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Infinitely long isotropic Kirchhoff rods with helical centerlines cannot be stable
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It has long been known that every configuration of a planar elastic rod with clamped ends satisfies the property
that if its centerline has constant nonzero curvature, then it is in stable equilibrium regardless of its length. In
this paper, we show that for a certain class of nonplanar elastic rods, no configuration satisfies this property.
In particular, using results from optimal control theory, we show that every configuration of an inextensible,
unshearable, isotropic, and uniform Kirchhoff rod with clamped ends that has a helical centerline with constant
nonzero curvature becomes unstable at a finite length. We also derive coordinates for computing this critical
length that are independent of the rod’s bending and torsional stiffness. Finally, we derive a scaling relationship
between the length at which a helical rod becomes unstable and the rod’s curvature, torsion, and twist. In a
companion paper, these results are used to compute the set of all stable rods with helical centerlines.
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I. INTRODUCTION

If the centerline of a planar elastic rod with clamped
ends has constant nonzero curvature—in other words, if the
centerline is a circle—then the rod is in stable equilibrium
regardless of its length. This property follows from a result
proved by Born in his 1906 thesis, which states that any
configuration of the rod with a noninflectional centerline is
stable [1]. It is natural to ask if the same property holds for
a nonplanar elastic rod. In particular, suppose that the cen-
terline of an inextensible, unshearable, isotropic, and uniform
Kirchhoff elastic rod with clamped ends has constant nonzero
curvature. The centerline of such a rod must also have constant
torsion and is therefore a circular helix. Is this helical rod in
stable equilibrium, in the sense of locally minimizing elastic
potential energy, regardless of its length?

Even prior to the work of Born, it had been established
that the answer to this question is “no” in at least the de-
generate case of a helical centerline with zero torsion (i.e.,
a circle). Indeed, Michell showed in 1889 that an inexten-
sible, unshearable, isotropic, and uniform Kirchhoff elastic
rod with a closed circular centerline—so, the same shape to
which Born’s result applies but of a rod in three-dimensional
rather than two-dimensional space—becomes unstable when
sufficiently twisted [2,3]. However, one might still ask if there
exists any helical rod that is stable regardless of its length. In
this paper, we use Jacobi’s conjugate point condition from the
calculus of variations and results from linear-quadratic opti-
mal control theory to show that no such helical rod exists—
in other words, that every configuration of an inextensible,
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unshearable, isotropic, and uniform Kirchhoff elastic rod with
clamped ends and a helical centerline with constant nonzero
curvature becomes unstable at a finite length.

This result builds upon a long history of applying Jacobi’s
conjugate point condition to determine if an equilibrium
configuration of an elastic rod is a local minimum of elastic
potential energy. Born was perhaps the first to apply the
conjugate point condition to planar elastic rods in his 1906
thesis [1]. Following Born’s seminal work, Maddocks was
most likely the first to analyze stability in three dimensions
using conjugate points [4]. In subsequent work, the conjugate
point condition has been used to analyze the stability of three-
dimensional elastic rods in a variety of configurations [5–9].
Although this paper focuses on applying Jacobi’s conjugate
point condition, we note that other approaches for determin-
ing stability exist, including dynamical methods, bifurcation
methods, and direct analysis of the second variation of elastic
energy. (See the description in the companion paper [10] and
the references therein).

Of particular relevance to this paper is prior work on
elastic rods with helical centerlines. The classification of
inextensible, unshearable, isotropic, and uniform elastic rods
in equilibrium with helical centerlines was completed by
Kirchhoff [11,12]. This classification was later generalized
to extensible and shearable rods by Antman [13] and Whit-
man and DeSilva [14], and to anisotropic rods by Chouaieb,
Goriely, and Maddocks [9,15,16]. Conditions for stability
of these helical equilibria were also derived by Chouaieb
and Maddocks using the conjugate point condition [9]. Their
formulation of the conjugate point condition relied on a La-
grangian framework, which is the typical approach in the cal-
culus of variations [17], and these conditions for stability have
been evaluated numerically for a few representative helical
rods [6,9].

2470-0045/2020/102(2)/023004(9) 023004-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6071-2227
https://orcid.org/0000-0001-7883-7300
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.023004&domain=pdf&date_stamp=2020-08-20
https://doi.org/10.1103/PhysRevE.102.023004


ANDY BORUM AND TIMOTHY BRETL PHYSICAL REVIEW E 102, 023004 (2020)

In contrast to prior formulations of the conjugate point
condition for helical rods, this paper uses a Hamiltonian
formulation based on geometric optimal control theory [18].
Similar methods from optimal control theory have previously
been used to generalize many of Born’s original results and
provide a nearly complete description of stability for the
planar elastic rod [19,20]. Using this approach, we are able to
draw an analogy between conjugate points in helical rods and
conjugate points in linear-quadratic optimal control problems
[21]. This analogy is the key insight that allows us to show that
every helical rod becomes unstable at a finite length. In the
process of establishing this result, we also derive coordinates
for computing the length at which a helical rod loses stabil-
ity that are independent of the rod’s bending and torsional
stiffness. Finally, after showing that every helical rod becomes
unstable at a finite length, we derive a scaling relationship that
compares this critical length along different helical rods. In a
companion paper [10], these results are used to compute and
visualize the set of all inextensible, unshearable, isotropic, and
uniform elastic rods with helical centerlines that are stable.

