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Dispersionless pulse transport in mass-spring chains: All possible perfect Newton’s cradles

Ruggero Vaia
Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino, Italy

(Received 25 May 2020; accepted 3 August 2020; published 24 August 2020)

A pulse traveling on a uniform nondissipative chain of N masses connected by springs is soon destructured by
dispersion. Here it is shown that a proper modulation of the masses and the elastic constants makes it possible
to obtain a periodic dynamics and a perfect transmission of any kind of pulse between the chain ends, since the
initial configuration evolves to its mirror image in the half period. This makes the chain behave as a Newton’s
cradle. By a known algorithm based on orthogonal polynomials one can numerically solve the general inverse
problem leading from the spectrum to the dynamical matrix and then to the corresponding mass-spring sequence,
so yielding all possible “perfect cradles.” As quantum linear systems obey the same dynamics of their classical
counterparts, these results also apply to the quantum case: For instance, a wave function localized at one end
would evolve to its mirror image at the opposite chain end.

DOI: 10.1103/PhysRevE.102.023005

I. INTRODUCTION

By mass-spring chain one means a sequence of N masses
{mi} connected by N−1 springs obeying Hooke’s law and
characterized by their elastic constants {Ki}. The system’s
Hamiltonian reads

H =
N∑

i=1

P2
i

2mi
+ 1

2

N−1∑
i=1

Ki(Qi − Qi+1)2, (1)

where Qi is the displacement (measured from the equilibrium
position) and Pi the momentum of the ith mass. This physical
model, depicted in Fig. 1, is very general: For instance, it can
be realized by the electric LC circuit of Fig. 2, where springs
and masses are replaced by capacitors and inductors, respec-
tively, while displacements are represented by the capacitors’
charges.

Nanoscopic realizations of the model (1) are relevant for
their end-to-end transport properties [2,3] and even atomic
chains, which can be suitably described by the mass-spring
chain model, have been created and characterized [4], e.g.,
studying the transmission of a momentum pulse given to an
extremal atom.

The purpose of this paper is to demonstrate the existence,
for any chain length N , of an infinite number of sequences
{mi} and {Ki} which can yield the perfect end-to-end trans-
mission of such a pulse. For this reason such mass-spring
chains behave in analogy to the popular Newton’s cradle [5,6],
a mechanical device that displays an almost perfect transfer
of momentum between the end points of an array of metallic
spheres. Dubbing them “mass-spring Newton’s cradles” is
therefore natural, also looking at Fig. 1, and justified by
the wide use of this terminology in physical systems where
one can observe the perfect transfer of a localized conserved
quantity over a one-dimensional structure, e.g., the “quantum
Newton’s cradle” of Ref. [7].

It is well known that a uniform mass-spring chain, made of
identical masses mi = m and identical springs Ki = K , cannot
efficiently transfer a pulse, even in the absence of dissipation,
due to the effect of dispersion. Indeed, its normal modes,
which coincide with the Fourier components of the coordi-
nates and momenta, do have incommensurate frequencies [8],

ωn = 2

√
K

m
sin

π (n − 1)

2N
, n = 1, . . . , N, (2)

n being the normal-mode label. It follows that their time
evolution, ruled by the phase factors e−iωnt , can never lead
to coherently recombining their amplitudes, i.e., with equal
phases.

It is worth mentioning that, historically, the research for co-
herent transmission of signals along one-dimensional systems
preferred to renounce to the linearity (i.e., using non-Hooke
springs), while keeping translation invariance, i.e., uniformity.
Starting from the famous Fermi-Pasta-Ulam numerical simu-
lation [9], more and more studies enlightened the properties
of nonlinear models and showed that nonlinearity can be
an antidote against dispersion; several examples of localized
and coherently propagating excitations, the “solitons,” were
discovered, such as in the Toda lattice, or in the continuous
systems described by the Korteweg–de Vries equation (known
since the 19th century) and the nonlinear Schrödinger equa-
tion, just to mention the most well-known ones [10].

At variance with this way to reach coherence, in this
paper Hooke’s law is kept and translation invariance is instead
abandoned, so dealing with nonuniform chains. Conceding
a limited degree of nonuniformity, it was possible [11] to
enhance the transmission properties of the linear chain (1)
keeping it uniform in the bulk and symmetrically tuning two
masses and their spring at both ends, in order to maximize the
transmission of a pulse given to the first mass. Such a tuning
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FIG. 1. Perfect five-mass chain. The masses are proportional to
the sequence (35, 20, 18, 20, 35) and the springs’ elastic constants
to (7, 9, 9, 7): This setup yields perfect end-to-end transmission [1].
The auxiliary (green) external masses, equal to the first and last
ones, behave just like in a Newton’s cradle, except for the finite time
between subsequent bounces. Chains of arbitrary length can behave
in the same way, provided that the sequence of mass and spring
values are properly chosen.

has two main effects, namely, modulation of the amplitudes of
the excited normal modes and deformation of the frequency
spectrum: The best trade-off between them produces a huge
improvement in the end-to-end transmission efficiency, at-
taining 98.7% in the asymptotic limit of infinite length [11].
The explanation is that only few normal modes with nearly
equally spaced frequencies are involved in the dynamics of the
initial kick. However, this approach is very particular: It yields
optimal, but not perfect, transmission and only for excitations
localized on the first mass; a kick given, say, to the second
mass would not coherently reach the opposite end.

Allowing for full nonuniformity, here different questions
are raised. Can one obtain “magic” mass-spring sequences
that yield an exactly periodic and perfectly transmitting dy-
namics? How many of those sequences exist?

