surpasses the threshold, the thickness
decreases rapidly and the in-plane area increases dramatically
until the onset of electric breakdown.

B. Stiffer or softer homogeneous dielectrics

In contrast to homogeneous material I with constant shear
modulus μ0 in Sec. IV A, we consider another homoge-
neous material (material II) whose shear modulus is given by
μ(R) = μγ , 0 � R � B, where μγ is a constant. Materials
I and II are assumed to have the same constant dielectric
permittivity ε in this paper.

In order to compare the electromechanical behaviors of dif-
ferent homogeneous dielectric elastomers subject to the same
electromechanical load, we normalize the electromechanical
quantities by using the shear modulus μ0 and the dielectric
permittivity ε. Then we can compare the large deformation,
pull-in instability, and electroactuation between different di-
electric elastomers under the same electromechanical load.

We adopt a scaling in which electric field is measured
relative to

√
μ0/ε, and dead load and shear modulus are mea-

sured relative to μ0. This leads to the following dimensionless
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FIG. 4. Large deformation of three different homogeneous circular dielectric plates (γ = 0.5, 1, 2) subject to the purely mechanical load:
(a) stretch λ3 vs S̄ = S/μ0, (b) radial stretch 1/

√
λ3 vs S̄, (c) stretch λ3 vs Ē = Ẽ/

√
μ0/ε, (d) radial stretch 1/

√
λ3 vs Ē . On each curve, the

critical point for the onset of pull-in instability is marked by a star (�). Dashed curves represent the unstable equilibrium states.

measures:

Ē = Ẽ√
μ0/ε

, S̄ = S

μ0
, Ē � = Ẽ �

√
μ0/ε

,

S̄� = S�

μ0
, γ = μγ

μ0
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(39)

By (39), the equilibrium equation can be rearranged as

Ē2 + S̄λ
3/2
3 − γ

(
λ3 − λ4

3

) = 0, (40)

while the stability conditions are

(Ē �)2 + S̄�(λ�
3)3/2 − γ [λ�

3 − (λ�
3)4] = 0,

3

2
S̄�(λ�

3)1/2 − γ [1 − 4(λ�
3)3] = 0.

⎫⎬
⎭ (41)

We remark that if the positive constant ratio γ = μγ /μ0

is greater (less) than one, material II is stiffer (softer) than
material I. In the following, we will discuss the electrome-
chanical behaviors of stiffer or softer homogeneous dielectrics
compared to those of material I.

1. Large deformation

It is commonly known that a stiffer elastomer is more dif-
ficult to deform compared to a softer one at the same applied

load. We discuss the deformations of three different dielectric
films, i.e., γ = 0.5, 1, 2, subjected to the purely mechanical
load at first.

In the absence of an applied electric field (Ē = 0), the
stretch λ3 in the thickness direction is plotted in Fig. 4(a)
while the radial stretch 1/

√
λ3 is plotted in Fig. 4(b) for dif-

ferent dielectric films. At the same λ3 for different dielectric
films in Fig. 4(a), a stiffer film (γ = 2) corresponds to a larger
applied load S̄ while a softer film (γ = 0.5) corresponds to a
smaller S̄ compared to that of the reference film (γ = 1). On
the other hand, at the same S̄ for different dielectric films in
Fig. 4(a), a stiffer film (γ = 2) corresponds to a larger stretch
λ3 while a softer film (γ = 0.5) corresponds to a smaller
stretch λ3 compared to that of the reference film (γ = 1).
Opposite effects can be seen in Fig. 4(b). For example, at the
same S̄ for different dielectric films in Fig. 4(b), a stiffer film
(γ = 2) corresponds to a smaller radial stretch 1/

√
λ3 and

a softer film (γ = 0.5) corresponds to a larger radial stretch
1/

√
λ3 compared to that of the reference film (γ = 1). In

short, Figs. 4(a) and 4(b) demonstrate the fact that a stiffer
film is able to sustain a larger mechanical load, and vice versa.