II. EQUILIBRIUM AND STABILITY OF RODS WITH
HELICAL CENTERLINES

In this section, we recall the conditions for a configuration
of an inextensible, unshearable, isotropic, and uniform Kirch-
hoff elastic rod with a helical centerline to be in stable equilib-
rium, which are also described in the companion paper [10].
Equilibrium configurations of a rod with length L and clamped
ends correspond to solutions of the differential equations

r′ = Rv, R′ = Rû, (1)

m′ = m × u + n × v, n′ = n × u, (2)

u1 = c−1m1, u2 = m2, u3 = m3, (3)

subject to boundary conditions on r(0), r(L), R(0), and R(L).
In the differential equations (1)–(3), primes denote differen-
tiation with respect to arc length s ∈ [0, L], v = [1 0 0]T ,
and the map ̂ : R3 → so(3) satisfies a × b = âb for all
a, b ∈ R3. The variable r : [0, L] → R3 describes the rod’s
centerline, R : [0, L] → SO(3) describes the orientation of a
triad of orthonormal vectors attached to the rod’s centerline,
and the vector u denotes the rod’s strains, with u1 being the
twisting strain, and u2 and u3 the bending strains [22]. The
parameter c > 0 is the ratio of torsional to bending stiffness
and is constant since the rod is assumed to be uniform. The
functions m, n : [0, L] → R3 can be interpreted mechanically
as the internal moments and forces, respectively, acting on
the rod [22]. In the Hamiltonian formulation used in this
paper, the functions m and n are adjoint variables, similar
to Lagrange multipliers, associated with the constraints (1)
[18,23].

A solution of the differential equations (1)–(3) is an ex-
tremum of the elastic energy functional

1

2

∫ L

0

(
cu2

1 + u2
2 + u2

3

)
ds, (4)

subject to the boundary conditions on r and R. For a given
solution of (1)–(3), Jacobi’s conjugate point condition can be

used to determine if this extremum is a local minimum of the
elastic energy functional (4) [5–9]. As described in the com-
panion paper [10], the conjugate point condition is applied
by linearizing the differential equations (1)–(3), resulting in a
linear system of the form

J ′ = HJ + GM, M ′ = FM, (5)

where

F =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
c̄m3 0 c̄m1 0 0 1

−c̄m2 −c̄m1 0 0 −1 0
0 −n3 n2 0 m3 −m2

c−1n3 0 −n1 −m3 0 c−1m1

−c−1n2 n1 0 m2 −c−1m1 0

⎤
⎥⎥⎥⎥⎥⎦,

H =

⎡
⎢⎢⎢⎢⎢⎣

0 m3 −m2 0 0 0
−m3 0 c−1m1 0 0 0
m2 −c−1m1 0 0 0 0
0 0 0 0 m3 −m2

0 0 1 −m3 0 c−1m1

0 −1 0 m2 −c−1m1 0

⎤
⎥⎥⎥⎥⎥⎦,

G = diag(c−1, 1, 1, 0, 0, 0), (6)

where c̄ = (c−1 − 1). The system (5) is solved with the initial
conditions J (0) = 06×6 and M(0) = I6×6, where 06×6 is the
6 × 6 matrix containing all zeros, and I6×6 is the 6 × 6 identity
matrix. If det (J (s)) = 0 for some s ∈ (0, L), then s corre-
sponds to a conjugate point, and the equilibrium configuration
is not stable. If det (J (s)) �= 0 for all s ∈ (0, L], then there are
no conjugate points and the equilibrium configuration is stable
[18].

In this paper, we are interested in solutions of (1)–(3)
that correspond to rod configurations whose centerlines have
constant nonzero curvature. As stated in the Introduction,
the centerline of such a rod also has constant torsion and is
therefore a circular helix. To see that this is true, we first note
that in terms of the functions m and n, the curvature κ � 0 and
torsion τ of the rod’s centerline are given by [23]

κ2 = m2
2 + m3

3, τ = m1 − m2n2 + m3n3

κ2
.

Differentiating these expressions with respect to arc length s
and simplifying gives

2κκ ′ = −n′
1, τ ′ = n′

1
2τ − m1

κ2
.

It is well known that the rod’s centerline is a circular helix if
and only if the axial force n1 is constant [9,15,16]. However,
from the above expressions, we can further conclude that if the
centerline’s curvature is constant, then n′

1 = 0 and its torsion
must also be constant. Thus all rod configurations whose
centerlines have constant curvature are helical, and there are
no configurations having constant curvature and nonconstant
torsion.