An obvious requirement for coherence is that the normal-
mode frequencies be commensurate, i.e., integer multiples of
a finite frequency ω, say

ωn = ω kn, (3)

with {kn} any sequence of integers (with no common fac-
tors, to be absorbed into ω). Indeed, the dynamical phases,

FIG. 2. Electric circuit equivalent to the spring-mass chain (1):
The masses and the elastic constants are replaced by the inductances
and inverse capacitances, respectively: mi = Li and Ki = C−1

i . The
charges Qi flowing in the conductances (∂t Qi = Ii) play the role of
the displacements and the momenta are Pi = LiIi. The charge on
capacitor Ci is Qi − Qi+1.

evolving as eiω knt , would become unity after a time period
2π/ω (and integer multiples of it); then, the normal modes
would coherently recombine to exactly reproduce the initial
configuration. It is again obvious that, in order to yield the
spectrum (3), one must renounce the assumption of uniform
masses and springs along the chain, as they give (2). However,
in order to be effective for transmission, the chain must
allow for pulses traveling from one extremity to reproduce
themselves at the opposite one without changes in shape: This
entails that the chain has to be at least mirror symmetric, i.e.,
the transformation of inverting the sequence of masses and
springs is a symmetry,

mi = mN+1−i, Ki = KN−i. (4)

The 2N − 1 parameters {mi, Ki} are therefore reduced to N
independent ones. With this assumption, it will be shown that,
if the above defined integers {kn} are alternating in parity,
then at the half period t∗ = π/ω (and odd multiples of it) the
chain configuration becomes the mirror image of the initial
one, so that any pulse at one end would be transferred to
the opposite end with identical shape. It will be also proven
that the “magic” mass-spring sequences exist and are in one-
to-one correspondence with the distinct successions of the N
integers {kn} defined in Eq. (3), attaining the goal of finding
and classifying all perfect chains, i.e., those with full 100%
transmission efficiency whatever the shape of the initial pulse.

As for the mathematical methods, the task of finding
the normal modes and the frequencies of the mass-spring
chain (1) can be reduced, by using mass-weighted canonical
variables, to the diagonalization of a tridiagonal symmetric
matrix, usually dubbed a Jacobi matrix [12]. The chain’s
mirror symmetry further entails it to be symmetric also with
respect to the second diagonal, so one deals with a persym-
metric Jacobi matrix. The goal pursued here is however the
inverse problem; namely, one starts from the desired eigen-
value succession (3) and wishes to obtain the corresponding
Jacobi matrix and, in turn, the related mass-spring sequence.
Fortunately, it is known that the inverse problem of calculating
the elements of a persymmetric Jacobi matrix, such that its
eigenvalues are a given nondegenerate [13] sequence, is well
posed and the solution has been proven to exist [14] and to be
unique [15]. Moreover, the matrix elements can be calculated,
at least numerically, by means of efficient algorithms [16].
The remaining task of relating these elements to the values
of the masses and of the spring constants can also be unam-
biguously solved [17].

Remarkably, an explicit analytic solution to the inverse
problem was recently found [18] for any N when kn = n − 1,
i.e., the frequencies are proportional to the sequence of the
first N integers,

ωn = ω (n−1), n = 1, . . . , N. (5)

For instance, with N = 5 one gets the chain of Fig. 1. For N �
5 the exact solution was already known [1], though the cal-
culations were not published, being “somewhat lengthy.” On
the other hand, for arbitrary sequences of integers in Eq. (3)
a numerical approach cannot be avoided. It will be shown
that a variety of perfect chains can be obtained, with some of
them even more interesting as they entail smaller imbalances
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between largest and smallest masses and elastic constants. All
these “perfect chains” can be employed in different contexts
for transmitting localized pulses (say, energy, heat, sound,
etc.) between their extrema; perhaps such a mechanism might
be already used by nature, e.g., for transferring energy inside
biological structures. It is to be emphasized that, since the
model system is linear, the corresponding quantum model also
shows an analogous behavior; for instance, the quantum wave
function of such an array evolves in the time t∗ to its mirror-
symmetric counterpart, which amounts to state that a localized
wave packet at one end would be perfectly transmitted to the
opposite end of the chain.

The paper is organized as follows. Basic notations and
definitions are briefly recalled in Sec. II, as well as the
dynamics of the chain in terms of its normal modes. In Sec. III
the transmission amplitude is defined as an indicator of the
pulse-transfer efficiency. The inverse problem and the solution
algorithm are the subject of Sec. IV. Eventually, in Sec. V the
dynamics of different mass-spring chains are compared and
discussed, including the uniform, the optimized quasiuniform
[11], and the perfect chains with the spectrum (5) and more
selected perfect chains, whose animations are available in the
Supplemental Material.

II. FREE MASS-SPRING CHAIN

Consider the chain described by the Hamiltonian (1); the
absence of external springs (free-free boundary conditions,
i.e., K0 = KN = 0) entails translation invariance, so that the
system is expected to possess a zero-frequency normal mode
(translation mode). In terms of the displacement and momen-
tum vectors, Q ≡ {Qi} and P ≡ {Pi}, the same Hamiltonian
can be written in matrix form,

H = 1
2 PTM−1P + 1

2 QTKQ, (6)

where the “mass matrix” M is diagonal, its elements being
{Mi j = mi δi j}, and

K =

⎡
⎢⎢⎣

K1 −K1 0 · · ·
−K1 K1+K2 −K2 · · ·

0 −K2 K2+K3
...

...
. . .

⎤
⎥⎥⎦

N

(7)

is the symmetric tridiagonal “elastic matrix.” Its rows sum
up to zero, so that K has the eigenvector (1, 1, . . . , 1) cor-
responding to the translation mode with eigenvalue zero, so
det K = 0. The canonical transformation to mass-weighted
coordinates, q = M1/2Q and p = M−1/2P, turns the Hamil-
tonian into

H = 1
2 pT p + 1

2 qTAq. (8)

The N×N matrix A = M−1/2KM−1/2 is a Jacobi matrix, i.e.,
a tridiagonal symmetric matrix,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 −b1 0 · · · 0

−b1 a2 −b2
...