It is obvious in Figs. 4(a) and 4(b) that the variation of
each curve is monotonic and there is no peak due to the
property of stiffening in neo-Hookean solids subjected to the
purely mechanical load. However, the applied electric field
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FIG. 5. The critical nominal electric field Ē � = Ẽ �/
√

μ0/ε for the onset of pull-in instability. (a) Critical mechanical load S̄� = S�/μ0 vs
Ē � for three different homogeneous circular dielectric plates (γ = 0.5, 1, 2). (b) Normalized shear modulus γ = μ/μ0 vs Ē � under several
dead loads (S̄� = 0, 0.5, 1, 2).

can make each curve vary nonmonotonically. To directly show
the effects of the electric field on the large deformation, we
exclude the dead load (S̄ = 0) in Figs. 4(c) and 4(d). At the
same stretch λ3 or the same radial stretch 1/

√
λ3 for differ-

ent dielectric films, a stiffer film (γ = 2) corresponds to a
larger nominal electric field Ē and a softer film (γ = 0.5)
corresponds to a smaller nominal electric field Ē compared to
that of the reference film (γ = 1). Moreover, a stiffer film can
sustain a higher critical nominal electric field (the “�’ marked
on each curve), which indicates that pull-in instability is not
easy to occur in stiffer films compared to softer films. After the
deformation surpasses the threshold, the film cannot sustain
the electric load any more and then the equilibrium state is
unstable. We represent the unstable states by using dashed
curves.

2. Pull-in instability

In this section, we investigate the critical nominal elec-
tric field (Ẽ �) for the occurrence of pull-in instability. For
a homogeneous circular dielectric plate with the normalized
shear modulus γ , one can get the critical stretch λ�

3 at a given
dead load S̄� > 0 by using (41)2. Then the substitution of
the obtained λ�

3 into (41)1 gives the critical nominal electric
field Ē �.

We plot the stability and instability regions of different
homogeneous dielectric elastomers on the S̄�–Ē � plane in
Fig. 5(a). The stability and instability regions of each material
(γ = 0.5, 1, 2) are separated by a smooth curve, which is the
solution Ē � of (41) for an applied dead load S̄�. There is no
pull-in instability and the circular dielectric plate is stable if
the applied electric field is less than the threshold Ē �. On the
contrary, when the electromechanical load is in the instability
region, pull-in instability occurs and then the thinning of the
circular plate is rapid, and finally, electric breakdown will
break the circular plate at a relatively high true electric field.
The discussion of electric breakdown is omitted here.

In Fig. 5(a), a stiffer film (γ = 2) corresponds to a larger
stability region and a softer film (γ = 0.5) corresponds to
a smaller stability region compared to that of the reference
film (γ = 1). In other words, a stiffer film is able to sustain a

larger electromechanical load and is more difficult to become
unstable, and vice versa. As the dead load S̄� increases, the
critical nominal electric field Ē � decreases monotonically,
which shows that pull-in instability can occur at a relatively
low Ē � with the assistance of the dead load. In Fig. 5(b), we
plot the critical nominal electric field Ē � with the variation of
the normalized shear modulus γ , which clearly shows that Ē �

increases monotonically with the increase of γ .
Though a stiffer film has a higher critical nominal elec-

tric field, its corresponding deformation is smaller than that
of a softer film. In the following, we will use different
homogeneous dielectric elastomers to show the maximum
deformation at which the critical electromechanical load
(S̄�, Ē �) makes pull-in instability occur.

3. Electroactuation

In this section, we focus on the critical stretch and the max-
imum electroactuation of a circular dielectric plate subjected
to the critical nominal electric field (Ē �) and the correspond-
ing dead load (S̄�).

As stated in Sec. IV B 2, one can get the critical stretch λ�
3

in the thickness direction at a given pair of loads (Ē �, S̄�) by
using (41)2, such that

3
2 S̄�(λ�

3)1/2 = γ [1 − 4(λ�
3)3]. (42)

In contrast to λ�
3, the pre-stretch in the thickness direction is

denoted by λ
p
3, which corresponds to the deformation caused

by only the dead load S̄�. Explicitly, λp
3 is the solution of (41)1

at Ē � = 0, namely

S̄�
(
λ

p
3

)1/2 = γ
[
1 − (

λ
p
3

)3]
. (43)

By (42) and (43), we define the maximum actuation stretch
in the thickness direction as λ�

3/λ
p
3; meanwhile, the corre-

sponding maximum actuation stretch in the radial direction

is equal to
√

λ
p
3/

√
λ�

3. At first, we discuss four limiting cases
of (42) and (43) analytically.

(1.) At a zero dead load S̄� = 0, the critical stretch λ�
3 in

(42) is equal to 0.63 while the pre-stretch λ
p
3 in (43) is 1 for any

dielectric elastomer (γ > 0). Thus, the maximum actuation
stretch in the thickness direction is λ�

