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Propagation of acoustic waves through saturated porous media
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The homogenization approach to wave propagation through saturated porous media is extended in order to
include the compressibility of the interstitial fluid and the existence of several connected pore components which
may or not percolate. The necessary theoretical developments are summarized and the Christoffel equation
whose solutions provide the wave velocities is presented. Some analytical developments are proposed for
isotropic media. Finally, a systematic application to a synthetic porous medium illustrates the methodology
and its results.
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I. INTRODUCTION

Since the pioneering contribution of Biot [1], wave prop-
agation through saturated porous media has generated a lot
of theoretical and practical interest. In underground media,
in most cases, waves propagate through a heterogeneous
medium which contains at least one fluid and often two, such
as oil and/or water. The presence of these fluids influences the
wave celerities.

The homogenization technique was used much later to
derive the macroscopic mechanical behavior of a porous
medium saturated with an incompressible fluid [2,3] or with
a compressible one [4]. These first analyses extended in [5]
and [6] were applied in [7] to numerically calculate the wave
velocities in a porous medium consisting of a single connected
void filled with an incompressible fluid. A general literature
survey is also found in [7], which can be completed as follows.

Reference [8] considered isotropic multiple-porosity sys-
tems, but the authors started from the Biot equations, in
contrast with the previous references, which started at the
local scale. Reference [9] was a study of acoustical waves in a
porous medium composed of two independent connected pore
components, each one filled with an incompressible fluid.

In [10], the effect of pore fluid viscosity on effective elastic
properties using digitized rocks was studied; a significant
velocity dispersion in wave propagation simulations was ob-
tained by varying the pore fluid viscosity; the study was not
performed in the framework of homogenization theory. The
same group [11] studied wave propagation through metallic
foams by direct simulation.

Numerical homogenization techniques for analyzing trans-
port properties in real foam samples, mostly open cell, were
applied in [12] to understand long-wavelength acoustics of
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rigid-frame air-saturated porous media on the basis of mi-
crostructural parameters; experimental characterization of the
porosity and permeability of real foam samples were used to
provide the scaling of a polyhedral unit cell.

As will be shown, the dynamic permeability is necessary
in order to determine wave velocities through porous media;
a fast Fourier transform–based method for computing the
dynamic permeability of periodic porous media was presented
in [13], which is efficient and compares well with existing
results. The same group worked on the elastic and acoustic
properties of a regular solid foam in the framework of homog-
enization theory [14].

Finally, in [15], multiscale modeling allowed the determi-
nation of the effective speeds and damping of acoustic waves
propagating in fibrous media, which brought up a discussion
of the correlation between the speed, penetration range, and
attenuation of sound waves.

The major objective of the present study is to extend
[7] in two important ways. The first is to include the
compressibility of the fluid, a feature which was not included
in the phenomenology of [7]. The second is to cope with
porous media whose pore space may have several connected
components. Practically speaking, this feature is always
present in real porous media where closed porosity exists.
Note that this is different from the multiple porosity in [8],
which represents a mesoscopically heterogeneous medium
with a mixture of two porous media, each containing a singly
connected pore system.

This paper is organized as follows. Section II provides
the general physical background, the basic equations which
govern wave propagation in saturated porous media, and the
basic analytical tool, which is the double-scale expansion
technique.

Most of the theoretical analysis is contained in Sec. III.
It should be emphasized that we tried to keep duplication of
[7] to a minimum. However, for the sake of clarity, it was
not always possible to avoid it completely. The microscopic
equations of the various orders are presented first. Then they
are analyzed and the macroscopic coefficients to be used
in the wave velocity computations are defined. Finally, the
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macroscopic equations which govern wave propagation on the
macroscopic scale are provided.

This set of theoretical results is discussed in Sec. IV. First,
they are compared to the ones given in [7]. The influence of
the fluid compressibility and of several pore components is
detailed. Then the macroscopic equations are reformulated in
a compact way which makes apparent their correspondence
with the simpler system used in [7]. The meaning and the
properties of the macroscopic coefficients which often are
tensors are recalled, as well as the associated closure problem
from which they are derived.

The characteristics of plane waves are analyzed in Sec. V
and this yields the classical Christoffel equation. Some the-
oretical consequences for macroscopic isotropic media are
developed. A detailed application is presented in Sec. VI for
a medium which contains open and closed pores. Finally, in
Sec. VII, some concluding remarks terminate the paper.

II. GENERAL

A. Physical background

Wave propagation is analyzed through fluid-saturated
porous media. The porous matrix is an elastic heterogeneous
material. The size l of the heterogeneities (scale of the geo-
metrical microstructure or of property variations) is supposed
to be much smaller than the overall dimension Łof the domain.
We assume that the material is statistically homogeneous on
some intermediate scale between l and Łand therefore it can
be regarded as spatially periodic, i.e., it is made of identical
unit cells � of size L.

Despite the two very significant extensions to compressible
fluid and medium with multiple pores, the analysis is similar
to that in [7] (with a detailed approach in [16]) and is con-
ducted in the framework of the homogenization theory, with
the double-scale expansion technique of [5] and additional
elements regarding the compressibility effects taken from
[17]. More precisely, the domain � is composed of a totally
connected region �s, filled with solid material, and a pore
space � f , which can involve several independent connected
components �i

f , i = 1, 2, . . . , N . Some of these components
(generally at most one) can be percolating, but this is not a
requirement. Hence

� = �s ∪ � f , � f =
N⋃

i=1

�i
f . (1)

Throughout this paper, the superscript i is used to refer to
the pore components and the quantities associated with them
(volume fraction εi, fluid pore pressure Pi, etc).

All the pores are assumed to be filled with an identical
compressible fluid. With respect to some reference state (P0,
ρ0), the pressure and density variations are related by

P − P0 = a2
0(ρ f − ρ0), (2)

where a2
0 is the speed of sound in the fluid, related to the

compressibility coefficient c f by a0 = 1/
√

ρ0c f .
We analyze here disturbances from the reference state

(which is generally prestrained, such as in situ conditions)
caused by acoustic waves. Hence, all the deformations and
stresses are measured relative to the reference state, and P0 is
omitted in the formulation.

We consider the propagation in this medium of a harmonic
wave of pulsation ω and wavelength λ intermediate between l
and Ł. In the following, the length L is used as a characteristic
macroscopic scale,

L = λ/2π. (3)

Quantities such as the solid displacement us and the fluid
velocity V are assumed to be of the form Âeiωt .

The separation between the microscale l and the
macroscale L allows us to use a homogenization procedure in
order to derive the macroscopic characteristics of the hetero-
geneous medium by solving a series of local problems. This
method is based on a double-scale expansion of the governing
equations in terms of slow- and fast-varying space variables
which are related by the small parameter η,

η = l/L � 1. (4)

B. Basic equations

All the quantities relative to the solid and fluid phases are
denoted by the subscripts s and f , respectively. The wave
propagation in saturated porous media is governed on the
microscopic level in the solid matrix �s by the elastic equation

∇ · σs = −ρsω
2us in �s, (5)

where ρs is the density of the solid material; σs is the stress
tensor related to the strain tensor es by the solid stiffness
tensor C,

σs = C : es; (6)

and the displacement us is of the form

us = ûse
iωt . (7)

The fluid displacements u f are also of the harmonic form,
(7). Hence, the fluid velocity V is given by

V = ∂u f

∂t
= iωu f . (8)

The Navier-Stokes equations for the fluid motion in � f can
be written

∇ · σ f = ρ f

[
∂V
∂t

+ V · ∇V
]
,

∂ρ f

∂t
+ ∇ · (ρ f V ) = 0, (9)

where σ f is the fluid stress tensor given by

σ f = −PI + 2μD(V ), (10a)

D(V ) = 1
2 (∇V +t ∇V ) − 2

3 (∇ · V )I, (10b)

where μ is the dynamic viscosity. Following [17], it is as-
sumed that the acoustic wave amplitude is low enough so that
the disturbances with respect to the rest state (ρ f = ρ0, P = 0,
V = 0) are of a relative magnitude ξ � η, i.e.,

V

ωl
,

ρ f − ρ0

ρ0
∼ O(ξ ) � η. (11)

Therefore, by ignoring o(ξ 2) terms and by using (7) and (8),
the Navier-Stokes equations can be linearized into

iρ0ωV = ∇ · σ f , iω(ρ f − ρ0) + ρ0∇ · V = 0. (12)
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Continuity of displacements and normal stresses at the solid-
fluid interfaces �i = �s ∩ �i

f implies that

us = ui
f on �i,

(
σs − σ i

f

) · ni = 0 on �i, (13)

where ni is the unit normal to �i, oriented from solid to pore.
There are three different modes of wave propagation in

such media, according to the range of frequency. They are
discussed in [7] and this discussion is not repeated here. We
focus here on the biphasic regime only, which corresponds to
the low-frequency range studied in [1]. Only the conditions
and their physical meaning are recalled at the beginning of
Sec. III.