0 −b2 a3
. . . 0

...
. . .

. . . −bN−1

0 · · · 0 −bN−1 aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N

, (9)

whose nonzero elements are

ai = Ki−1 + Ki

mi
, i = 1, . . . , N,

bi = Ki√
mimi+1

, i = 1, . . . , N−1.

(10)

The assumption of mirror symmetry (4) entails that the
matrices M and K are persymmetric (symmetric with respect
to the antidiagonal), and the same holds for A,

ai = aN+1−i, bi = bN−i. (11)

Note that as det A = 0 only N−1 of these matrix elements
are independent. They are in correspondence with the N
independent parameters {mi, Ki}, apart from an overall factor:
Indeed, Eq. (10) shows that such a factor does not affect A,
reflecting the fact that scaling masses and spring constants
by the same factor do not affect the system’s frequencies and
normal modes. This choice is arbitrary, e.g., one can fix the
first mass m1 or the total mass [19], and fully completes the
mapping between A and the pair (M, K ).

As all b’s are nonzero the eigenvalues of the matrix A
are distinct [12]; moreover, they are nonnegative since A is
positive semidefinite,∑

i j

Ai jqiq j =
∑

i

Ki(Qi − Qi+1)2 � 0, ∀{qi}. (12)

Denoting by U = {Uni} the orthogonal matrix that diagonal-
izes A, ∑

i j

UniAi jUm j = λn δnm, (13)

and introducing the normal-mode coordinates and momenta,

q̃n =
N∑

i=1

Uni qi, p̃n =
N∑

i=1

Uni pi, (14)

the Hamiltonian (8) becomes a sum of independent
oscillators,

H = 1

2

N∑
n=1

(
p̃2

n + ω2
n q̃2

n

)
, (15)

where the eigenfrequencies are the positive square roots of
the eigenvalues, ωn = √

λn. They are assumed in increasing
order, ωn+1 > ωn, starting from ω1 = 0.

The chain’s time evolution is a superposition of normal-
mode motions,

qi(t ) =
N∑

n=1

Uni

N∑
j=1

Un j

[
q j (0) cos ωnt + p j (0)

sin ωnt

ωn

]
.

(16)
All frequencies are positive, except that of the translation
mode, ω1 = 0: Its corresponding component is to be under-
stood as the overall translation U1i

∑
j U1 j[q j (0) + p j (0) t].

III. PERFECT PULSE TRANSMISSION

The transmission of a pulse between the chain ends can be
described as follows. Assume the first mass is given an in-
stantaneous kick, i.e., a given momentum p̄, as in experiments
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with ion chains [4],

q(0) = (0, 0, . . . , 0), p(0) = ( p̄, 0, . . . , 0). (17)

One seeks for values of the chain parameters (4) such that
the dynamics leads in a certain time τ as close as possi-
ble to the mirror-symmetric momentum distribution p(τ ) =
(0, 0, 0, . . . , p̄). With these initial conditions Eq. (16) gives

pi(t ) = ∂t qi(t ) = p̄
N∑

n=1

UniUn1 cos ωnt . (18)

The transmission amplitude αN (t ) ≡ pN (t )/p̄ is defined as the
ratio between the momentum of the last mass at time t and
the input momentum of the first mass. Using the fact that
the eigenvectors of A alternate between mirror symmetric and
antisymmetric [12,20], Un,N+1−i = (−)n−1Uni, one has

αN (t ) =
N∑

n=1

U 2
n1 cos[π (n−1)−ωnt]. (19)

The numbers U 2
n1 weigh the contributions from the normal

modes and can be regarded as a normalized probability den-
sity, since

∑
n U 2

n1 = 1. The same parameter αN (t ) character-
izes the transmission of an initial elongation of the first mass,
q(0) = (q̄, 0, . . . , 0), while the chain is at rest, p(0) = 0:
Indeed, Eq. (16) yields qN (t ) = q̄ αN (t ).

Perfect transmission occurs when at some time instant t∗
all phases are coherent, i.e., they are equal or differ by integer
multiples of 2π :

π (n−1) − ωnt∗ = π × even integer. (20)

This amounts to requiring that the frequencies are integer
multiples of a characteristic frequency ω = π/t∗,

ωn = ω kn, (21)

with the (different) coprime integers kn having the same parity
of n−1, since k1 = 0; it is equivalent to requiring that the
increments

δn ≡ kn+1 − kn, i = 1, . . . , N−1, (22)

be odd positive integers with no common factors (i.e., co-
prime). In the next section it is shown that any given frequency
spectrum corresponds to a particular mass-spring sequence, so
it follows that for any N � 3 there is a countably infinite set
of different chains yielding perfect transmission.

At time 2t∗ the chain returns to the initial state, as, e.g.,
p1(2t∗) = p̄

∑N
n=1 U 2

n1 cos(2π kn) = p̄, showing a perfectly
periodic dynamics [21]. The time evolution consists in the
propagation of the initial pulse along the chain, with a shape
involving displacements of all masses. Actually, perfect be-
havior does not require the particular initial configuration
(17): Eq. (16) with the spectrum (21), (22) tells that any initial
shape of the chain evolves to its exact mirror image at t∗
and is restored at 2t∗. Such a perfect mass-spring cradle is
depicted in Fig. 1: To make it resemble a Newton’s cradle,
it is imagined to involve two auxiliary hanging masses that
periodically transmit and receive momentum by instantaneous
hard-sphere collision with the chain extrema.