3/λ
p
3 = 0.63 while the
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FIG. 6. Maximum electroactuation of different homogeneous circular dielectric plates subject to electromechanical loads. (a) Dead load
S̄� = S�/μ0 vs pre-stretch 1/

√
λ

p
3 and critical stretch 1/

√
λ�

3 in the radial direction. For any homogeneous circular dielectric plate, 1/
√

λ
p
3 → 1

and 1/
√

λ�
3 → 1.26 as S̄� → 0. (b) Dead load S̄� vs maximum electrostretch

√
λ

p
3/

√
λ�

3 in the radial direction. As S̄� increases from 0 to ∞,√
λ

p
3/

√
λ�

3 increases from 1.26 to 1.5. (c) Normalized shear modulus γ vs pre-stretch 1/
√

λ
p
3 and critical stretch 1/

√
λ�

3 in the radial direction.

For S̄� 	= 0, 1/
√

λ
p
3 → 1, and 1/

√
λ�

3 → 1.26 as γ → ∞. (d) Normalized shear modulus γ vs maximum electrostretch
√

λ
p
3/

√
λ�

3 in the radial
direction.

maximum actuation stretch in the radial direction is equal to√
λ

p
3/

√
λ�

3 = 1.26.

(2.) As the dead load S̄� approaches ∞, both λ�
3 and λ

p
3

are approximately proportional to (S̄�)−2, i.e., λ�
3, λ

p
3 → 0 and

1/
√

λ�
3, 1/

√
λ

p
3 → ∞ as S̄� → ∞. By dropping S̄� in (42) and

(43), we have the maximum actuation stretch in the radial

direction in the form
√

λ
p
3/

√
λ�

3 = 3
2

1−(λp
3 )3

1−4(λ�
3 )3 . Then we have√

λ
p
3/

√
λ�

3 → 3
2 as S̄� → ∞.

(3.) As the normalized shear modulus γ approaches zero
for S̄� 	= 0, both λ�

3 and λ
p
3 are proportional to γ 2, i.e.,

λ�
3, λ

p
3 → 0 and 1/

√
λ�

3, 1/

√
λ

p
3 → ∞ as γ → 0. Then we

have
√

λ
p
3/

√
λ�

3 → 3
2 as γ → 0.

(4.) As the normalized shear modulus γ → ∞ for S̄� 	= 0,
Eq. (42) implies [1 − 4(λ�

3)3] → 0 and then λ�
3 → 0.63. Also,

Eq. (43) implies [1 − (λp
3 )3] → 0 and then λ

p
3 → 1. There-

fore, we have
√

λ
p
3/

√
λ�

3 → 1.26 as γ → ∞.

In addition to the four limiting cases, we plot the pre-
stretch, the critical stretch, and the maximum electroactuation
stretch in the radial direction numerically. The analytical re-
sults of the four limiting cases can also be found in the
numerical plots in Fig. 6.

In Fig. 6(a), we plot the pre-stretch 1/

√
λ

p
3 and the critical

stretch 1/
√

λ�
3 vs the dead load S̄� curves for three differ-

ent dielectrics. At a given dead load S̄� > 0, a stiffer film

(γ = 2) corresponds to both smaller 1/

√
λ

p
3 and 1/

√
λ�

3 com-
pared to that of the reference film (γ = 1), and vice versa.

As S̄� → 0, 1/

√
λ

p
3 → 1, and 1/

√
λ�

3 → 1.26, which have
been shown analytically in the first limiting case. In short,
Fig. 6(a) indicates that a softer film corresponds to a larger
pre-stretch and a larger critical stretch in the radial direction
at a given dead load, and vice versa. This behavior becomes
more obvious when the dead load becomes larger. Does it
mean that a softer dielectric elastomer has a larger electroac-
tuation? To answer this question, we have to investigate the
electroactuation.
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In Fig. 6(b), we plot the variation of the maximum elec-

troactuation stretch in the radial direction,
√

λ
p
3/

√
λ�

3, with the
increase of the dead load. Without the dead load, different
dielectric films have the same maximum actuation stretch, i.e.,√

λ
p
3/

√
λ�

3 = 1.26 at S̄� = 0. By increasing the dead load, the
maximum electroactuation stretch increases monotonically,
and the softest dielectric (γ = 0.5) has the fastest increase.