C. Double-scale expansion in periodic heterogeneous media

Let us assume that the medium is spatially periodic as
described in Sec. II. Moreover, the lengths l, L, L, and λ verify

l � L � L = λ/2π. (14)

In order to distinguish between the macroscopic and the
microscopic scales, two spatial variables, x and y, are intro-
duced (see [5] and [7]). x is macroscopic, i.e., of order L,
while y is microscopic, i.e., of order l. Therefore,

y = η−1x. (15)

Consequently, the spatial gradient operator becomes

∇ = ∇x + η−1∇y, (16)

where ∇x and ∇y are differential operators with respect to the
x and y variables, respectively. Any function of space can be
represented as a function of these two spatial variables f (x, y).
Because of the spatial periodicity of the medium, f is periodic
in y; moreover, f can be expanded as a series in terms of the
small parameter η,

f (x, y) =
∑

η j f ( j)(x, y), (17)

where f ( j)(x, y) is also a periodic function of y. This expan-
sion is applied to the displacements us and u f , the velocity V ,
the fluid stress tensor σ f , the fluid density ρ f , and the pressure
P with an obvious notation; the superscript ( j) denotes the
order.

Substitution of the expansion of us, (17), into Eq. (5) yields
the same expansions for the deformation operator es and the
stress tensor σs. Then a series of equations for the solid phase
for each power of η is obtained identical to Eq. (14) in [7].

Substitution of the expansions, (17), for V and σ f into
Eq. (12) yields a series of equations for the fluid phase similar
to that for the solid one, for each power of η:

η−2: ∇y · σ
(−1)
f = 0,

η−1: ∇y · σ
(0)
f + ∇x · σ

(−1)
f = 0,

η0: ∇y · σ
(1)
f + ∇x · σ

(0)
f = ρ f iωV (0),

...
η j : ∇y · σ

( j+1)
f + ∇x · σ

( j)
f = ρ f iωV ( j),

(18)

∇y · V (0) = 0,

[∇y · V ( j+1) + ∇x · V ( j)]ρ0 = −iωρ
( j)
f ,

j = 0, 1, 2, 3, . . . . (19)

The rate of deformation D can be derived from (17) for V as

D(V ) = η−1Dy(V (0) ) +
∞∑
j=0

η j[Dx(V ( j) ) + Dy(V ( j+1))],

(20)

where Dx and Dy denote the operator D applied to the x
and y variables, respectively.

Note that Eqs. (18) and (19) have to be applied in each of
the pore components �i

f , which yields N independent flow
problems. For each of them, the following conditions for each
power of η at the solid-fluid interface are obtained:

u( j)
s = u( j)

f on �i,
(
σ ( j)

s − σ
( j)
f

) · n = 0 on �i. (21)

At this point, the full procedure demands that the equations
are made dimensionless and that the orders of magnitude of
the various terms are compared, taking into account the tar-
geted range of frequency quantified by the transient Reynolds
number RT :

RT = ωρ f l2

μ
. (22)

For the sake of brevity, this step was skipped, as in [5] and [7].
We focus in the following on the low-frequency range RT =
O(1), which gives rise to the biphasic regime described by
Biot equations [1].

III. THE BIPHASIC MACROSCOPIC BEHAVIOR OF A
SATURATED POROUS MEDIUM: ANALYSIS

Wave propagation is in the biphasic macroscopic mode if
the following two conditions are satisfied:

RT = O(1),
μω

‖C{4}‖ = O(η2). (23)

The physical meaning of these conditions is obvious. The
first one implies that the partial time derivative in the Navier-
Stokes equation is of the same order of magnitude as the
viscous terms. The second one implies that the viscous stress
is of the same order of magnitude as the elastic stress at the
solid-liquid interface.

Because of the interdependence of the solid and fluid
equations, the wave celerity depends on the effective elas-
tic properties of the matrix, on the permeability, and
on the mechanical reaction of the solid on the fluid
pressure [5], i.e., on the global characteristics of both
phases, thus, the name biphasic macroscopic behavior.
Since in this case the relative fluid or solid motion
is not 0, this regime can also be called the drained
regime.

Since the contrast between mechanical properties of the
solid and fluid is of order O(η2), the fluid stress tensor σ f

takes the form

σ f = −IP + η22μD(V ). (24)

Note that in view of Eq. (10b), an additional dilational viscous
term could be expected in Eq. (24). The analysis shows that it
does not actually contribute to the considered order.
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Substitution of (17) twice and (20) into (24) yields the
expansion of the stress tensor σ f , (17), as

σ
(−1)
f = 0,

σ
(0)
f = −IP(0),

σ
(1)
f = −IP(1) + 2μDy(V (0) ), (25)

· · ·

σ
( j)
f = −IP( j) + 2μ(Dx(V ( j−2)) + Dy(V ( j−1))) ( j > 1).

Of course, the equations apply independently in each of the
pore components �i

f .

A. The microscopic equations of the various orders

When expansion (17) for σ f and definition (25) are taken
into account, the equations and boundary conditions for each
power of the small parameter η can be derived,

η−2 : ∇yC{4} : e
(
u(0)

s

) = 0 in �s,{
C{4} : e

(
u(0)

s

)} · ni = 0 on �i, i = 1, . . . , N, (26a)

η−1 : ∇y · C{4} :
[
e
(
u(1)

s

) + E
(
u(0)

s

)] + ∇x · C{4} : e
(
u(0)

s

) = 0 in �s,

−∇yPi(0) = 0 in �i
f , i = 1, . . . , N,{

C{4} :
[
e
(
u(1)

s

) + E
(
u(0)

s

)] + IPi(0)
} · ni = 0 on �i, i = 1, . . . , N, (26b)

η0 : ∇y · C{4} :
[
e
(
u(2)

s

) + E
(
u(1)

s

)] + ∇x · C{4} :
[
e
(
u(1)

s

) + E
(
u(0)

s

)] = −ρsω
2u(0)

s in �s,

−∇yPi(1) + ∇y · [2μDy(V i(0) )] − ∇xPi(0) = iρ0ωV i(0) in �i
f , i = 1, . . . , N,

∇y · V i(0) = 0 in �i
f , i = 1, . . . , N,

u(0)
s = u(0)

f on �i, i = 1, . . . , N,{
C{4} :

[
e
(
u(2)

s

) + E
(
u(1)

s

)] + IPi(1) − 2μDy(V i(0) )
} · ni = 0 on �i, i = 1, . . . , N,

. . . , (26c)

where ni is the unit normal to �i. E and e are the macro-
scopic and microscopic deformations, respectively. Note that
the dilational viscous stress vanishes at order η0, because
∇y · V (0) = 0.