The upcoming sections are devoted to the calculation of
the “magic” mass-spring sequences that determine αN (t∗) =
1, i.e., 100% transmission amplitude for any value of N .

IV. INVERSE PROBLEM

The task of finding the matrix elements of the tridiagonal
symmetric and mirror-symmetric matrix (9) starting from the
requirement that it have a given spectrum {λn, n = 1, . . . , N}
is an “inverse problem.” It is well posed, since in the case con-
sidered here (free-free boundary conditions), the number of
independent matrix elements to be determined, N−1, is equal
to the number of input variables—the positive eigenvalues.

In the previous section it was shown that the necessary and
sufficient condition to yield perfect transmission is that the
mode frequencies be given by Eq. (21), where the increasing
sequence of integers {kn} obeys the constraint (22).

A. Simplest case: Analytic solution

The simplest choice for the odd-number sequence (22)
is δn = 1, or kn = n − 1, corresponding to the spectrum (5).
In this case an analytic solution was recently obtained [18],
based on the following result, whose proof is sketched in
the Appendix A. Let A be the N×N matrix (9) with the
mirror-symmetric entries

ai = N−1 + 4(i−1)(N−i), i = 1, . . . , N,

bi =
√

i (2i−1) (N−i) (2N−1−2i), i = 1, . . . , N−1.

(23)
Then its eigenvalues are

λn = 2(n−1)2, n = 1, . . . , N. (24)

Both ai and bi are of order N2 in the matrix bulk, and decrease
almost parabolically toward the matrix edges, where they are
of order N . Their imbalance, namely the ratio between largest
and smallest entries, is of order N .

Hence the frequency sequence ωn = ω (n − 1) can be ob-
tained by imposing a factor ω2/2 to the expressions (23). The
sequences of masses and elastic constants that produce the
interaction matrix A through the transformation (10) admit
closed expressions [18] in terms of binomial coefficients,

mi = m1

(
N−1

i−1

)2 (
2N−2

2i−2

)−1

,

Ki = m1ω
2(N−1)2

(
N−2

i−1

)2 (
2N−2

2i−1

)−1

.

(25)

It turns out that for i+1 < n/2 it is

Mi+1 < Mi, Ki+1 > Ki, (26)

implying that the smallest masses and the largest elastic
constants lie in the middle of the chain. For large n one finds
that the ratio between largest and smallest values is of order√

N . The binomials being rational numbers, one can choose
m1 and ω in such a way that all {mi} and {Ki} are expressed by
coprime integers: A few of these “magic numbers” are shown
in Table 1 of Ref. [18]. The sequences of masses and elastic
constants are graphically reported in Fig. 3 for N = 11 and
N = 41.
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FIG. 3. Sequence of masses {mi} and elastic constants {Ki} as
given by Eqs. (25) for chains of size N = 11 (squares) and N =
41 (bullets). Choosing m1 = √

(N−1)/π , ω = π/(N−1), and the
scaled variable (i−1)/(N−1) allows one to appreciate the overall
scaling behavior [18]. As the springs Ki connect mi and mi+1, for
clarity they are plotted at i+ 1

2 .

B. General case: Numerical solution

For a general choice of the eigenvalues (21), the inverse
problem has to be faced numerically. To this purpose a good
algorithm was proposed by de Boor and Golub [16] (BG). It
constructs the sequence of characteristic polynomials {χi(λ)}
(i = 0, . . . , N ) of the matrix A and its submatrices, using
their orthogonality with respect to the internal product

〈χ, χ̃〉 ≡
N∑

n=1

wn χ (λn) χ̃ (λn), (27)

where the weights are defined in terms of the required eigen-
values,

wn = w

N∏
m = 1
m �= n

|λn − λm|−1, (28)

with w being an arbitrary positive constant. The property of
orthogonality allows for the sequential construction of the
polynomials,

χi+1(λ) = (λ − ai+1) χi(λ) − b2
i χi−1(λ), (29)

starting from χ0(λ) = 1, b0(λ) ≡ 0, with the coefficients

ai+1 = 〈λ χi, χi〉
〈χi, χi〉 , b2

i = 〈χi, χi〉
〈χi−1, χi−1〉 (30)

corresponding to the matrix elements one is looking for.
The numerical procedure starts by calculating and storing

the weights (28) and proceeds in a simple manner with the
iteration of Eqs. (29) and (30). It takes few lines of code—a
clear example being found in Ref. [22].

Once the matrix A is known, one has to reconstruct the
sequence of masses and springs [17]. The masses are related
to the components of the translation-mode eigenvector, v =
{U1i}, since the identity

0 = vt A v =
N−1∑
i=1

Ki

(
vi√
mi

− vi+1√
mi+1

)2

(31)

entails the ratios vi/
√

mi to be equal; hence mi = c v2
i , with c

a constant that is determined by the choice of m1. The com-
ponents of the equation A v = 0 define a recursion relation,

vi+1 = vi ai − vi−1 bi−1

bi
, (32)

that can be used to obtain the mass sequence starting from
the given first mass (see Sec. II); in this way one has
v2 = a1v1/b1, then v3 = (a1a2 − v1b2

1)/(b1b2), and so on.
Eventually, the elastic constants follow from Eq. (10), Ki =
c vivi+1 bi.

