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Buckling of a linear chain of hard spheres in a harmonic confining potential:
Numerical and analytical results for low and high compression
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We extend a previous analysis of the buckling properties of a linear chain of hard spheres between hard
walls under transverse harmonic confinement. Two regimes are distinguished—low compression, for which
the entire chain buckles, and higher compression, for which there is localized buckling. With further increase
of compression, second-neighbor contacts occur; beyond this compression the structure is no longer planar,
and is not treated here. A continuous model is developed which is amenable to analytical solution in the low
compression regime. This is helpful in understanding the scaling properties of both finite and infinite chains.
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I. INTRODUCTION

In this paper we examine an elementary problem: the
buckling of a linear chain of hard spheres. The spheres are
confined between opposing hard walls while also being con-
fined in the transverse direction by a cylindrically symmetric
potential which is zero along an axis perpendicular to the two
hard walls. The linear chain is unstable under the slightest
compression and forms a range of buckled zigzag structures
with increasing compression. Below a critical compression
the structure remains planar and it is this regime which we
study using simulations and experiments. At higher compres-
sions, more complex three-dimensional structures emerge. A
description in terms of disks is natural for the theory, but we
will use the term “spheres” throughout, as a reminder of the
nature of the relevant experiments.

Our paper bears many similarities to studies of the jam-
ming of disks in a narrow channel [1–3]; an extension to
the jamming of disks in a centrifuge, similar to the confining
harmonic potential presented in this paper, was carried out in
[4]. However, the approach in these studies is usually a statis-
tical one, using methods such as Monte Carlo simulations [5]
to find jammed structures. Our method relies on a recursion
relation. This has the advantage of being simple and amenable
to both numerical and analytical treatment.

Despite its simplicity such a model can stand as a tractable
prototype for a more general class of physical systems that
include soft particles and/or long-range interactions. We ex-
pect this paper to find applications in a range of experi-
ments involving zigzagging linear chains of particles. Exam-
ples include cold ions in traps [6–12], dusty plasmas [13],
droplets in microfluidic crystals [14], paramagnetic colloidal
particles in an external field [15], and linear chains of mag-
netic spheres [16,17].

*Present address: stefan.hutzler@tcd.ie; School of Physics, Trinity
College Dublin, Dublin 2, Ireland.

Following up on a preliminary investigation of the ini-
tial stage of buckling [18], here we will analyze it more
exhaustively and adduce a new continuous model for low
compression properties of the discrete chain.

We will examine two kinds of bifurcation diagrams that
represent the proliferation of alternative equilibria (both stable
and unstable) at higher compression. The first of these dia-
grams deals with relative energy and is an improved version
of that previously reported [18]. The second represents the
position at which buckling is localized for each of the alter-
native equilibrium states. If each branch of such a bifurcation
diagram is pursued to higher compressions it terminates, in
the sense that second-nearest neighbors come into contact; the
structure becomes nonplanar, and the methods used here are
inadequate. Anything beyond this is therefore reserved for fur-
ther studies, as is the exploration of buckling properties of soft
spheres and the determination of Peierls-Nabarro potentials.

Figure 1 shows an illustrative example from an elementary
experiment, described in detail in Sec. VIII.

In the following we begin by describing the model and the
numerical scheme that we use, after which we present detailed
results from simulations for the buckling of a linear chain
of N = 5, 6, 7, and 8 hard spheres. In the limit of low com-
pressions we adduce analytical results, based on a continuous
approximation, which are compared with simulations. Finally,
we present exemplary experiments.

II. UNIFORM ZIGZAG

Before giving the details of our methods we describe the
closely related case of the uniform zigzag arrangement of
hard spheres, which is the equilibrium arrangement if periodic
boundary conditions are applied to a finite chain (with an
even number of spheres), as shown in Fig. 2. The analysis of
the uniform zigzag is very elementary. All of the structures
discussed below are modulated versions of it, conforming
to hard wall boundary conditions at the two ends of the
chain. For any given axial compression the uniform zigzag
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FIG. 1. Photograph of an elementary experiment (described in
Sec. VIII) showing a chain of N = 8 hard spheres under compres-
sion. Also shown are the magnitudes of the transverse displacements
of the sphere centers. Both the values for position and displacement
relative to the center are normalized by the sphere diameter. (The
presence of oil in the plastic cylinder, included to reduce friction,
leads to an optical distortion in the photograph; the measured ratio
of sphere extension to sphere diameter (D = 6.33 mm) in x and y
directions is about 0.98 and 1.11, respectively). The error bars in
this figure represent the uncertainty in the measurement of the sphere
centers using IMAGEJ [23]. The error is ±0.04 of a sphere diameter
in both the x and y directions.