These microscopic equations need to be solved first in
order to get the variations with the local variable y. Then
the macroscopic equations which must be verified by plane
waves, for instance, are obtained at the order O(η0) and
integration over the unit cell; these macroscopic equations
contain quantities which can be derived from the solutions
of the microscopic equations. This enables us to obtain the
global wave characteristics, such as the celerity and the
attenuation.

The technique is almost identical to the one detailed in
[16], differing by only a few points. Therefore, the following
is limited to a presentation of the microscopic equations and
of the quantities which appear in the macroscopic equations
and in the macroscopic equations.

B. The microscopic equations and their solutions

The microscopic equation for the solid phase corresponds
to the order O(η−1), i.e., to (26b). It is used to derive sev-
eral macroscopic quantities. The first is the macroscopic (or,
equivalently, the effective) stiffness tensor D(0)

{4} of the dry
medium. It can be obtained by solving the time-independent

elasticity equation

∇y · C{4} :
[
e
(
us

(1)
) + E

(
U (0)

s

)] = 0 in �s,{
C{4} :

[
e(us

(1) ) + E
(
U (0)

s

)]} · ni = 0 on �i,

i = 1, . . . , N, (27)

where E(U (0)
s ) is the imposed macroscopic strain, and e(us

(1) )
the local strain. The macroscopic stiffness tensor D(0)

{4} is
derived by integrating the strain over the unit cell,

D(0)
{4} : E

(
U (0)

s

) = 〈C{4} :
[
e
(
us

(1)
) + E

(
U (0)

s

)]}〉
, (28a)

where 〈◦〉 is the average operator over the unit cell, which is
defined as

〈◦〉 = 1

�

∫
�

◦ d�. (28b)

In [7], one had to determine the displacement field in the
solid when a unit pressure was imposed on the unique pore.
The tensor α and the scalar β characterized this field. Here,
one has to perform these calculations in every connected
component of the pores. This can be generalized for several
pores as follows. The vector qi is the particular solution of the
local elasticity equation with Pi(0) = 1, P j(0) = 0 for i = j and
E(U (0)

s ) = 0. In other words, it represents the displacement
field in the solid when a unit pressure is imposed on the
interstitial fluid in �i

f only. Then the equation to determine
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qi can be written as

∇y · [C{4} : e(qi )] = 0 in �s,

{C{4} : e(qi )} · ni = −ni on �i,

{C{4} : e(q j )} · ni = 0 on � j, j = i. (29)

Let us denote

αi = −εiI + 〈C{4} : e(qi )〉, (30)

Bi j = 1

�

∫
�i

ni · q jds, (31)

where εi is the volume fraction of �i
f .

At order O(η0), the Navier-Stokes equation is written in
each connected pore component in terms of the fluid velocity
relative to the solid W i,

W i = ui(0)
f − U (0)

s . (32a)

The vector W i is an �-periodic function. The displacement
ui(0)

f is different from the macroscopic displacement in the

solid U (0)
s , i.e., the vector W i is not 0 and it corresponds to

the drained regime. Let us denote its velocity

W i = iωW i. (32b)

It can be shown that W i verifies in pore i

μyW i− iρ0ωW i− ∇yPi(1) = ∇xPi(0) − ρ f ω
2U (0)

s in �i
f ,

∇y · W i = 0 in �i
f ,

W i = 0 on �i, (33)

where Pi(0) is the pressure inside the pore. The driving force
is related to the right-hand side of the dynamic equation

Gi = −∇xPi(0) + ρ0ω
2U (0)

s . (34)

Because of the linearity of the system, (33), W i can be shown
to be linearly related to the driving force

W i = 1

μ
ki · Gi, (35)

where ki is a complex ω-dependent tensor. Then integration
of Eq. (35) over �i

f yields the dynamic Darcy law

iω〈W i〉 = 1

μ
K i · (−∇xPi(0) + ρ0ω

2U (0)
s

)
, (36)

where K i is the dynamic permeability tensor for the pore
component �i

f , which takes complex values and depends on
the frequency

K i = 〈ki〉. (37)

C. Macroscopic equations

The set of equations of order O(η0) for the solid and the
fluid phases can be written as

∇y · σ (1)
s + ∇x · σ (0)

s = −ρsω
2U (0)

s in �s,

∇y · σ
(1)
f + ∇x · σ

i(0)
f = −ρ0ω

2ui(0) f in �i
f , i = 1, . . . , N,(

σ (1)
s − σ

(1)
f

) · ni = 0 on �i, i = 1, . . . , N. (38)

Then these equations are integrated over the unit cell and
the various tensors issued from the microscopic equations in
Sec. III B can be used. Again, the derivation closely follows
the one detailed in [16], except for the fact that an equation
has to be written for each pore i. The macroscopic description
in terms of the solid displacement U (0)

s , the pressures Pi(0),
and the fluid displacements W i(0) in the pores, relative to the
solid, involves the elasticity equation and Darcy’s equation
together with the fluid mass conservation in each of the N
pore components. Since only x derivatives are involved, and
all the quantities are macroscopic, we can simplify the writing
by dropping the indices ′′x′′ from ∇x and ′′s′′ from U (0)

s , all the
superscripts (0), and the angle braces around 〈W i〉 and simply
denote ρ0 as ρ f . Then

∇ · D{4} : E(U ) +
N∑

i=1

∇ · αiPi = −〈ρ〉ω2U − ρ f ω
2

N∑
i=1

W i,

(39a)

iωW i = 1

μ
K i · (−∇Pi + ρ f ω

2U ), i = 1, . . . , N, (39b)

∇ · W i = αi : E(U ) +
N∑

j=1

Bi jP j − εic f Pi, i = 1, . . . , N.

(39c)

IV. THE BIPHASIC MACROSCOPIC BEHAVIOR OF A
SATURATED POROUS MEDIUM: DISCUSSION

A. Comparison with the single-pore, incompressible fluid case

Let us start by examining how the macroscopic description,
(39), differs from its counterpart in [7] as a consequence of
the additional features which are taken into account here.
First, two terms in the global dynamic equation, (39), become
summations over the N pore components, namely, the inertial
term associated with the interstitial fluid, on the right-hand
side, and the contribution of the pore pressures in the stress
balance on the left-hand side.

Then a flow problem composed of the Darcy equation,
(39b), and mass balance, (39), is associated with each of
the N pore components. Finally, the only effect of the fluid
compressibility on this level of description is the introduction
of the last term in (39). However, the structure of (39) is
identical to that of its counterpart in [16], as shown by the
following reformulation.

B. Compact formulation of the equations

By convention, the sets of quantities associated with the
various pores, such as the pressures Pi, are gathered together
in vectors denoted with an overbar. For instance,

P = (Pi ), α = (αi ). (40)

Similarly, matrices denoted by two overbars are built by
grouping the quantities associated with pairs of pores, e.g.,

B = (Bi j ). (41)
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For convenience, the volume fraction εi and permeability
K are stored in diagonal matrices rather than vectors,

ε =

⎛⎜⎜⎜⎝
ε1

ε2

. . .
εN

⎞⎟⎟⎟⎠, K =

⎛⎜⎜⎜⎝
K1

K2

. . .
KN

⎞⎟⎟⎟⎠.

(42)

In addition, I is the unit column vector.
Finally, we define an inner product “�” over the pore

indices (superscripts), equivalent to the dot product “·” over
the spatial indices (subscripts). For instance, the summation
on the left-hand side of (39) is

N∑
i=1

αiPi = α � P. (43)

With these conventions, Eq. (39) can be written in matrix
form:

∇ · D{4} : E(U ) + ∇ · α � P = −〈ρ〉ω2U − ρ f ω
2 Ī � W ,

iωW = 1

μ
K � ·(−∇P + ρ f ω

2IU ),

∇ · W = α : E(U ) + (B − c f ε) � P. (44)

This formal rewriting makes apparent the one-by-one corre-
spondence of all the terms in Eq. (44) and in its counterpart,
(4.80) in [16], for an incompressible fluid in a totally con-
nected pore space. It also makes some calculations much more
tractable, such as the derivation of the Christoffel equation in
Sec. V A.