V. RESULTS AND COMPARISONS

The aim of this section is to propose examples of per-
fectly transmitting chains, besides the exactly solved chain
described by Eqs. (25), and compare their dynamics with
that of the uniform chain and two kinds of quasiuniform
chains described in Ref. [11]: The first one with optimized
m1 and the second one with optimized m1, m2, and K1. These
optimized chains were shown to be able to raise the asymp-
totic transmission amplitude, which vanishes for the uniform
chain, to α∞ = 0.847 and to α∞ = 0.987, respectively. Note
that the uniform chain (with all mi = 1 and Ki = 1) has the
normal-mode frequencies

ωn = 2 sin
kn

2
, kn = π (n−1)

N
, n = 1, . . . , N, (33)

which are not commensurate, of course: The only low-n
modes are approximately spaced by ω = π/N , while the spac-
ing decreases for higher n. The parameters kn are quasi-wave
vectors and lead to defining an analog of the group velocity
[11], ∂ω/∂k = cos k

2 , which is almost one at low k: Indeed, it
turns out that the maximal transmission amplitude occurs after
the pulse has been traveling along the chain for a time t∗ �
π/ω that is slightly larger than N . The fact that low-k modes
are almost commensurate means that long-wavelength pulses
travel more coherently: This corresponds to the vibrating-
string limit, N → ∞ with ωk → k. A travel time of order N is
also obtained when the only chain ends are modified in order
to improve the transmission performance [11].

Table I reports data concerning three chains of 11 masses,
i.e., the uniform and the optimized quasiuniform chains. The
first row gives the “arrival time” t∗, where αN (t ) attains its
maximum value α = αN (t∗): These quantities were calculated
numerically. Besides the corresponding mirror-symmetric se-
quence of masses and springs, the table columns report the
square amplitudes of the normal modes, which are determined
by the initial condition (17), as well as the “coherence factors”
at arrival,

cn = cos[π (n−1)−ωnt∗], n = 1, . . . , N, (34)

023005-5



RUGGERO VAIA PHYSICAL REVIEW E 102, 023005 (2020)

TABLE I. Comparison of different mass-spring chains with N = 11. The first column (a) refers to the uniform chain and the next two
columns [(b), (c)] to the optimized chains studied in Ref. [11]; t∗ is the “arrival time” when the transmission amplitude α = αN (t∗) is maximal;
cn = cos[π (n−1)−ωnt∗] is the coherence factor and U 2

n1 is the weight of each mode. Transmission is increasingly efficient from (a) to (c)
because heavier coherence factors are closer to unity.

(a) Uniform (b) Optimal m1 (c) Optimal m1, m2, K1

t∗ = 11.917 α = 0.787 t∗ = 13.039 α = 0.972 t∗ = 13.351 α = 0.989

i, n mi Ki cn U 2
n1 mi Ki cn U 2

n1 mi Ki cn U 2
n1

1 1 1 1.0000 0.0909 2.4121 1 1.0000 0.1745 2.1259 0.7212 1.0000 0.1639
2 1 1 0.9688 0.1781 1 1 0.9902 0.3046 0.8606 1 0.9988 0.3084
3 1 1 0.9083 0.1674 1 1 0.9943 0.2121 1 1 0.9992 0.2418
4 1 1 0.8887 0.1504 1 1 0.9969 0.1311 1 1 0.9945 0.1467
5 1 1 0.9495 0.1287 1 1 0.9646 0.0781 1 1 0.9992 0.0723
6 1 1 0.9950 0.1039 1 1 0.9566 0.0462 1 1 0.9633 0.0338
7 1 1 0.6697 0.0780 1 1 0.9994 0.0269 1 1 0.9515 0.0167
8 1 1 0.3615 0.0531 1 1 0.8130 0.0150 1 1 0.9968 0.0089
9 1 1 0.9520 0.0314 1 1 0.1771 0.0077 1 1 0.4874 0.0048
10 1 1 0.6392 0.0144 1 1 0.9645 0.0032 0.8606 0.7212 0.9048 0.0022
11 1 0.0295 0.0037 2.4121 0.8030 0.0008 2.1259 0.2713 0.0006

with the latter representing which fraction of the initial am-
plitude of the nth mode contributes to the overall transmitted
amplitude α = ∑

n U 2
n1cn. It appears that higher-n modes are

less efficient (or less coherent), which explains the strategy
used in the optimized chains: These perform better because
the initial configuration gives larger weight to low-n modes,
which are reciprocally more coherent [11]. This improvement
can be appreciated by looking at the dynamical evolution
shown in the first three panels of Fig. 4, where the instan-
taneous momenta of all masses are reported at equal time
intervals between t = 0 and t∗ (as said in Sec. III, one can
equivalently think of the elongations of each mass). See the
Supplemental Material [23] for animations.

The same analysis applies to the longer chains, N = 41,
reported in Table III and in Fig. 6; there, the difference
between the three cases is more evident. During the evolution
the initial pulse appears to propagate along the chain with
almost unit velocity, while at the arrival time an increasing
amount of energy is transferred to the last mass, and not
“dispersed” along the chain.

As discussed in Sec. III, all perfectly transmitting chains
can be characterized by the sequence of odd coprime integers
(22), which identifies the spectrum (21). In order to make a
reasonable comparison with the above quasiuniform chains,
one can conveniently choose the parameter ω = π/(N−1),
meaning that a pulse is expected to reach the opposite end
at the transmission time t∗ = N−1, equal to the chain length,
hence with unit (average) velocity. Tables II and IV report,
besides the sequence (22), the corresponding values of masses
and springs. In both tables, column (d) refers to the case of
Eq. (5), yielding the analytic recipe (25), and the correspond-
ing dynamics is shown in the fourth panels of Figs. 4 and
6. Columns (e) and (f) of the same tables report particular
choices of the frequency sequence, among the infinite possible
ones, which display less imbalanced (or “more uniform”)
chains, as quantified in the last row. The reported data were
calculated numerically by the method described in Sec. IV.