structure can be characterized by a lateral displacement y
which is the same for each sphere, and an angle θ . Between
contacting spheres there is a compressive force G (with no
friction)—its horizontal component is G0 = G cos θ = 1

4 (in
nondimensional units; see [18]).

The uniform zigzag is an equilibrium solution for any
compatible boundary conditions but it is always unstable,
except for very small N . If released from the condition of
uniformity, it will undergo the localization that is the subject
of this paper, in order to reach a stable state. See the Appendix.

FIG. 2. The uniform zigzag structure is characterized by the
same transverse displacement y and tilt angle θ for each sphere.
There exists a compressive force G between all contacting spheres.

III. MODEL AND METHOD

We are concerned with a system of N hard spheres of unit
diameter, confined between hard walls. The confining force at
the walls (an important quantity in all later calculations) is G0.
In contact but uncompressed, the chain is of length L = N . For
G0 > 0 the compression will be represented by the parameter

� = N − L. (1)

The total energy is given by

E = 1

2

N∑
n=1

yn
2, (2)

where yn is the transverse displacement of the nth sphere from
the central axis (for details of how the nondimensional quanti-
ties are derived see [18]). Note that the model is confined to be
planar because only planar structures are found in the regime
that we explore, as may be confirmed by energy minimization
calculations not confined to two dimensions [19].

We search for equilibrium structures (stable or unstable):
each sphere is in equilibrium under the action of contact forces
and the confining force associated with the potential energy,
given in Eq. (2). We do so by the same shooting method
adopted in [18]. This uses the following recursion relations to
proceed from one wall to the other and searches for solutions
consistent with both hard wall boundary conditions. The
relations are

θn+1 = arctan

(
Fn

G0
− tan θn

)
, (3)

Fn+1 = sin

[
arctan

(
Fn

G0
− tan θn

)]
− Fn. (4)

Figure 3 illustrates the significance of the parameters in
Eqs. (3) and (4): Fn is the force due to the harmonic potential
on the nth sphere, and θn is the contact angle (i.e., the angle
between the line connecting the centers of spheres n − 1 and
n and the central axis). Note that both Fn and θn are defined in
such a way as to always be positive. The direction in which
they are measured alternates from one sphere to the next.
All structures that are found are of a “zigzag” character, that
is, with alternating signs of displacement and angle (for a
photograph of an example see Fig. 1), but not uniform. G0

is also positive and is the force exerted on each of the hard
walls, normal to the wall.

The hard wall boundary condition for sphere n = 1 re-
quires the first tilt angle θ1 to be zero. For a chosen value
of G0, we proceed iteratively from an initial choice of F1

to (FN+1, θN+1). The angle θN+1 corresponds to the contact
of the N th sphere with the wall, as illustrated in Fig. 3. We
search for values of F1 (in general more than one) such that the
angle θN+1 is zero, satisfying the second hard wall boundary
condition. Note that the resulting solution is for given G0,
fixed during the iteration; compression � is not preset, but
rather given as an output,

This search is performed by coarse graining the initial force
F1 over a range of 0 < F1 � 0.5 in steps of 10−4. These values
are then used as brackets in a bisection method. An exception
to this is required when searching for a solution close to
the termination points (marking contact formation between
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FIG. 3. Schematic for the analysis of a chain of hard spheres under compression, showing the role of the contact forces Gn, restoring forces
Fn (equal to the transverse displacements yn in the units used here), and contact angle θn.

next-nearest-neighbor spheres) for a given structure (as de-
scribed in Sec. IV). This regime was found to require smaller
steps and enhanced accuracy.