C. Effective coefficients: Meaning and
associated closure problems

The macroscopic description, (39) or (44), involves sev-
eral effective coefficients. We summarize here their physical
meaning and the way they can be determined from micro-
scopic closure problems.

The elastic tensor D{4} is the elastic stiffness tensor for the
dry porous medium. D{4} : E is the mean stress tensor when a
macroscopic strain E is imposed upon the medium. It can be
determined by solving the local problem, Eq. (27), for a set of
prescribed strains E, in the absence of any pore pressure.

The tensors αi are defined by (30), and they represent the
mean stress in the medium when it is submitted to a unit
pressure Pi = 1 in pore i, P j = 0 in the other pores j = i,
and zero macroscopic strain E. Accordingly, the associated
closure problem is given by (29). Note that one such problem
is to be solved for each of the N pore components. Due to the
Maxwell-Betti reciprocal theorem, −α : E also represent the
variations of the pore volumes in the dual problem where the
dry medium is submitted to a macroscopic strain E.

The opposite of the pore-interaction coefficient Bi j defined
by (31) is the variation of the pore volume �i

f when a unit
pressure is imposed in the pore j. They can be derived when
problem (29) has been solved for the determination of αi.

The dynamic permeability tensors Ki are complex and
frequency dependent. They are obtained for each of the perco-
lating pore components, by solving the flow problem (33), for
three directions of the macroscopic pressure gradient. Then Ki

results in the average (37), of the local tensor ki (35).
All the closure problems associated with the elastic coef-

ficients D{4}, αi, and Bi j can be solved numerically by using
the FMD solver of the Navier elastostatic equations described
in [7] with prescribed pore pressures or macrostrain. FMD
is based on a finite-volume formulation, in a structured or
unstructured tetrahedral mesh.

The dynamic flow problems are solved by using the numer-
ical code developed in Sec. IV.B in [7]. It also results from a
finite-volume formulation, on the same kind of mesh.

D. Effective coefficients: General properties

We present here a list of general properties of the effective
elastic coefficients. The detailed proofs are not given, but a
hint about the method of demonstration is sometimes pro-
vided.

Of course, since αi is a stress tensor, it is symmetric. The

Maxwell-Beti theorem can be used to show that the matrix B
is symmetric:

Bi j = B ji. (45)

B has several other properties. Bii is negative since a positive
pressure in �i

f induces a positive change of this pore volume.
The off-diagonal terms are generally negative (but this is not
a theoretical requirement) and of a much smaller magnitude

than the diagonal ones. The line sums of B (sums of the

components in a line if B) are negative (a positive pressure
in a pore can only increase the total porosity).

The last property, together with the symmetry, implies that

B is diagonally dominant and, therefore, definite negative and

invertible. Thus, B − c f ε has the same properties, with the

important consequence that its inverse G can be defined for
later use:

G = (B − c f ε)−1. (46)

Then the undrained stiffness tensor of the saturated
medium is

Du
{4} = D{4} − α � G � α. (47)

This can be shown by considering a static load (ω =
0) without fluid flow (W = 0). Then P can be obtained
from (44c):

P = −G � α : E. (48)

Injecting this into (44a) yields the static undrained equilibrium
equation

∇ · Du
{4} : E = 0. (49)

Additional properties can be stated, based on a superposi-
tion argument, if the solid elastic properties are uniform with
bulk and shear moduli Ks and μs. Then the trace of α is

trα = 3I � (KsB − ε), (50)
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and

I + I � α = 1

3Ks
(D{4} : I). (51)

If the porous medium is macroscopically isotropic, with bulk
modulus Keff , the last property reads

I � α =
(

Keff

Ks
− 1

)
I, (52)

and if the solid material is isotropic, with C{4} : I = 3Ks,

I � α = 1

3Ks
(D{4} − C{4}) : I. (53)

Finally, useful orders of magnitude for the Bi j coefficients
can be obtained in simple model situations. For noninteracting
spherical pores

Bii = − 3

4μs
εi, (54)

and for slender cylindrical pores

Bii = − 1

2μs
εi. (55)

If it is assumed that tubes and spheres are limiting aspects
of the pore morphology in consolidated, moderately porous
media, this suggests that these two values are practical lower
and upper bounds for Bi j . This is well supported by all
the numerical results of [7] for reconstructed unimodal and
bimodal media.

Finally, a leading-order estimate of the off-diagonal Bi j for
semidilute dispersion of spherical cavities can be obtained by
regarding cavity j in the strain field induced at its center by a
unit pressure in cavity i:

Bi j = 3

4μs

(
1 + 3Ks

4μs

)
εiε j (i = j). (56)

It is of opposite sign and of a much smaller magnitude than
Bi j in (54).

V. PLANE WAVES

Consider now the propagation of harmonic plane waves
along direction p. Hence, we look for solutions of the poroe-
lastic equation, (44), with the forms

u = Ueiωt = Ûei(ωt−kx·p),

w = W eiωt = Ŵ ei(ωt−kx·p),

p = Peiωt = P̂ei(ωt−kx·p),

(57)

where k is the wave number with c = ω
k .

Generally, the velocity c is complex, i.e.,

c = cr + ici, cr = Re(c), ci = Im(c). (58)

Inserting Eq. (58) into Eq. (57) yields

u = Ueiωt = Ûe
iω(t− cr

|c|2 x·p)
e
−ω cr

|c|2 x·p
. (59)

It is obvious that the velocity and the attenuation coefficient
of the wave are

cp = |c|2
cr

, ah = ωci

|c|2 . (60)

Equivalently, the wave attenuation can be quantified by the
penetration depth h, which is related to the attenuation coeffi-
cient by

h = a−1
h = |c|2

ωci
. (61)

A. Christoffel equation

The x derivative simply corresponds to a multiplication by
−ikp. Hence, the pressure can be obtained from (44c) as

P = G � [∇ · W − α : E(U )] (62a)

or

P̂ = −ikG � [p · Ŵ − α : pÛ ]. (62b)

When injecting this into (44a) and (44b), the following
eigenvalue problem is obtained, which is formally identical
to the one in [7] and [16] for a single-pore component and an
incompressible fluid:⎛⎝p · Du

{4} · p· p · α � Gp � ·
− 1

μ f
p · K � G � α · p· 1

μ f
p · K � Gp � ·

⎞⎠ ·
(

Û

Ŵ

)

= c2

(〈ρ〉 ρ f I�

− ρ f

μ f
K � I· i

ω

)
·
(

Û

Ŵ

)
. (63)

Note that this is a fully general formulation, for an arbi-
trary number N of pore components. However, it should be
noted that two independent percolating pore systems in the
same material are extremely uncommon. In practice, only two
situations occur. In the first one, there is no percolating pore
component. In the second one, a single percolating component
exists, which is referred to by i = 1, together with several
closed ones (i = 2, . . . , N).

In the first case, all the permeabilities ki and fluxes Ŵ i are
0, and (63) reduces to

p · Du
{4} : pÛ = c2〈ρ〉Û . (64)

In the second case, only K1 and Ŵ
1

are nonzero. Denote by G

and G the first column and the first diagonal element of G:

G = (G1i ) G = G11. (65)

Then (63) reduces to(
p · Du

{4} · p p · α � Gp·
− 1

μ f
p · K1G � α · p· 1

μ f
p · K1Gp·

)
·
(

Û
Ŵ 1

)

= c2

(〈ρ〉 ρ f

− ρ f

μ f
K1· i

ω

)
·
(

Û
Ŵ 1

)
. (66)

Equation (66) is simpler than Eq. (63) in the sense that it
involves a single vector equation for Ŵ

1
instead of N for Ŵ .