Eventually, the maximum actuation stretch
√

λ
p
3/

√
λ�

3 of all

the three dielectrics approaches 1.5 as S̄� → ∞. In short, for

any circular dielectric plate,
√

λ
p
3/

√
λ�

3 → 1.26 as S̄� → 0 and√
λ

p
3/

√
λ�

3 → 1.5 as S̄� → ∞.

Figure 6(c) presents the pre-stretch 1/

√
λ

p
3 and the criti-

cal stretch 1/
√

λ�
3 vs the normalized shear modulus γ under

several dead loads. Figure 6(d) plots the maximum electroac-

tuation stretch
√

λ
p
3/

√
λ�

3 in the radial direction vs γ . We omit
the detailed discussions here since they are similar to that of
Figs. 6(a) and 6(b).

Figures 6(a)–6(d) provide a useful guideline for the design
of a circular dielectric plate actuator. Its maximum electroac-
tuation stretch in the radial direction can vary from 1.26 to 1.5
by changing the modulus or the pre-loads.

C. Graded dielectrics

Recalling the equilibrium equation (36) and the conditions
(37) and (38) for the onset of pull-in instability, we only have
to use the shear modulus μ(B) on the outer surface. In other
words, the magnitude of the shear modulus within the circular
dielectric plate is unimportant for the nonlinear behavior of
the electromechanical coupling.

As shown in Fig. 2, the shear modulus μ(R) can be either
an increasing function μ1(R) or a deceasing function μ2(R)
with respect to the radius R. The variation of the modulus
depends on the manufacturing process of a graded circular
dielectric plate. In this paper, we show it theoretically that
the electromechanical coupling only depends on the modulus
at R = B. In other words, if two graded dielectrics μ1(R)
and μ2(R) have the same modulus as that of a homogeneous
dielectric μ0 at R = B, i.e., μ1(B) = μ2(B) = μ0, subjected
to the same electromechanical loads, these three different cir-
cular dielectric plates can present the same behavior of large
deformation and electromechanical instability.

To understand and harness the unique property of a graded
circular dielectric plate proposed in this paper, we compare
the large deformation, pull-in instability, and electroactuator
in several homogeneous circular dielectric plates with
different moduli. If we want to take advantage of the large
deformation and actuation existing in the soft homogeneous
circular dielectric plate, for example, the conventional way is
to change the whole circular plate from a stiff dielectric to a

soft dielectric. However, by utilizing the unique property of a
graded circular dielectric plate, we only have make the outer
region of a circular dielectric plate as soft as needed, which
can present exactly the same electromechanical behavior as
that of a soft homogeneous circular dielectric plate. On the
other hand, if we want to utilize the relatively high critical
nominal electric field existing in the stiff homogeneous
circular dielectric plate, we only have to make the outer
region of a circular dielectric plate as stiff as wanted, which
can present exactly the same electromechanical behavior as
that of a stiff homogeneous one.

V. CONCLUDING REMARKS

This paper is motivated by the long-standing interest in the
fundamental understanding of the nonlinear coupling behav-
iors in soft dielectrics. We study the effects of the material
inhomogeneity on the large deformation, pull-in instability,
and electroactuation in graded soft dielectrics. By using an
assumed homogeneous thinning in a graded neo-Hookean di-
electric, our theoretical results show that the large deformation
and the conditions for the occurrence of pull-in instability only
depend on the shear modulus of the circular plate at its outer
radius. The results of homogeneous soft dielectrics obtained
in this paper agree with the electromechanical behaviors of
homogeneous dielectric plates [18,41].

Our simple theoretical model also shows that the maximum
radial electroactuation can vary from 1.26 to 1.5 by changing
either the dead load or the modulus. It implies that an op-
timized electroactuation can be achieved by partly changing
the modulus of the circular plate. The results could be useful
for the design and the optimization of soft graded dielectric
actuators.

We remark here that the failure mode of electric breakdown
is excluded, and the competition between pull-in instability
and electric breakdown is not presented in this paper. Yet one
future research direction can be the investigation of electric
breakdown in graded dielectrics. Another research direction
could be the investigation of nonlinear electromechanical cou-
pling in graded soft materials of different geometries, includ-
ing the graded cylinders and spheres. It is hoped that the anal-
ysis of the electromechanical coupling in graded dielectrics
will help in the design of advanced dielectric devices capable
of high critical electric field and giant electroactuation.
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