Solutions of the system (2) and (3) corresponding to rod
configurations with helical centerlines having curvature κ � 0
and torsion τ have the form

m(s) =
⎡
⎣ ω

κ cos (γ s + φ)
κ sin (γ s + φ)

⎤
⎦, n(s) = (ω − τ )

⎡
⎣ τ

m2(s)
m3(s)

⎤
⎦, (7)
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where ω is the twisting moment, φ is a phase parameter, and
γ = τ − ω/c [cf., Eqs. (86) and (94) of Ref. [15], and Eqs.
(4.7)– (4.9) of Ref. [24]]. We call such configurations helical
rods.

The conjugate point condition described above can be used
to determine which rod configurations with helical centerlines
locally minimize the elastic potential energy functional (4).
To apply the conjugate point condition, the expressions (7)
can be substituted into the coefficient matrices F and H in
(6), and the matrix differential equations (5) can be solved
to determine the existence of conjugate points. Finally, we

note that the conjugate point condition can only be applied
in the case when κ > 0, and it cannot be used when κ = 0,
i.e., in the degenerate case of a straight and twisted rod. Due
to the clamped boundary conditions and the assumption of
inextensibility, the straight, twisted rod is an isolated configu-
ration [i.e., there are no nearby configurations with nonstraight
centerlines that satisfy the constraints in (1) and the boundary
conditions on r and R], and is therefore an abnormal extremal
of the elastic energy functional (4). Since this paper is focused
on configurations with centerlines having constant nonzero
curvature, we will not consider these abnormal extremals.

III. A CLOSED-FORM SOLUTION OF THE STABILITY CONDITIONS

In this section, we show that for the functions m and n given in (7), the linear system of differential equations (5) can be solved
in closed form. In the following section, this closed-form solution is used to derive coordinates for determining the stability of
helical rods that are independent of the stiffness parameter c. We begin by applying a coordinate transformation to the system
(5) of the form

J̃ (s) = K (s)J (s), M̃(s) = K (s)M(s), (8)

where

K (s) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 cos(γ s + φ) sin(γ s + φ) 0 0 0
0 − sin(γ s + φ) cos(γ s + φ) 0 0 0
0 0 0 1 0 0
0 0 0 0 cos(γ s + φ) sin(γ s + φ)
0 0 0 0 − sin(γ s + φ) cos(γ s + φ)

⎤
⎥⎥⎥⎥⎥⎦.

After using this coordinate transformation and substituting the expressions in (7) for m and n into the resulting coefficient
matrices, the differential equations (5) become

J̃ ′ = H̃ J̃ + G̃M̃, M̃ ′ = F̃ M̃, (9)

where

F̃ = K ′KT + KFKT =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 τ − ω 0 0 1

−c̄κ −(τ − ω) 0 0 −1 0
0 0 −κ (τ − ω) 0 0 −κ

0 0 τ (τ − ω) 0 0 τ

c−1κ (τ − ω) −τ (τ − ω) 0 κ −τ 0

⎤
⎥⎥⎥⎥⎥⎦,

H̃ = K ′KT + KHKT =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −κ 0 0 0
0 0 τ 0 0 0
κ −τ 0 0 0 0
0 0 0 0 0 −κ

0 0 1 0 0 τ

0 −1 0 κ −τ 0

⎤
⎥⎥⎥⎥⎥⎦,

and G̃ = KGKT = G. Note that since det (K (s)) = 1 for all s ∈ [0, L], conjugate points are invariant under the coordinate
transformation (8), i.e., det (J (s)) = 0 if and only if det (J̃ (s)) = 0.

Since the coefficient matrices F̃ , G̃, and H̃ in the system (9) are independent of φ, we conclude that conjugate points are
independent of the parameter φ as well. This independence results from the assumption that the rod is isotropic. Without loss of
generality, we assume that φ = 0 in the remainder of this paper. With this choice of φ, the initial conditions for the system (9)
are J̃ (0) = 06×6 and M̃(0) = I6×6, just as they were for the original system (5).

In addition to removing the dependence upon φ, the coordinate transformation (8) removes the dependence upon arc length
s in the coefficient matrices F̃ , G̃, and H̃ so that the differential equation (9) becomes a constant coefficient linear system. We
now show that this linear system can be integrated in closed form. We begin by considering the ith column of the matrices J̃ and
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M̃, which we denote by [J̃1i · · · J̃6i]T and [M̃1i · · · M̃6i]T , respectively. A short calculation shows that

M̃ ′′′
2i = σ 2

κ
M̃ ′

4i,

M̃ ′′
3i = 2τ − ω

κ
M̃ ′

4i,

M̃ ′′′
4i = −σ 2M̃ ′

4i,

where σ =
√

κ2 + (2τ − ω)2. The solution for M4i is given by

M̃4i(s) = A1i cos(σ s) + A2i sin(σ s) + A3i, (10)

where the constants A1i, A2i, and A3i are determined by the ith column of the initial condition M̃(0). The solutions for M̃1i, M̃2i,
and M̃3i are then found to be

M̃1i(s) = M̃1i(0),

M̃2i(s) = − 1

κ
[A1i cos(σ s) + A2i sin(σ s)] + B1is

2 + B2is + B3i, (11)

M̃3i(s) = ω − 2τ

σκ
[A1i sin(σ s) − A2i cos(σ s)] + C1is + C2i,

where the constants B1i, B2i, B3i, C1i, and C2i are determined by the ith column of the initial condition M̃(0). Expressions for
the constants A1i, A2i, A3i, B1i, B2i, B3i, C1i, and C2i in terms of M̃(0) can be found by evaluating Eqs. (10) and (11) and their
derivatives at s = 0, and these expressions are given in the Appendix.