From the dynamics of these chains, Figs. 5 and 7, it appears
that the behavior is more complex, since a few of the normal

modes are tuned with a frequency spacing δ > 1. As a matter
of fact, if all δn were equal to δ, they would not be coprime
and one should set ω δ = ω̃, getting a shorter arrival time
t̃∗ = t∗/δ. In the cases shown in Figs. 4 and 6, with δ = 3
(e) and δ = 5 (f), one indeed observes a faster propagation
of the initial pulse, as the incipient behavior is to yield large
transmission at the earlier time t̃∗; however, at this time not
all modes are coherent yet: This is particularly appreciable
in Fig. 7, panel (f) at t = t∗/5; of course, perfect coherence
among all modes will occur later at t∗.

VI. CONCLUSIONS

Historically, the research aimed at obtaining efficient
pulse transmission along one-dimensional mass-spring arrays
mostly assumed translation-invariant (i.e., uniform) chains
with nonelastic springs, as many nonlinear dynamic equations
have been known to admit localized solitonlike solutions able
to travel along the chain while preserving their shape.

At variance with this approach, in this paper uniformity is
renounced instead of linearity, and it is shown how to char-
acterize all mass-spring chains that yield perfect end-to-end
pulse transmission, thus showing a dynamics analogous to that
of a Newton’s cradle. In particular, all perfectly transmitting
arrays of N masses pairwise connected by N − 1 springs are
in one-to-one correspondence with the ordered sequences of
coprime odd integers (δ1, . . . , δN−1). For the simplest se-
quence (1, 1, . . . , 1) there exists an analytic recipe [18],
while in the general case an efficient algorithm allows one to
compute the mass-spring sequence numerically.

These “magic” chains can be used to build mechanical
devices able, say, to efficiently transfer energy or momentum
between the chain ends, whatever the chain length N . For
instance, one can think of a desk toy that could replace the
Newton cradle, like that shown in Fig. 1, the main difference
being in the finite time required for a pulse to travel along the
chain: In the ideal case where dissipation is neglected a pulse
starting from one end can bounce back and forth indefinitely.
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FIG. 4. Snapshots of the dynamics of the N = 11 chain at equal time intervals of t∗/10 between 0 and t∗. The ordinate represents the
momenta pi(t ) of each mass as they evolve starting from the configuration (17). The first three panels correspond to the columns of Table I,
namely the uniform chain (a), the quasiuniform chains with optimal extremal mass m1 (b), and with two optimized extremal masses, m1, m2,
and their spring K1 (c); the last panel is the perfect chain (d) reported in Table II. Animations are available as Supplemental Material [23].
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FIG. 5. Snapshots of the dynamics at equal time intervals of t∗/10 between 0 and t∗ = 10 for the two alternative N = 11 perfectly
transmitting chains (e) and (f) described in Table II. Animations are available as Supplemental Material [23].

In the electrical circuit of Fig. 2, provided the capacitance-
induction sequence is a “magic” one, a current pulse, gen-
erated by an external inductance coupled to L1, would also
bounce back and forth along the array.

One can imagine other applications, spanning from the
macroscopic to the microscopic world [2–4]. The versatility
of the model (1) allows for many alternative implementations:
Basically, one could state that what is presented here consti-
tutes a solution looking for a problem. A suggestion may be

that some biologically active polymer chains could be close to
some “magic” mass-spring sequence, enhancing their ability
to transfer energy.
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TABLE II. Comparison of different perfectly transmitting mass-spring chains with N = 11. The first column (d) refers to the perfect chain
[18] with the spectrum (5); columns (e) and (f) are sample cases with different frequency spacings δn, Eq. (22). The last row reports the ratio
between largest and smallest values, quantifying the nonuniformity of the chain.

(d) (e) (f)

i, n δn kn mi Ki δn kn mi Ki δn kn mi Ki

1 1 0 1.0000 0.4935 3 0 1.0000 13.068 5 0 1.0000 39.020
2 1 1 0.5263 0.7013 3 3 1.0983 11.014 5 5 0.9636 28.190
3 1 2 0.4180 0.8250 3 6 0.8129 9.925 5 10 0.8206 27.888
4 1 3 0.3715 0.8983 3 9 1.0745 11.539 5 15 0.9779 27.903
5 1 4 0.3501 0.9329 3 12 0.7550 10.746 5 20 0.8471 29.662
6 1 5 0.3437 0.9329 1 15 1.0727 10.746 3 25 0.8905 29.662
7 1 6 0.3501 0.8983 3 16 0.7550 11.539 3 28 0.8471 27.903
8 1 7 0.3715 0.8250 1 19 1.0745 9.925 3 31 0.9779 27.888
9 1 8 0.4180 0.7013 1 20 0.8129 11.014 1 34 0.8206 28.190
10 1 9 0.5263 0.4935 1 21 1.0983 13.068 1 35 0.9636 39.020
11 10 1.0000 22 1.0000 36 1.0000
max
min 2.91 1.89 1.45 1.32 1.22 1.40
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FIG. 6. Snapshots of the dynamics of the N = 41 chain at equal time intervals of t∗/10 between 0 and t∗. The first three panels correspond
to the columns of Table III, namely the uniform chain (a), the quasiuniform chains with optimal extremal mass m1 (b), and with two optimized
extremal masses, m1, m2, and their spring K1 (c); the last panel is the perfect chain (d) reported in Table IV. Animations are available as
Supplemental Material [23].
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TABLE III. Comparison of different mass-spring chains with N = 41. The first column (a) refers to the uniform chain and the next two
columns [(b), (c)] to the optimized chains studied in Ref. [11]; t∗ is the “arrival time” when the transmission amplitude α = αN (t∗) is maximal;
cn = cos[π (n−1)−ωnt∗] is the coherence factor and U 2

n1 is the weight of each mode. Transmission is increasingly efficient from (a) to (c)
because heavier coherence factors are closer to unity.