023001-7



J.-F. THOVERT et al. PHYSICAL REVIEW E 102, 023001 (2020)

B. Full analytical solution in the macroscopically isotropic case

For illustration, and to identify some general trends, we
present here full analytical solutions when all macroscopic
effective tensors are isotropic. For instance, K1 and αi are
spherical,

K1 = KI, αi = αiI, i = 1, . . . , N, (67)

where I is the unit tensor. Consequently, the groups G � α

which appear in (66) are spherical:

α � G = G � αI, α � G � α = α � G � αII. (68)

The last property implies that the effective Lamé coefficients
associated with the isotropic stiffness tensors D{4} and Du

{4} for
the dry and saturated porous media are related by

λu
eff = λ0

eff − α � G � α, μu
eff = μ0

eff . (69)

Note that (67) is a very strong and often unrealistic
hypothesis. However, global isotropy of Du

{4} only requires

that the combination α � G � α is isotropic, which can result
from the statistical averaging of many anisotropic, but ran-
domly oriented individual pore contributions. This happens,
for instance, when a solid matrix, with Lamé coefficients λs

and μs and Poisson ratio νs, contains a dilute dispersion of
penny-shaped microcracks with radius R and aperture b � R,
randomly oriented with normal vectors ni. The cracks do not

interact in the dilute limit, and therefore B and G are diagonal.
The coefficients Bii and the tensors αi can be deduced from
earlier results in [18] and [19]. They are given by

Bii = −8

3

R

πb

1 − νs

μs
εi, αi = Bii[λsI + 2μsnini]. (70)

Although the individual αi tensors are anisotropic, the summa-
tion of many uncorrelated contributions without preferential

orientation makes α � G � α isotropic, as well as Du
{4}, in view

of (47). Its associated Lamé coefficients can be obtained as

λu
eff = λ0

eff + 1 + 6νs − ν2
s

2νs(1 − 2νs)
Mλsε,

μu
eff = μ0

eff + Mμsε, with

M =
32
45 (1 − νs) R

πb

1 + 3
8

μsc f

1−νs

πb
R

. (71)

A similar result is obtained if the cracks are thin oblate
ellipsoids with semiaxes (R, R, b/2), with b replaced by 2b/3
in (70) and (71) [20]. Thus, whereas the undrained effective
shear modulus is unaffected by the presence of the intersticial
fluid in (69) when the αi values are isotropic, for instance, for
spherical inclusions, μu

eff differs from μ0
eff when the inclusions

are anisotropic.
For simplicity, the stonger form, (67), of the isotropy

hypothesis is used in the remainder of this section.

1. No percolating pore components

The Christoffel equation reduces to (64). Solutions exist
with Û orthogonal (shear waves) or parallel (compression

wave) to p. For the shear wave, with Û ⊥ p,

P̂⊥ = 0, Ŵ = 0, c2
⊥ = μu

eff
〈ρ〉 . (72)

There is no fluid flow and no induced pore pressure and the
wave velocity depends on the effective parameters μu

eff and
〈ρ〉, according to the same formula as in uniform continuous
materials. Note that when (69) applies, c⊥ is not affected by
the presence of an interstitial fluid, aside from its contribution
to 〈ρ〉.

For the compression wave, with Û = Û p,

P̂‖ = ikG � αÛ , Ŵ = 0, c2
‖ = λu

eff +2μu
eff

〈ρ〉 . (73)

There is no fluid flow since all the pores are closed, but
there is a pore pressure proportional to the wave amplitude
Û . Again, the wave velocity is given by the usual formula in
terms of the effective elastic constants and density. There is
no imaginary component in c‖, i.e., no attenuation, but it is
influenced by the presence of the interstitial fluid.

2. One percolating pore component

For shear waves, with Û and Ŵ orthogonal to p, the
Christoffel equation, (66), reduces to

μu
effÛ = c2

⊥[〈ρ〉Û + ρ f Ŵ 1],

0 = − ρ f

μ f
KÛ + i

ω
Ŵ 1. (74)

The pore pressures P̂ are 0 in view of (62b). The fluid flow
rate is obtained from (74b) and is proportional to the wave
amplitude Û :

Ŵ 1 = − iωρ f K

μ f
Û . (75)

Injecting this into (74 a) yields the shear wave velocity,

c2
⊥ = μu

eff

〈ρ〉[1 − i
Kρ2

f ω

μ f 〈ρ〉
] . (76)

Let F denote the following dimensionless number:

F = Kρ2
f ω

μ f 〈ρ〉 . (77)

F is always very small, in the practical range of the physical
parameters. This property can be used to rewrite (76) as

c2
⊥ = μu

eff

〈ρ〉 + i
K

μ f

ρ2
f μ

u
eff

〈ρ〉2
ω + O(F 2). (78)

Hence, the interstitial fluid slows down the shear wave be-
cause of its contribution to 〈ρ〉, but it also introduces an
imaginary part in c⊥, i.e., an attenuation which does not exist
in (72) when the pores are closed.

The other solutions of (66) are for Û = Û p, Ŵ 1 = Ŵ p,
i.e., for compression waves. The Christoffel equation, (66),
reads(

λu
eff + 2μu

eff − 〈ρ〉c2
‖ α � G − ρ f c2

‖
− K

μ f

[
α � G − ρ f c2

‖
]

G K
μ f

− i
ω

c2
‖

)(
Û
Ŵ

)
= 0. (79)
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Equating the determinant to 0 yields the biquadratic equa-
tion

(1 − iF )c4
‖ − λu

eff + 2μu
eff

〈ρ〉 (1 − iFZ )c2
‖

− i

(
λu

eff + 2μu
eff

〈ρ〉
)2

FY = 0, (80)

with

Z = (G〈ρ〉 + 2α � Gρ f )〈ρ〉(
λu

eff + 2μu
eff

)
ρ2

f

,

Y = 〈ρ〉2

ρ2
f

(
λu

eff + 2μu
eff

)
G + (α � G)2(

λu
eff + 2μu

eff

)2 . (81)

The solution to (80) is

c2
‖ = λu

eff + 2μu
eff

〈ρ〉
1 − iFZ

2(1 − iF )

[
1 ±

√
1 + 4iFY

1 − iF

(1 − iFZ )2

]
.

(82)

The plus and minus signs yield the velocities of the fast and
slow compression waves, respectively. In both cases, the fluid
displacement and the pressures are given by

Ŵ = iω
Kρ f

μ f

c2
‖ − α � G/ρ f

c2
‖ + iωGK/μ f

Û ,

P̂ = iω

c‖
(G � αÛ − GŴ ). (83)

Expression (82) for c‖ is exact, but an approximate one, in the
form of a first-order expansion in terms of a small number F ,
is more enlightening, since it makes it easier to identify the
contributions of the fluid flow and compressibility effects.

For the fast compression wave,

c2
‖ = λu

eff + 2μu
eff

〈ρ〉

⎡⎣1 + i
Kω

μ f

ρ2
f

〈ρ〉

(
1 − 〈ρ〉(α � G)

ρ f
(
λu

eff + 2μu
eff

))2
⎤⎦

+ O(F 2). (84)

If F vanishes (low frequency ω or permeability K/μ f ),
Eq. (84) reduces to (73). The wave velocity is influenced by
the fluid compressibility through (69), but not by the fluid
flow, and it is real (no attenuation).

If the fluid is very compressible (c f → ∞, α � G → 0), the
wave velocity depends on the dry elastic moduli, but the flow
introduces an attenuation,

c2
‖ = λ0

eff + 2μ0
eff

〈ρ〉

[
1 + i

Kω

μ f

ρ2
f

〈ρ〉

]
+ O(F 2). (85)

Recall that K is also complex and frequency dependent.
For the slow compression wave,

c2
‖ = −i

KωG

μ f

[
1 + (α � G)2

G
(
λu

eff + 2μu
eff

)] + O(F 2). (86)

Note that this velocity does not depend on the fluid density.
The fluid displacement amplitude is obtained from (83) and
(86) as

Ŵ = λu
eff + 2μu

eff

α � G

(
1 − ρ f c2

‖
α � G

)
Û + O(F 2). (87)

The prefactor is real, positive, and of order O(1). The correc-
tive term in parentheses is complex [see Eq. (86)] but of order
O(F ). Hence, Ŵ is in phase with Û and of the same order of
magnitude.