Now consider the differential equation for the ith column of J̃ ′. These equations can be rewritten as⎡
⎢⎣

J̃ ′
1i

J̃ ′
2i

J̃ ′
3i

⎤
⎥⎦ =

⎡
⎣0 0 −κ

0 0 τ

κ −τ 0

⎤
⎦

⎡
⎣J̃1i

J̃2i

J̃3i

⎤
⎦ +

⎡
⎣c−1M̃1i

M̃2i

M̃3i

⎤
⎦ (12)

and ⎡
⎢⎣

J̃ ′
4i

J̃ ′
5i

J̃ ′
6i

⎤
⎥⎦ =

⎡
⎣0 0 −κ

0 0 τ

κ −τ 0

⎤
⎦

⎡
⎣J̃4i

J̃5i

J̃6i

⎤
⎦ +

⎡
⎣ 0

J̃3i

−J̃2i

⎤
⎦. (13)

Let

D =
⎡
⎣0 0 −κ

0 0 τ

κ −τ 0

⎤
⎦.

After recalling that the initial condition for J̃ is J̃ (0) = 06×6, the solution of (12) is found to be⎡
⎣J̃1i(s)

J̃2i(s)
J̃3i(s)

⎤
⎦ = eDs

∫ s

0
e−Dt

⎡
⎣c−1M̃1i(t )

M̃2i(t )
M̃3i(t )

⎤
⎦ dt, (14)

and the solution of (13) is given by ⎡
⎣J̃4i(s)

J̃5i(s)
J̃6i(s)

⎤
⎦ = eDs

∫ s

0
e−Dt

⎡
⎣ 0

J̃3i(t )
−J̃2i(t )

⎤
⎦ dt . (15)

The exponential terms in (14) and (15) can be computed using the Rodrigues rotation formula, given by

eDs = I + sin(
√

κ2 + τ 2s)√
κ2 + τ 2

D + 1 − cos(
√

κ2 + τ 2s)

κ2 + τ 2
D2.

The expressions (11) can be used in (14) to obtained closed-form solutions for J̃1i, J̃2i, and J̃3i. These expressions can then be
used in (15) to obtained closed-form solutions for J̃4i, J̃5i, and J̃6i. These solutions can be computed for each of the six columns
in J̃ .

023004-4



INFINITELY LONG ISOTROPIC KIRCHHOFF RODS WITH … PHYSICAL REVIEW E 102, 023004 (2020)

TABLE I. Expressions for the constants defined in the Appendix when M̃(0) is given by (16).

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

A1i 0 − κ (τ−ω)(2τ−ω)
σ 2 0 κ2

σ 2 − κ (2τ−ω)
σ 2 0

A2i 0 0 − κ (τ−ω)
σ

0 0 − κ

σ

A3i τ κ (τ−ω)(2τ−ω)
σ 2 0 1 − κ2

σ 2
κ (2τ−ω)

σ 2 0
B1i 0 0 0 0 0 0
B2i 0 0 0 0 0 0
B3i 0 1 − (τ−ω)(2τ−ω)

σ 2 0 κ

σ 2 − 2τ−ω

σ 2 0

C1i −c−1κ − (τ−ω)(σ 2+(2τ−ω)2 )
σ 2 0 κ (2τ−ω)

σ 2 −1 − (2τ−ω)2

σ 2 0
C2i 0 0 1 + (τ−ω)(2τ−ω)

σ 2 0 0 2τ−ω

σ 2

IV. STIFFNESS-INVARIANT COORDINATES FOR
DETERMINING STABILITY

In this section, we show that the values of the parameters
κ , τ , and ω appearing in the expressions for m and n given in
(7) determine whether or not the corresponding helical rod is
a local minimum of the elastic energy functional (4). In other
words, if the parameters κ , τ , and ω are fixed, then varying
the stiffness parameter c does not change the arc lengths
s at which det (J̃ (s)) = 0 and therefore does not affect the
rod’s stability. The key observation that allows us to establish
this property is that by changing the initial condition M̃(0) in
the system (9), we can make the resulting matrix J̃ depend on
the stiffness parameter c in a simple way.

We first consider a solution J̃ and M̃ of the system (9)
with the initial conditions J̃ (0) = 06×6 and M̃(0) = I6×6. If
the initial condition M̃(0) is changed from I6×6 to any 6 × 6
matrix R, then the resulting solution of the system (9) is given
by J̃R and M̃R. If R is invertible, then J̃ and J̃R are singular
at the same values of arc length s, and this change in initial
condition M̃(0) does not affect the locations of the conjugate
points. Since we are now free to choose the initial condition
M̃(0), we will consider the particular case when M̃(0) is the
invertible matrix

M̃(0) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
τ 0 0 1 0 0
κ 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦. (16)

With this initial condition for M̃(0), the expressions given in
the Appendix for the constants A1i, A2i, A3i, B1i, B2i, B3i, C1i,
and C2i appearing in (10) and (11) can be computed, and they
are given in Table I.