(a) Uniform (b) Optimal m1 (c) Optimal m1, m2, K1

t∗ = 42.620 α = 0.5681 t∗ = 44.787 α = 0.9377 t∗ = 45.702 α = 0.9844

i, n mi Ki cn U 2
n1 mi Ki cn U 2

n1 mi Ki cn U 2
n1

1 1 1 1.0000 0.0244 3.8133 1 1.0000 0.0818 3.2017 0.5255 1.0000 0.0713
2 1 1 0.9924 0.0487 1 1 0.9931 0.1568 0.7627 1 0.9988 0.1420
3 1 1 0.9709 0.0485 1 1 0.9798 0.1392 1 1 0.9974 0.1396
4 1 1 0.9391 0.0481 1 1 0.9734 0.1166 1 1 0.9986 0.1330
5 1 1 0.9024 0.0476 1 1 0.9790 0.0943 1 1 1.0000 0.1200
6 1 1 0.8673 0.0470 1 1 0.9911 0.0751 1 1 0.9970 0.1010
7 1 1 0.8404 0.0463 1 1 0.9995 0.0596 1 1 0.9914 0.0791
8 1 1 0.8276 0.0454 1 1 0.9965 0.0475 1 1 0.9901 0.0584
9 1 1 0.8331 0.0443 1 1 0.9803 0.0382 1 1 0.9951 0.0416
10 1 1 0.8585 0.0432 1 1 0.9549 0.0310 1 1 0.9999 0.0292
11 1 1 0.9011 0.0420 1 1 0.9285 0.0254 1 1 0.9955 0.0205
12 1 1 0.9518 0.0406 1 1 0.9104 0.0210 1 1 0.9779 0.0146
13 1 1 0.9924 0.0392 1 1 0.9082 0.0175 1 1 0.9511 0.0106
14 1 1 0.9929 0.0377 1 1 0.9253 0.0147 1 1 0.9250 0.0078
15 1 1 0.9120 0.0360 1 1 0.9579 0.0124 1 1 0.9111 0.0059
16 1 1 0.7039 0.0344 1 1 0.9912 0.0105 1 1 0.9179 0.0045
17 1 1 0.3389 0.0326 1 1 0.9957 0.0089 1 1 0.9463 0.0035
18 1 1 0.1606 0.0309 1 1 0.9247 0.0077 1 1 0.9838 0.0028
19 1 1 0.6774 0.0290 1 1 0.7211 0.0066 1 1 0.9989 0.0023
20 1 1 0.9866 0.0272 1 1 0.3416 0.0056 1 1 0.9363 0.0019
21 1 1 0.8355 0.0253 1 1 0.1937 0.0048 1 1 0.7231 0.0016
22 1 1 0.1560 0.0235 1 1 0.7377 0.0042 1 1 0.3024 0.0013
23 1 1 0.6933 0.0216 1 1 0.9999 0.0036 1 1 0.2922 0.0011
24 1 1 0.9778 0.0198 1 1 0.6837 0.0031 1 1 0.8459 0.0009
25 1 1 0.2445 0.0179 1 1 0.1784 0.0026 1 1 0.9659 0.0008
26 1 1 0.8221 0.0162 1 1 0.9385 0.0022 1 1 0.3595 0.0007
27 1 1 0.7592 0.0144 1 1 0.6993 0.0019 1 1 0.6402 0.0006
28 1 1 0.5289 0.0127 1 1 0.4688 0.0016 1 1 0.9520 0.0005
29 1 1 0.8711 0.0111 1 1 0.9566 0.0013 1 1 0.0558 0.0005
30 1 1 0.5475 0.0096 1 1 0.2207 0.0011 1 1 0.9977 0.0004
31 1 1 0.7266 0.0082 1 1 0.9635 0.0009 1 1 0.0585 0.0004
32 1 1 0.8673 0.0068 1 1 0.4295 0.0007 1 1 0.9962 0.0003
33 1 1 0.1124 0.0056 1 1 0.7364 0.0006 1 1 0.3627 0.0003
34 1 1 0.9158 0.0044 1 1 0.9210 0.0005 1 1 0.7009 0.0002
35 1 1 0.8717 0.0034 1 1 0.1569 0.0003 1 1 0.9772 0.0002
36 1 1 0.2512 0.0025 1 1 0.6621 0.0003 1 1 0.4694 0.0002
37 1 1 0.4161 0.0018 1 1 0.9951 0.0002 1 1 0.2383 0.0001
38 1 1 0.8357 0.0011 1 1 0.8706 0.0001 1 1 0.7394 0.0001
39 1 1 0.9895 0.0006 1 1 0.5464 0.0001 1 1 0.9604 0.0001
40 1 1 0.9860 0.0003 1 1 0.2337 0.0000 0.7627 0.5255 0.9992 0.0000
41 1 0.9377 0.0001 3.8133 0.0304 0.0000 3.2017 0.9728 0.0000

APPENDIX A: EQS. (23) ENTAIL EQ. (24)

Following Ref. [18], the proof by induction on N starts
from N = 1, where the statement is trivially true, as A1 = [0]1

has the eigenvalue λ1 = 0. Assuming that the statement holds
true for dimension N , one has to show that the validity follows
for N + 1, i.e., that AN+1 has the N eigenvalues of AN plus the
eigenvalue λN+1 = 2N2.

The entries of AN+1 are

ai = N + 4(i−1)(N+1−i), i = 1, . . . , N+1,

b2
i = i (2i−1) (N+1−i) (2N+1−2i), i = 1, . . . , N.

(A1)
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TABLE IV. Comparison of different perfectly transmitting mass-spring chains with N = 41. The first column (d) refers to the perfect chain
[18] with the spectrum (5) and columns (e) and (f) are sample cases with different frequency spacings δn, Eq. (22). The last row reports the
ratio between largest and smallest values, quantifying the nonuniformity of the chain.