Given any equilibrium structure determined in this way, we
may compute the compression �, as

� = N −
N∑

n=1

cos θn, (5)

together with other quantities of interest. Some of these quan-
tities are as follows.

The total energy E , Eq. (2), is an obvious choice. When we
compare different buckled structures for the same compres-
sion, the difference of their energies will be relatively small.
Accordingly we will adopt a definition of relative energy,
given in Sec. IV.

Another useful output quantity is the value of the maxi-
mum displacement, here equal to Fmax.

The position of the peak (maximum transverse displace-
ment) of a buckled chain is defined by the following weighted
average of squared displacements:

xp =
∑N

n F 2
n (xn − L/2)∑N

n F 2
n

, (6)

where N is the number of spheres, xn and yn (in the nondi-
mensional units used here, yn = Fn) give the position of the
nth sphere, and L is the chain length.

The width w of the peak is then defined as

w = 2

√∑N
n F 2

n (xn − xp)2∑N
n F 2

n

. (7)

The shooting method described above is so efficient that very
large amounts of data are easily generated in order to com-
pile, for example, the comprehensive bifurcation diagrams
presented below.

IV. EXAMPLES OF EQUILIBRIUM STRUCTURES AND
BIFURCATION DIAGRAMS

At very low compression, equilibrium structures are sym-
metric about the midpoint between the two walls. The basic
symmetry of the system requires that either this is the case or
the structures occur as equivalent pairs, related by reflection

about the center of the system. Figure 1 was an example of
this. At higher compressions, asymmetric structures arise in
pairs with positions xp = ±x.

In this section examples of equilibrium structures are
shown and located on the relevant bifurcation diagrams.

There is no difficulty in applying the method to large values
of N , of the order of 102 of more, but for present purposes
of building up a clear picture of localization properties it is
preferable to use small values. We have chosen N = 5, 6,
7, and 8 as illustrations, in each case computing bifurcation
diagrams and showing representative examples of equilibrium
structures.

As already noted in [18], there is a distinct difference
between systems of odd or even N as regards the stability or
instability of the symmetric states. We shall discuss this for
the examples that follow.

A. The case N = 5

A representative sample of equilibrium structures for a
system with N = 5 is shown in Fig. 4(a). Unstable structures
are marked with an asterisk.

The bifurcation diagram Fig. 4(b) shows the position of
the buckling peak [as found by using Eq. (6)] against the
compression �. Note that this is only half of the complete
diagram, the other half being obtained by reflection in the
horizontal axis. (See the above remark concerning symmetry.)

With the exception of the symmetric structure S (see be-
low) the solutions found by the shooting method are labeled
alphabetically in ascending order as indicated in Fig. 4(b).

For low values of compression � the only solution is S, the
symmetric structure, with buckling located at the midpoint of
the chain. This solution is shown by the red line along the
horizontal axis in Fig. 4(b). An example of such a solution is
shown in Fig. 4(a) and is labeled S1, corresponding to point
indicated in Fig. 4(b).

With increasing compression the structure B emerges by
a pitchfork bifurcation from the symmetric structure S. The
buckling of the structure B is asymmetric, as shown by the
image labeled B1 in Fig. 4(a).

At the onset of the pitchfork bifurcation, the symmetric
arrangements becomes unstable and we label it S∗ to indicate
this. Continuing to compress the unstable symmetric structure
further brings the two spheres adjacent to the central sphere
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FIG. 4. Results for a chain of N = 5 spheres. (a) The linear chain is bounded by two opposing hard walls, at x = 0 and L (the second wall
is indicated by a vertical dashed blue line). Blue dots indicate sphere centers. The horizontal red line marks y = 0 while the vertical red line
shows the midpoint of the linear chain (i.e., x = L/2). The labels below each structure correspond to the location in the bifurcation diagrams at
which that solution is to be found. (b) Bifurcation diagram for peak position and (c) that for energy, relative to that of the symmetric structure.
Unstable solutions are marked with an asterisk. The termination point of each branch is shown by a red dot. The inset in (c) shows the energy
per sphere of the symmetric structure.

ever closer until they eventually come into contact [S∗
2 in

Fig. 4(a)]. At this point we terminate the solution.
We indicate all termination points by a red dot, as in

Fig. 4(b). While the present model can be used to follow the
solution beyond such termination points (leading to overlap
between next-nearest-neighbor spheres), we do not show that
unphysical result here.