We will first consider columns 2–6 of the matrices M̃ and
J̃ . Note that the parameter c does not explicitly appear in the
expressions (11) for M̃1i, M̃2i, and M̃3i. Furthermore, for i ∈
{2, . . . , 6}, the parameter c does not appear in the expressions
for A1i, A2i, A3i, B1i, B2i, B3i, C1i, and C2i given in Table I.
We therefore conclude that M̃1i, M̃2i, and M̃3i are independent
of c when i ∈ {2, . . . , 6}. Next, note that for i ∈ {2, . . . , 6},
we have M̃1i(s) = 0. In the expressions (14) and (15) for the
columns of J̃ , the parameter c only appears as a coefficient of
M̃1i. Therefore, columns 2–6 of the matrix J̃ are independent
of c.

Now consider the first column of the matrices M̃ and J̃ .
Using the initial condition (16), along with the expressions in
Table I for i = 1 and the expressions in (11), we have

M̃11(s) = 1, M̃21(s) = 0, M̃31(s) = −c−1κs.

After substituting these expressions for M̃11, M̃21, and M̃31

into the differential equations (12) and (13), it is straightfor-
ward to verify that the resulting solution for the first column
of J̃ is given by

J̃11(s) = c−1s, J̃k1(s) = 0, k ∈ {2, . . . , 6}.
We can now decompose the matrix J̃ into four blocks as

J̃ (s) =
[

J̃ (11)(s) J̃ (12)(s)
J̃ (21)(s) J̃ (22)(s)

]
,

where

J̃ (11)(s) = c−1s, J̃ (21)(s) = [
0 0 0 0 0

]T
,

and where J̃ (22)(s) is a 5 × 5 matrix that is independent of c.
The determinant of J̃ can now be written as

det (J̃ (s)) = c−1s det (J̃ (22)(s)).

So, varying the value of c does not affect the arc lengths at
which det (J̃ (s)) = 0, and we conclude that if the parameters
κ , τ , and ω are fixed, then the conjugate points are invariant
under changes in the stiffness parameter c. Therefore, it is suf-
ficient to know the values of κ , τ , and ω in order to determine
if a helical rod locally minimizes the elastic potential energy
functional (4).

When solving the linear system (9), we are now free
to choose any positive value for c, and our results will be
applicable to all other positive values of c. For simplicity, we
will choose c = 1 in the remainder of this paper. However,
we note that in the case when both the torsion and twisting
moment are nonzero and have the same sign, one can choose
c = ω/τ , which gives γ = 0 in the expressions (7). If we
further choose φ = π/2, then u = [τ 0 κ]T , and the frame
R corresponds to the Frenet-Serret frame of the curve r.

V. ALL HELICAL RODS BECOME UNSTABLE
AT A FINITE LENGTH

In this section, we show that for any given values of
κ > 0, τ , and ω, there exists a finite arc length at which the
corresponding helical rod becomes unstable, i.e., there exists
0 < s∗ < ∞ at which the solution of (9) satisfies det (J̃ (s∗)) =

023004-5



ANDY BORUM AND TIMOTHY BRETL PHYSICAL REVIEW E 102, 023004 (2020)

0. To establish this result, we draw an analogy between the
system (9) used to compute conjugate points along helical
rods and the differential equations used to compute conjugate
points in linear-quadratic optimal control problems. Before
making this connection, we briefly review the main results
from linear-quadratic optimal control theory that are needed
for our analysis.

We consider linear-quadratic optimal control problems
with fixed boundary conditions of the form

minimize
x,z

1

2

∫ T

0

(
zT z − xT Qx

)
dt

subject to x′ = Ax + Bz,

x(0) = x0, x(T ) = xT ,

(17)

where x : [0, T ] → Rd and z : [0, T ] → Rk for some
d, k > 0. In the problem (17), the terminal time T > 0; the
matrices A ∈ Rd×d , B ∈ Rd×k , Q ∈ Rd×d , and the boundary
conditions x0, xT ∈ Rd are fixed; and Q is symmetric. In this
optimal control problem, x is called the state and z is called
the control. Although we consider the above problem with
fixed boundary conditions, we note that it is more common in
the optimal control literature to allow the terminal boundary
condition x(T ) to be free, which is often referred to as
the linear-quadratic regulator [25]. We will assume that the
system is controllable, i.e.,

rank([B AB A2B · · · Ad−1B]) = d, (18)

which ensures that for any choice of T , x0, and xT , there exists
a control z such that the corresponding state x satisfies the
given boundary conditions [26].