VI. APPLICATIONS

This section has two purposes. First, a synthetic view of the
results is presented together with a reminder of the numerical
techniques. Second, systematic applications are made to a
synthetic, but realistic, porous medium in order to illustrate
the methodology.

A. Requirements for a complete solution
and numerical techniques

The solution of (63) or (66), or more generally of the
poroelastic equation (44c), requires the knowledge of the fol-
lowing quantities. The dry medium elastic tensor D{4} can be
obtained by solving six elastostatic problems (see Sec. IV D).

The permeability K, which generally reduces to only K i, is
derived from three flow problems with a macroscopic pressure
gradient aligned with the three axes, successively; since K1 is
frequency dependent, these flow problems have to be solved
for all the investigated values of ω. The full knowledge of the

interaction matrix B is required, even in the case of only one

or even zero percolating pore components, because G and Du
{4}

[see Eqs. (46) and (47)] need to be evaluated; this necessitates
the solution of an elastic problem with a unit pressure imposed
successively in each of the N pore components and may
become a problem since N can possibly be very large. Various
strategies are possible to devise sensible approximations in
such situations. They are presented and tested in Sec. VI B.

Note that the fluid compressibility effects play a role only

in Du
{4} through G [see Eqs. (46) and (47)] and that they do

not require the solution of any additional closure problem.
It seems also possible to reduce the computational cost by
calculating only the components of the effective coefficients
needed for a specified direction of propagation p. For instance,
calculating p · K1 requires only one flow problem solution
(per frequency) instead of three for the full K1. Similarly,
p · D{4} · p can be determined from only three solutions (one
compression and two shears), instead of six for the full D{4}.

However, one should be very cautious about such shortcuts.
In general, D{4}, Du

{4}, αi, and K i are anisotropic tensors.
In addition, there is no reason a priori for their principal
directions to be aligned and, therefore, no way to set p in
a direction corresponding to an eigenvector for all of them.
This means, for instance, that the vector Û solution to (63)
is a priori not aligned with p and thus that the knowledge of
p · K1 is not sufficient to evaluate K1 · Û on the right-hand
side of (66). Such problems occur of course for several other
terms in (63) or (66).

The numerical techniques to discretize and solve these
equations are the same as the ones described and used in [7];
therefore, it is not necessary to detail them again. The porous
medium is usually meshed by a structured or unstructured
tetrahedral mesh. In the present work, all the calculations have
been made with the SCT6-structured mesh. Then the studied
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FIG. 1. The pore space of the test sample. The volume fractions
εi are shown for each of the five components.

equation is discretized by a finite-volume technique which
turns out to be efficient for the elasticity equation as well.
The resulting linear system is solved by a conjugate gradient
algorithm.

B. Full treatment of a sample case

1. Introduction

The detailed treatment of a test case yields three objectives,
namely, to illustrate all the aspects of the previous theoretical
developments, to check both the theoretical predictions and
the numerical solvers and procedures, and, finally, to present
and test various strategies for a simplified approximate pro-
cedure when the number of pore components is large. The
medium is made of elementary cubes of size a which are
either void or solid. The overall dimensions of the cubic unit
cell are 48a × 48a × 48a. The medium is computer generated
according to the scheme described in [21]. An uncorrelated
normal field X (x) is generated. Then it is correlated by the
covariance function exp(−r2/L2

c ), where Lc is the correlation
length which is chosen to be equal to 8a. The corresponding
normal field Y (x) is thresholded to get void voxels which
correspond to pores with a probability ε = 0.1735. The pore
space consists in N = 5 pore components, shown in Fig. 1
together with their volume fractions. The largest one, with
ε1 = 0.16, percolates along all directions of space and the four
others are closed. One of them has a quite significant volume
fraction, ε2 = 0.011. The three others are smaller, but their
cumulated volume is still to be taken into consideration, since
ε3 + ε4 + ε5 = 0.0024. The pores are filled with a compress-
ible fluid, while the solid phase has a Young modulus Es and
a Poisson ratio νs.

2. Effective elastic properties

The effective elastic coefficients of this porous medium
are calculated for a solid with a Poisson ratio νs = 0.30. The
numerical values are given in Appendix A and only the main
conclusions are presented here.

D{4} and the tensors αi are provided in Sec. A 1. D{4} was
obtained from the stress field calculated when successively
imposing three compression and three shear macroscopic
strain fields. It should be perfectly symmetric; therefore, the

very small differences between corresponding Dkl and Dlk

components are a measure of the accuracy of the numerical
calculations. The medium is approximately but not perfectly
isotropic. It is slightly stiffer along the y direction.

The tensors αi have been computed independently by
imposing a unit pressure in each pore and measuring the
resulting mean stress. The property, (51), which is valid for
uniform solid properties, is accurately verified.

All the αi are nearly spherical. Their mean trace compo-
nents is roughly proportional to the volume fraction

α1/ε1 ≈ 2.5, αi/εi ≈ 2.2 ± 0.1, i = 2, . . . , 5. (88)

The full matrix B was calculated by imposing a unit
pressure in each of the pores and measuring the changes in
all the pore volumes. It is given in Sec. A 2. It is symmetric,
as theoretically predicted, and the property (50) is verified.

B is diagonally dominant. The small pores (i > 1) do not
significantly interact. The only terms of nonvanishing magni-
tude are diagonal, and in the first line or row, i.e., interaction
coefficients between the large pore component 1 and the other
small ones.

Matrix B was approximated in various ways that are sum-

marized here. It was first compared to the prediction Bsph

based on (54) and (56), which assumes spherical pores and
involves only the volume fractions. Despite the very crude
character of this approximation, the relative errors are within
26% for all the terms of significant magnitude.

Other approximations were tried, and the most successful
necessitates another elastic solution. Get first the line sums
of B from (50) if the solid is uniform or with P = 1 in all
the pores otherwise; put them on the diagonal. Then solve
a problem with a unit pressure in pore component 1. The
coefficients B1i are obtained from the pore volume changes.
Hence, the first line and row are known directly. Put on the
diagonal for i > 1 the remaining line sums. This is equivalent
to accounting for the interactions between pore 1 and the
others but neglecting the interactions between small pores.

In other words, we focus on the components of B which
were found to be of significant magnitude. This yields an

excellent approximation for the significant terms of B since
the absolute error never exceeds 1.5 × 10−4. Furthermore, the
most important terms in B associated with the pore which may
carry fluid are calculated exactly.

3. Dynamic permeability

The full dynamic permeability tensor was calculated for
four values of the dimensionless frequency

ωc = ρ f �
2ω

μ f
. (89)

The Johnson length � [22] is an intrinsic measure of the
interconnected pore size defined as

� = 2

∫
�

|∇ψ (r)|2d3r∫
S |∇ψ (r)|2d2s

, (90)

where ψ (r) is the solution of the Laplace equation in the
pore space. It is obtained by a separate simulation of the
electrical conductivity problem with a mean gradient set along
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the direction p. The values for p along x, y, and z are very
similar, in agreement with the isotropy of the imaginary part
of K at high frequency [see Eq. (B4)], and their average is
used in (89) for simplicity. � was shown in [22] to be a
governing parameter for the dynamic permeability, and the
normalization, (89), was indeed found to successively unify
numerical results for a variety of media in [7], [23], and [24].