(d) (e) (f)

i, n δn kn mi Ki δn kn mi Ki δn kn mi Ki

1 1 0 1.0000 0.1234 3 0 1.0000 6.413 5 0 1.0000 22.240
2 1 1 0.5063 0.1827 3 3 1.2055 2.677 5 5 1.0582 14.851
3 1 2 0.3847 0.2254 3 6 1.0458 3.775 5 10 1.0080 20.927
4 1 3 0.3248 0.2595 3 9 0.8147 4.351 5 15 0.8424 15.130
5 1 4 0.2881 0.2879 3 12 0.6823 6.066 5 20 0.7170 20.767
6 1 5 0.2630 0.3123 3 15 0.4889 7.352 5 25 0.8666 23.079
7 1 6 0.2445 0.3334 3 18 0.4585 6.310 5 30 0.6978 21.220
8 1 7 0.2305 0.3519 3 21 0.5433 7.094 5 35 0.6676 20.974
9 1 8 0.2194 0.3681 3 24 0.4688 7.156 5 40 0.6944 21.126
10 1 9 0.2105 0.3824 3 27 0.4619 6.484 5 45 0.7305 23.319
11 1 10 0.2032 0.3949 3 30 0.5269 6.960 3 50 0.7411 22.081
12 1 11 0.1973 0.4059 3 33 0.4952 7.083 5 53 0.6724 20.295
13 1 12 0.1924 0.4154 3 36 0.4399 6.955 5 58 0.6963 21.596
14 1 13 0.1884 0.4235 3 39 0.4906 7.097 5 63 0.7353 22.397
15 1 14 0.1851 0.4303 3 42 0.5095 6.891 5 68 0.7169 22.708
16 1 15 0.1824 0.4360 1 45 0.4543 6.973 5 73 0.6856 21.483
17 1 16 0.1803 0.4404 1 46 0.4654 7.369 5 78 0.6667 21.049
18 1 17 0.1787 0.4437 1 47 0.4993 7.038 3 83 0.7254 22.458
19 1 18 0.1776 0.4459 3 48 0.4667 6.760 3 86 0.7442 22.036
20 1 19 0.1770 0.4470 3 51 0.4656 7.330 3 89 0.6879 21.780
21 1 20 0.1767 0.4470 3 54 0.4898 7.330 3 92 0.6675 21.780
22 1 21 0.1770 0.4459 3 57 0.4656 6.760 3 95 0.6879 22.036
23 1 22 0.1776 0.4437 3 60 0.4667 7.038 3 98 0.7442 22.458
24 1 23 0.1787 0.4404 3 63 0.4993 7.369 3 101 0.7254 21.049
25 1 24 0.1803 0.4360 3 66 0.4654 6.973 3 104 0.6667 21.483
26 1 25 0.1824 0.4303 3 69 0.4543 6.891 3 107 0.6856 22.708
27 1 26 0.1851 0.4235 3 72 0.5095 7.097 3 110 0.7169 22.397
28 1 27 0.1884 0.4154 3 75 0.4906 6.955 3 113 0.7353 21.596
29 1 28 0.1924 0.4059 3 78 0.4399 7.083 3 116 0.6963 20.295
30 1 29 0.1973 0.3949 3 81 0.4952 6.960 3 119 0.6724 22.081
31 1 30 0.2032 0.3824 3 84 0.5269 6.484 3 122 0.7411 23.319
32 1 31 0.2105 0.3681 1 87 0.4619 7.156 3 125 0.7305 21.126
33 1 32 0.2194 0.3519 1 88 0.4688 7.094 3 128 0.6944 20.974
34 1 33 0.2305 0.3334 3 89 0.5433 6.310 3 131 0.6676 21.220
35 1 34 0.2445 0.3123 1 92 0.4585 7.352 1 134 0.6978 23.079
36 1 35 0.2630 0.2879 1 93 0.4889 6.066 3 135 0.8666 20.767
37 1 36 0.2881 0.2595 1 94 0.6823 4.351 1 138 0.7170 15.130
38 1 37 0.3248 0.2254 1 95 0.8147 3.775 1 139 0.8424 20.927
39 1 38 0.3847 0.1827 1 96 1.0458 2.677 1 140 1.0080 14.851
40 1 39 0.5063 0.1234 1 97 1.2055 6.413 1 141 1.0582 22.240
41 40 1.0000 98 1.0000 142 1.0000
max
min 5.66 3.62 2.74 2.75 1.59 1.57

It is simple algebra to verify that the tridiagonal matrix 2N2 − AN+1, with diagonal elements

2N2 − ai = N (N−1) + (N+2−2i)2, (A2)

factorizes as 2N2 − AN+1 = HHT. The matrix

H =

⎡
⎢⎢⎢⎢⎣

h1 0 · · · 0

r1 h2
...

...
. . . 0

0 · · · rN hN+1

⎤
⎥⎥⎥⎥⎦

N+1

(A3)
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FIG. 7. Snapshots of the dynamics at equal time intervals of t∗/10 between 0 and t∗ = 10 for the two alternative N = 41 perfectly
transmitting chains (e) and (f) described in Table IV. Animations are available as Supplemental Material [23]

is lower bidiagonal and has positive elements given by

h2
i = (N+1−i)(2N+1−2i), i = 1, . . . , N+1,

r2
i = i (2i−1), i = 1, . . . , N.

(A4)

The matrix AN+1 = 2N2 − HHT has the same spectrum of the matrix

2N2 − HTH =

⎡
⎢⎢⎢⎣

0

AN
...
0

0 · · · 0 2N2

⎤
⎥⎥⎥⎦

N+1

. (A5)

Hence its eigenvalues are those of AN plus the (N + 1)th eigenvalue 2N2.
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