Necessary conditions for a control z and corresponding
state x to be a local minimum of the problem (17) are
given by the Pontryagin maximum principle [27]. To apply
the maximum principle, we define the control Hamiltonian
function h for the problem (17), given by

h(x, z, p) = pT (Ax + Bz) − 1
2

(
zT z − xT Qx

)
,

where p is called the costate. Then if (x, z) is a local minimum
of (17), there exists a costate trajectory p : [0, T ] → Rd such
that x and p satisfy Hamilton’s canonical equations

x′ = ∂ph = Ax + Bz,

p′ = −∂xh = −AT p − Qx,
(19)

and the control z satisfies ∂zh = 0, which gives z = BT p
[25]. State and control trajectories (x, z) that satisfy these
conditions are local extrema of the problem (17).

If (x, z) satisfies the above necessary conditions, then the
conjugate point condition can be used to determine if (x, z) is
indeed a local minimum of (17). To apply the conjugate point
condition, we solve the system[

P′
X ′

]
=

[−AT −Q
BBT A

][
P
X

]
= Z

[
P
X

]
(20)

on the interval t ∈ [0, T ] with the initial conditions P(0) =
Id×d and X (0) = 0d×d , where we have used Z to denote the
2d × 2d coefficient matrix in the linear system. The above
system results from substituting the expression z = BT p for
the control into the system (19). In a similar fashion to the

conjugate point condition for the elastic rod described in
Sec. II, (x, z) is a local minimum of (17) if det (X (t )) �= 0 for
all t ∈ (0, T ]. If det (X (t )) = 0 for some t ∈ (0, T ), then t is
called a conjugate time and (x, z) is not a local minimum.

In the work of Agrachev, Rizzi, and Silveira [21], linear
systems of the form (20), with A and B satisfying the con-
trollability assumption (18), were classified into the following
two categories:

(i) If the Jordan normal form of the matrix Z in (20) has
at least one odd-dimensional Jordan block corresponding to
a purely imaginary eigenvalue, then the number of times at
which det (X (t )) = 0 in the interval (0, T ) grows to infinity
as T → ∞.

(ii) If the Jordan normal form of the matrix Z in (20) has
no odd-dimensional Jordan blocks corresponding to a purely
imaginary eigenvalue, then det (X (t )) �= 0 for all t ∈ (0,∞).

In both cases (i) and (ii), a state and control trajectory
(x, z) that satisfies the necessary conditions provided by Pon-
tryagin’s maximum principle is a local minimum of (17) for
sufficiently small values of T > 0. In case (i), there exists
0 < T ∗ < ∞ such that if T > T ∗, then (x, z) is no longer
a local minimum of (17). In case (ii), (x, z) remains a local
minimum of (17) for arbitrarily large values of T .

We now use the above classification of linear systems
having the form (20) to show that every helical rod becomes
unstable at a finite length. To establish this result, we will
construct a linear system of the form (20) whose conjugate
times [i.e., times when det (X (t )) = 0] correspond to the arc
lengths in the system (9) at which det (J̃ (s)) = 0, and we will
show that this linear system falls into the first of the two
categories described above. We can rewrite the system (9) as[

M̃ ′

J̃ ′

]
=

[
F̃ 0
G̃ H̃

][
M̃
J̃

]
.

Since the coefficient matrix in this system does not have
the same form as in (20), we cannot immediately apply the
classification from [21]. We therefore consider a coordinate
transformation of the above system of the form

P = M̃ + SJ̃, X = J̃,

where S is some 6 × 6 constant matrix. Under this trans-
formation, the arc lengths at which J̃ and X are singular
trivially coincide. Differentiating the above expressions and
simplifying leads to the linear system[

P′
X ′

]
=

[
F̃ + SG̃ SH̃ − F̃S − SG̃S

G̃ H̃ − G̃S

][
P
X

]
. (21)

For the above system to be written in the form of (20), we
must have −(F̃ + SG̃)T = H̃ − G̃S, or equivalently G̃(S −
ST ) = F̃ T + H̃ . Many choices of S can be found that satisfy
this expression. One such matrix is

S =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −κ/2 0 0 0
0 0 ω/2 0 0 0

κ/2 −ω/2 0 0 0 0
0 0 κ (τ − ω) 0 0 0
0 0 −τ (τ − ω) 0 0 0

−κ (τ − ω) τ (τ − ω) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦.
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With this choice of S, the system (21) can be written in the form of (20), with

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −κ/2 0 0 0
0 0 τ − ω/2 0 0 0

κ/2 ω/2 − τ 0 0 0 0
0 0 0 0 0 −κ

0 0 1 0 0 τ

0 −1 0 κ −τ 0

⎤
⎥⎥⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦,

(22)

Q = 1

4

⎡
⎢⎢⎢⎢⎢⎣

κ2 −κ (2τ − ω) 0 0 0 0
−κ (2τ − ω) (2τ − ω)2 0 0 0 0

0 0 κ2 + (2τ − ω)2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦.

Note that with this choice of S, we have that Q = −(SH̃ −
F̃S − SG̃S) is symmetric, as is required. Finally, we note
that a long but straightforward computation shows that the
above matrices A and B satisfy the controllability assumption
(18), which can be checked, e.g., using symbolic computation
software.