The full numerical results are provided in Appendix B.
Since only pore 1 is percolating, K corresponds to K1. The
values for K are given by (B1) and they are symmetric as they
should be. The evolution of K with the frequency complies
with the general features predicted by [22], complicated by
its anisotropic character. Although the sample is built in a
statistically isotropic way, it is somewhat anisotropic because
of its small size, and accordingly, K is found anisotropic for
ω = 0. Of course, it is real. For high frequencies, K tends to
become purely imaginary and approaches isotropy. However,
in a range of intermediate frequencies, both real and imagi-
nary parts of K have significant magnitudes. Furthermore, its
eigenvalues and eigenvectors are complex, which means that
in the eigenmodes, the fluid velocity and pressure gradient
rotate during a period.

4. Solutions of the Christoffel equation

Since the effective tensors D{4}, αi, B, and K have been
fully determined, the acoustic properties of the synthetic
sample can be calculated by solving the Christoffel equation,
(66). The physical constants for the solid and fluid are taken
as follows:

Es = 70GPa, νs = 0.30, ρs = 2700 kg · m−3,

c f = 5 × 10−10 Pa−1, μ f = 10−3 Pa · s,

ρ f = 1000 kg · m−3. (91)

When faced with an anisotropic material, the usual ap-
proach is to determine first the acoustic properties for a
wave propagation along the material principal directions. If
solutions for compression and shear waves can be obtained,
meaning with a displacement parallel or orthogonal to the
propagation direction, the behavior along the oblique direc-
tions can be deduced from these canonical data.

This approach is possible for a dry medium, since only the
stiffness tensor D{4} can be anisotropic. But it is generally im-

possible for a saturated medium since then Du
{4}, α, α � G, and

K can be anisotropic, with no reason a priori for their principal
directions to be aligned. Furthermore, as demonstrated in the
previous subsection, the eigenvectors of K can be complex,
which means that their direction rotates during a period.

Therefore, there is no way to set the propagation along a
direction p where the existence of pure compression and a
shear wave is expected, and in general such a direction does
not exist. This sheds a disturbing light on the interpretation
and use of acoustic data.

For these reasons, we consider wave propagation along
directions arbitrarily aligned with the x, y, and z axes. The
solutions of the Christoffel equation obtained in the most
complex situation of the intermediate frequency ωc = 10 are
thoroughly discussed in Appendix C.

FIG. 2. The fast compression wave velocity, normalized by the
velocity in the solid as a function of the dimensionless frequency ωc

calculated along the directions x, y, and z.

In summary, it is shown that even in the most complex
situation where the principal directions of the effect tensors
are not aligned, and in the range of frequencies where the
eigenvectors of K are complex, the solutions obtained for
propagation along an arbitrary direction can be unambigu-
ously identified with the four usual modes, namely, a fast and
a slow compression wave and two shear waves.

5. Wave velocities

The moduli of the wave velocities, for p set along x, y, and
z, are plotted as functions of the frequency in Figs. 2, 3, and
4.

The fast compression wave velocity (Fig. 2) in the saturated
medium is slower than in the dry medium, because of the
additional inertia due to the interstitial fluid. It increases with
the frequency. This effect becomes perceptible for ωc � 10,
i.e., when F exceeds a few percent, in agreement with result
(84). The propagation along y is faster than along x and z.
This is consistent with anisotropy of D{4} in (A1), where
D22 > D11, D33.

The shear wave velocities (Fig. 3) are also smaller in the
saturated than in the dry medium because of the additional

FIG. 3. The velocities of the two shear waves, normalized by the
velocity in the solid as a function of the dimensionless frequency ωc

calculated along the directions x, y, and z.
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FIG. 4. The slow compression velocity, normalized by the ve-
locity in the solid, as a function of the dimensionless frequency ωc

calculated along the directions x, y, and z.

fluid mass. Again, c⊥ starts to increase with the frequency
when F exceeds a few percent, in agreement with (78). The
velocities for the two shear waves are equal when p is parallel
to z, but they differ for p along x or y. This suggests a better
isotropy around the z axis than around the x and y axes. This
can be connected to the properties of the lower-right block
of D{4} in (A1). It has an eigenvector nearly along z, with
eigenvalue 0.251, and two eigenvectors in the xy plane, with
the larger and almost-equal eigenvalues 0.256 and 0.258.

Finally, the velocity of the slow wave is shown in Fig. 4. It
is found to be nearly identical along the x, y, and z directions.
This seems surprising since cslow is proportional to the perme-
ability according to (86); K is very anisotropic. This is because
the principal directions of K are along diagonal directions,
and its anisotropy is not perceived when operating along the
axes, just as the anisotropy of the eigenvalues in (B2) does not
show up when considering the diagonal terms in (B1). The
increase in cslow with the frequency is in fair agreement with
(86), which predicts cslow/c‖solid � 0.06, 0.15, and 0.21 when
ωc = 1, 10, and 100, respectively.

VII. CONCLUDING REMARKS

The homogenization approach has been applied to study
wave propagation through saturated porous media. Two

FIG. 5. Sketch of the evolutions of the pressure gradient ∇P and
of the mean velocity V during a period when the eigenvalue and
eigenvector of K are complex. ∇P and V describe similar ellipses
with a phase delay for V .

significant extensions have been made. First, the compress-
ibility of the interstitial fluid has been taken into consid-
eration, i.e., the pore space can be saturated with a New-
tonian compressible fluid. Second, the pore space may be
composed of several connected components which may or
not percolate.

All the physical quantities involved in the macroscopic
description are obtained by solving the corresponding lo-
cal equations separately. The physical meanings of these
quantities are given and the properties associated with
these quantities are discussed. The interactions between the
pore are examined and some strategies are developed to
reduce the computational effort.

The global wave properties, namely, the velocity and at-
tenuation coefficients, were derived by solving the Christoffel
equation. Three types of waves were observed during propa-
gation through the saturated media. The wave velocities were
expressed explicitly, which allows analysis of the effect of
various parameters.

A systematic application to a synthetic porous medium
has been made in order to illustrate the methodology and its
results.

APPENDIX A: EFFECTIVE ELASTIC PROPERTIES

1. D{4} and αi

D{4} = Es

⎛⎜⎜⎜⎜⎜⎝
0.805854 0.300628 0.299361 −0.004145 0.003591 −0.005745
0.300623 0.829249 0.302444 −0.008935 −0.000575 −0.006153
0.299366 0.302451 0.800025 −0.009484 0.000696 −0.002525
0.004146 −0.008937 −0.009481 0.256877 −0.000591 0.000855
0.003591 −0.000576 0.000698 −0.000591 0.256126 −0.002158
0.005746 −0.006151 −0.002527 0.000853 −0.002158 0.252160

⎞⎟⎟⎟⎟⎟⎠, (A1)
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α1 =
⎛⎝−0.408627 −0.004659 0.000351

−0.004659 −0.398951 −0.006450
0.000351 −0.006450 −0.412407

⎞⎠, (A2a)

α2 =
⎛⎝−0.023603 −0.001112 0.001238

−0.001112 −0.023297 −0.002401
0.001238 −0.002401 −0.021653

⎞⎠, (A2b)

α3 =
⎛⎝−0.002985 0.000116 0.000024

0.000116 −0.002664 −0.000090
0.000024 −0.000090 −0.002458

⎞⎠, (A2c)

α4 =
⎛⎝−0.001812 −0.000110 −0.000209

−0.000110 −0.001445 −0.000050
−0.000209 −0.000050 −0.001976

⎞⎠, (A2d)

α5 =
⎛⎝−0.000615 −0.000007 0.000082

−0.000007 −0.000697 −0.000036
0.000082 −0.000036 −0.000750

⎞⎠. (A2e)

2. Matrix B

B =

⎛⎜⎜⎜⎝
−0.30981101 0.01197943 0.00120015 0.00073288 0.00028096
0.01197868 −0.02654253 0.00008993 0.00003698 0.00002426
0.00119974 0.00008995 −0.00300006 0.00000686 0.00000169
0.00073306 0.00003700 0.00000686 −0.00193918 0.00000222
0.00028126 0.00002428 0.00000169 0.00000223 −0.00075457

⎞⎟⎟⎟⎠. (A3)