For given values of curvature κ > 0, torsion τ , and twist
moment ω, we have constructed a linear system of the form
(20) whose first conjugate time corresponds to the arc length
at which the helical rod becomes unstable. We can now
determine in which of the two categories this linear system
falls. Computing the Jordan normal form of the coefficient
matrix Z in the system (20) using the matrices A, B, and Q in
(22) produces a matrix with seven Jordan blocks Z1, . . . , Z7,
given by

Z1 = Z2 = Z3 =
[

0 1
0 0

]
,

Z4 =
[√−κ2 − τ 2 1

0
√−κ2 − τ 2

]
, Z5 = −Z4,

Z6 =
√

−κ2 − (2τ − ω)2, Z7 = −Z6.

Both Z6 and Z7 are odd-dimensional Jordan blocks corre-
sponding to purely imaginary eigenvalues. Therefore, the first
conjugate time in the linear system is finite.

For the corresponding helical rod, we conclude that there
exists a finite arc length 0 < s∗ < ∞ at which the solution
of (9) satisfies det (J̃ (s∗)) = 0 and the helical rod becomes
unstable. This property is in direct contrast to Born’s result
for planar rods, which showed that every configuration having
constant nonzero curvature is stable—regardless of the rod’s
length [1]. The results in this section show that within the
class of inextensible, unshearable, isotropic, and uniform rods
having clamped ends and centerlines with constant nonzero
curvature, there exists no configuration that is stable for
arbitrary length.

VI. A STABILITY SCALING RELATIONSHIP

Thus far, we have shown that the stability of a helical rod
is determined by the parameters κ > 0, τ , and ω, and we
have shown that for any choice of these three parameters, the
corresponding helical rod becomes unstable at a finite length.

We now derive a scaling relationship between the length at
which the helical rod becomes unstable and the parameters
κ > 0, τ , and ω.

Based on the results in the previous sections, we were able
to set φ = 0 and c = 1 without loss of generality. Therefore,
the solutions J̃ and M̃ of the linear system (9) only depend
upon the choice of κ , τ , and ω. Let us denote the solutions
of (9) by J̃(κ,τ,ω) and M̃(κ,τ,ω). Let us also explicitly show
the dependence of the coefficient matrices in (9) on κ , τ ,
and ω by denoting them F̃(κ,τ,ω) and H̃(κ,τ,ω). (Note that G̃ is
independent of κ , τ , and ω.)

We first show that for any values of κ > 0, τ , and ω, and
for any positive number λ, we have the relationship

det (J̃(λκ,λτ,λω)(s)) = λ−12 det (J̃(κ,τ,ω)(λs)). (23)

To establish this result, define the matrices

VJ = diag (1, 1, 1, λ−1, λ−1, λ−1),

VM = diag (λ, λ, λ, λ2, λ2, λ2).

We claim that the solutions of the differential equations (9) for
the parameter values (κ, τ, ω) and (λκ, λτ, λω) are related by

J̃(λκ,λτ,λω)(s) = VJ (J̃(κ,τ,ω)(λs))V −1
M ,

(24)
M̃(λκ,λτ,λω)(s) = VM (M̃(κ,τ,ω)(λs))V −1

M .

To verify this claim, first note that a short calculation leads to

F̃(λκ,λτ,λω) = λVMF̃(κ,τ,ω)V
−1

M ,

H̃(λκ,λτ,λω) = λVJH̃(κ,τ,ω)V
−1

J ,

G̃ = λVJG̃V −1
M .

(25)

Next, differentiating the first expression in (24) gives

d

ds
J̃(λκ,λτ,λω)(s)= d

ds
VJ (J̃(κ,τ,ω)(λs))V −1

M

=λVJ (H̃(κ,τ,ω)J̃(κ,τ,ω)(λs)+G̃M̃(κ,τ,ω)(λs))V −1
M

= (
λVJH̃(κ,τ,ω)V

−1
J

)
J̃(λκ,λτ,λω)(s)

+(
λVJG̃V −1

M

)
M̃(λκ,λτ,λω)(s)

= H̃(λκ,λτ,λω)J̃(λκ,λτ,λω)(s) + G̃M̃(λκ,λτ,λω)(s),
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and differentiating the second expression in (24) gives

d

ds
M̃(λκ,λτ,λω)(s) = d

ds
VM (M̃(κ,τ,ω)(λs))V −1

M

= λVM (F̃(κ,τ,ω)M̃(κ,τ,ω)(λs))V −1
M

= (λVMF̃(κ,τ,ω)V
−1

M )M̃(λκ,λτ,λω)(s)

= F̃(λκ,λτ,λω)M̃(λκ,λτ,λω)(s),

where the last equalities in the above expressions follow
from (25). The above computations show that J̃(λκ,λτ,λω)

and M̃(λκ,λτ,λω), as they are defined in (24), satisfy the
differential equations (9) for the parameters λκ , λτ , and
λω. The result (23) follows from (24), since det(VJ ) = L−3

and det(V −1
M ) = L−9.

Based upon the expression (23), we can now derive a scal-
ing relationship between the length at which the helical rod
becomes unstable and the values of κ , τ , and ω. Let sc(κ, τ, ω)
denote the location of the first conjugate point along a helical
rod with curvature κ > 0, torsion τ , and twist moment ω, i.e.,
the first positive value of s at which det(J̃(κ,τ,ω)(s)) = 0. From
the previous section, we know that sc(κ, τ, ω) is finite. Next,
for any values of κ > 0, τ , and ω, and for any positive number
λ, we have

det (J̃(λκ,λτ,λω)(sc(λκ, λτ, λω))) = 0

and

det (J̃(λκ,λτ,λω)(s)) �= 0 for all s ∈ (0, sc(λκ, λτ, λω)).

Using (23), we then have

λ−12 det (J̃(κ,τ,ω)(λsc(λκ, λτ, λω)))

= det (J̃(λκ,λτ,λω)(sc(λκ, λτ, λω)))

= 0

and

λ−12 det (J̃(κ,τ,ω)(λs))

= det (J̃(λκ,λτ,λω)(s))

�= 0 for all s ∈ (0, sc(λκ, λτ, λω)).

We can therefore conclude that λsc(λκ, λτ, λω) is the first
conjugate point along the helical rod corresponding to the
parameters κ , τ , and ω, i.e., sc(κ, τ, ω) = λsc(λκ, λτ, λω). In
the companion paper [10], we rearrange this expression into
the more useful form

sc(λκ, λτ, λω) = λ−1sc(κ, τ, ω). (26)

This scaling relationship allows us to compare the locations
of conjugate points along different helical rods. Furthermore,
in the companion paper [10], we use this relationship to prove
that the closure of the set of points within the κ-τ -ω parameter
space that correspond to stable helical rods is star convex. This
geometric property is an essential component of the process
used in [10] to compute and visualize the set of all stable rods
with helical centerlines.

VII. DISCUSSION

We have shown that every configuration of an inextensible,
unshearable, isotropic, and uniform elastic rod having fixed
boundary conditions and a centerline with constant nonzero
curvature becomes unstable at a finite length. In the process
of establishing this result, we also showed that if the rod’s
curvature, torsion, and twist moment are fixed, then changes
in the rod’s material parameters do not affect stability. Finally,
we derived a scaling relationship for comparing conjugate
points along different rods with helical centerlines. These
three properties are used in the companion paper [10] to
compute and visualize the boundary between sets of stable
and unstable helical elastic rods.

Each of the three properties described above may be ex-
tended to more general models of thin elastic structures. First,
the conjugate point condition described in Sec. II can be used
to determine the stability of elastic rods that are extensible,
shearable, and anisotropic [15]. An approach similar to that
used in Sec. V might show that all helical configurations
within this larger class of elastic rods become unstable at
a finite length, or more interestingly, that only some helical
rods become unstable at a finite length while others remain
stable for arbitrary length. Second, including the effects of
extension, shear, and anisotropy introduces additional mate-
rial parameters in the elastic energy functional (4). If the
differential equations used to compute conjugate points can
be integrated in closed form as in Sec. III, it might be possible
to show that some of these parameters have no effect on the
stability of helical configurations.

Third, the scaling relationship that we found in Sec. VI can
be generalized in multiple ways. A result similar to (26) can be
derived for helical rods that are anisotropic, but the inclusion
of extension or shear appears to break the scaling relationship.
Furthermore, while our derivation of this scaling relationship
is specific to helical equilibria, a similar result can be obtained
for more general configurations of elastic rods, which has
applications to the problem of manipulating an elastic rod with
a robot [28]. Finally, we note that the relationship (26) can be
viewed as a comparison theorem akin to those in Riemannian
geometry, which are used to compare conjugate points along
geodesics [29]. These methods have been extended to sub-
Riemannian geometry [30], and it may be possible to further
generalize them to include problems such as the elastic rod
considered in this paper. Such a generalization would allow a
comparison of conjugate points along configurations that are
not necessarily helical.
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APPENDIX

Evaluating the expressions in (10) and (11) and their derivatives at s = 0 provides expressions for the constants A1i, A2i, A3i,
B1i, B2i, B3i, C1i, and C2i in terms of M̃(0), given by

A1i = κ

σ 2

(
κ (τ − ω)M̃1i(0) + κM̃4i(0) − (2τ − ω)

(
(τ − ω)M̃2i(0) + M̃5i(0)

))
,

A2i = − κ

σ

(
(τ − ω)M̃3i(0) + M̃6i(0)

)
,

A3i = M̃4i(0) − A1i,

B1i = 1

2

(
κ (τ − ω)M̃1i(0) + κM̃4i(0) − (2τ − ω)

(
(τ − ω)M̃2i(0) + M̃5i(0)

) − σ 2

κ
A1i

)
,

B2i = (τ − ω)M̃3i(0) + M̃6i(0) + σ

κ
A2i,

B3i = M̃2i(0) + 1

κ
A1i,

C1i = −c̄κM̃1i(0) − (τ − ω)M̃2i(0) − M̃5i(0) − ω − 2τ

κ
A1i,

C2i = M̃3i(0) + ω − 2τ

σκ
A2i.
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