APPENDIX B: DYNAMIC PERMEABILITY

The four numerical values of the dynamic tensor K are

ωc = 0,
103

a2
K =

⎛⎝52.2 16.3 −16.4
16.3 53.7 −17.8
−16.3 −18.0 49.9

⎞⎠; (B1a)

ωc = 1,
103

a2
K =

⎛⎝ 51.1 15.6 −15.7
15.6 52.6 −17.2

−15.7 −17.3 49.1

⎞⎠ + i

⎛⎝−6.2 −3.4 3.4
3.4 −6.7 3.8
3.4 3.8 −5.6

⎞⎠; (B1b)

ωc = 10,
103

a2
K =

⎛⎝25.6 1.5 −1.5
1.5 25.4 −1.6

−1.5 −1.6 25.6

⎞⎠ + i

⎛⎝−21.5 −7.5 7.5
−7.5 −22.0 8.2
7.5 8.2 −20.7

⎞⎠; (B1c)

ωc = 100,
103

a2
K =

⎛⎝1.44 −.25 0.25
0.25 1.44 0.27
0.25 0.27 1.46

⎞⎠ + i

⎛⎝−6.41 −0.11 0.11
−0.11 −6.41 0.12
0.11 0.12 −6.40

⎞⎠. (B1d)

These results can be commented on as follows. The static permeability tensor for ωc = 0 is anisotropic. Its eigenvalues are

K = 0.0858, 0.0367, 0.0333 (B2)

along the eigendirections ⎛⎝−0.5665
−0.6029
0.5617

⎞⎠,

⎛⎝ 0.7790
−0.6144
0.1248

⎞⎠,

⎛⎝0.2821
0.4987
0.8196

⎞⎠ . (B3)

When the pressure gradient ∇P is set along one of these directions, the flow is parallel to it and in phase with it.
At a low frequency, ωc = 1, K contains an imaginary part, but the changes with respect to the static case are small. The

eigenvalues and eigenvectors are almost identical to (B2) and (B3), although they contain a small imaginary part.
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At a high frequency, ωc = 100, K is mostly imaginary. The eigenvalues are almost identical and pure imaginary numbers:

K = 0.0009 − 0.0066i, 0.0017 − 0.0063i, 0.0017 − 0.0063i. (B4)

The associated eigenvectors have almost purely real coordinates:⎛⎝ 0.5716 + 0.0028i
0.5889

−0.5714 − 0.0024i

⎞⎠,

⎛⎝0.1492 − 0.0365i
0.6098 + 0.0382i

0.7766

⎞⎠,

⎛⎝ 0.8114
−0.5049 + 0.0382i
0.2890 + 0.0417i

⎞⎠ . (B5)

When the pressure gradient is set along one of these directions, the flow is parallel to it and in quadrature with it. The eigenvectors,
(B5), are not exactly aligned with those in (B3) in the static case, but they deviate from them by only about 10, 110, and 120.

The case of the intermediate frequency, ωc = 10, is more complex. The real and imaginary parts of K are of similar orders of
magnitude. The same applies to the eigenvalues

K = 0.0286 − 0.0369i, 0.0240 − 0.0143i, 0.0240 − 0.0130i (B6)

and to the associated eigenvectors⎛⎝ 0.5681 + 0.0092i
0.5953

−0.5680 − 0.0107i

⎞⎠,

⎛⎝ 0.7866
−0.5856 + 0.0584i
0.1732 + 0.0697i

⎞⎠,

⎛⎝0.2445 − 0.0485i
0.5346 + 0.0577i

0.8054

⎞⎠ . (B7)

The real parts of the eigenvectors are again close to those in the static case, with deviations of about 100, 60, and 50. However,
their imaginary part is quite significant, and the physical meaning of this feature may deserve an explanation.

Consider, for instance, the eigenvalue

K = 0.024 − 0.014i = 0.0278e−0.528i, (B8)

which is associated with the vector ⎛⎝ 0.79
−0.59 + 0.06i
0.17 + 0.07i

⎞⎠ =
⎛⎝ 0.79

0.593e3.04i

0.184e0.391i

⎞⎠. (B9)

During a period, the pressure gradient ∂P
∂x oscillates between −0.79 and +0.79. Meanwhile, ∂P

∂y oscillates between −0.593 and

+0.593, with a phase shift of 3.04 (similarly for ∂P
∂z , with a phase shift of 0.391). Hence, during a period, the vector ∇P rotates

and describes an ellipse as illustrated in Fig. 5. The flow describes the same ellipse dilated by a factor −|K|/μ f with a phase
delay of −0.528 [see (B8)].

Such behavior is perfectly normal from a mathematical point of view, and it can always be expected in the range of
intermediate frequencies, when the real and imaginary parts of the permeability tensor are of comparable orders of magnitude.

APPENDIX C: SOLUTION OF THE CHRISTOFFEL
EQUATION FOR ωc = 10

For p along the x axis, the eigenvalue problem has four
solutions:

√
ρs

Es
c = 0.9709 + 0.0026i, Û =

⎛⎝−0.9985 + 0.0015i
0.0064 − 0.0006i

−0.0032 + 0.0006i

⎞⎠,

Ŵ 1 =
⎛⎝ 0.0131 + 0.0159i

0.0044 + 0.0009i
−0.0045 − 0.0009i

⎞⎠; (C1a)

√
ρs

Es
c = 0.5395 + 0.0023i, Û =

⎛⎝−0.0094 − 0.0009i
−0.4772 − 0.0574i
0.9133 + 0.0866i

⎞⎠,

Ŵ 1 =
⎛⎝ 0.0079 + 0.0027i

0.0126 + 0.0119i
−0.0158 − 0.0202i

⎞⎠; (C1b)

√
ρs

Es
c = 0.5323 + 0.0021i, Û =

⎛⎝0.0023 − 0.3483i
0.4145 − 0.5854i
0.2237 − 0.3000i

⎞⎠,

Ŵ 1 =
⎛⎝−0.0014 + 0.0014i

−0.0016 + 0.0002i
−0.0061 − 0.0028i

⎞⎠; (C1c)

√
ρs

Es
c = 0.0963 + 0.0450i, Û =

⎛⎝0.2843 − 0.2102i
0.0023 − 0.0059i
0.0108 − 0.0026i

⎞⎠,

Ŵ 1 =
⎛⎝−3.643 + 2.480i

−0.302 + 0.963i
0.300 − 0.968i

⎞⎠. (C1d)

In the fast solution, Û is nearly purely real and aligned
with p. This can be regarded as an almost-pure compression
wave. We denote the velocity c‖. It is mostly real, meaning that

the attenuation is weak. The fluid displacement Ŵ
1

is small
compared to the solid displacement Û .

In the second and third solutions, Û is complex. However,
its y and z components have almost-identical phases, which
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FIG. 6. Solid (Û ) and fluid (Ŵ
1
) displacements during a period,

projected onto the (y, z) plane orthogonal to p, for the two shear
waves with ωc = 10.

means that U oscillates along a single direction which
is nearly othogonal to p. Hence, these waves are pre-
dominantly shear waves. We denote the velocity c⊥. Its
imaginary part is comparatively larger than for c‖, which
means a stronger attenuation. However, the phases of the
three components of the fluid displacement of Ŵ

1
are

not identical. This means that during a period Ŵ
1

rotates
around p, as illustrated in Fig. 6. The induced flow Ŵ

1

is not exactly aligned with the solid shear Û . Note that
the two solutions for Û and Ŵ

1
do not appear orthog-

onal, especially for Ŵ
1
, because the x component is not

represented.
In the last solution, both the solid and the fluid displace-

ments are aligned nearly along p. The fluid displacement Ŵ
1

is much larger than the solid displacement Û . The velocity
is much smaller than c‖ and the wave is strongly attenuated
(large imaginary part). This is a slow compression wave which
propagates mostly through the fluid. We denote the velocity
cslow.
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