With increasing compression a second pair of solutions
emerges from an “out-of-the-blue” bifurcation, without any
preceding structure. These are labeled C∗ and D; they have
their buckling peaks shifted even further towards the bounding
walls. In the case of D, with increasing compression the
structure eventually tends towards an arrangement with a
pair of spheres against the bounding wall [labeled D2, see
Fig. 4(a)].

Note that the structures as labeled in Fig. 4(b) alternate in
stability. That is, if the symmetric structure is unstable then
the next structure will be stable, and so on. In our prelimi-
nary work (see [18]) the identification of stable or unstable
structures was supported by energy minimization calculations

(which gave the stable modes). At this stage such confirmation
is not necessary, as the alternating pattern of stable or unstable
structures has been established.

Another quantity of interest is the relative energy of the
structures. This we will define as the energy of a solution
relative to that of the symmetric structure for the same value
of compression �:

δE (�) = E (�) − ES/S∗ (�), (8)

where E (�) is the energy of the structure at a compression
� and ES∗ (�) is the energy of the symmetric structure at
the same compression. This is convenient, since the energy
difference between all of these structures is very small. The
total energy of the symmetric structure is indicated in an inset.

All of the qualitative features of these results apply to
any case of odd N , except that the number of asymmetric
structures increases with N .

Note that the bifurcation diagrams presented in [18] used
a different (and more convenient) definition. This was the
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(a)

(c)

S

S1 S2

A*

A*1 A*2

B

B1 B2

C*

C*1 C*2

D

D1 D2

(b)

FIG. 5. Results for N = 6 spheres. (a) Structures found using the shooting method. (b, c) bifurcation diagrams for peak position and energy,
respectively. Again, unstable solutions are indicated with an asterisk. The notation is the same as for Fig. 4.

energy relative to that of the symmetric structure for the same
compressive force G0.

B. The case N = 6

A representative sample of the equilibrium structures for
N = 6 is shown in Fig. 5(a), together with the accompanying
bifurcation diagrams in Figs. 5(b) and 5(c).

In the case of N = 6 (or any even N) the symmetric
structure S is always a stable solution (as it is for all cases
where N is even).

We again find that at low compressions the only equilib-
rium structure is the symmetric one. With increasing com-
pression two new solutions appear from an out-of-the-blue
bifurcation as a stable and unstable pair; we label these states
A∗ and B, that is, in order of the buckling peak position, as
shown in Fig. 5(a).

Finally, for larger values of compression a second out-of-
the-blue bifurcation yields another stable and unstable pair,
which we label C∗ and D.

C. The case N = 7

A representative sample of the equilibrium structures for
N = 7 is shown in Fig. 6, with the accompanying bifurcation
diagrams in Figs. 6(b) and 6(c). Since this is a case with an
odd value of N the symmetric structure (S) is initially stable
and then becomes unstable (S∗) at the pitchfork bifurcation.

D. The case N = 8

A representative sample of the equilibrium structures for
N = 8 is shown in Fig. 7 with the accompanying bifurcation
diagrams in Figs. 7(b) and 7(c). Since the value of N is even,
the symmetric structure S is always stable.
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FIG. 6. Results for N = 7 spheres. (a) Structures found using the shooting method. (b, c) Bifurcation diagrams. Notation details are the
same as for Fig. 4. The disconnected regions apparent in the diagrams for C∗

1 and for (b) and the branch of E∗ are an artifact of the simulation
and in principle can be removed by using a smaller step size.

E. Alternative structures

These bifurcation diagrams are rich in detail, yet they
are not to be taken to be complete. As has been noted by
others [9–12], there are in principle further structures at higher
energies. At the present stage these seem unlikely to have
much significance for real physical systems. One may take
multiple peaks as an example. For large enough � they are just
simple combinations of single peaks, with some interaction
between them. An example of such a structure (generated
using the shooting method) with multiple peaks for N = 10
is shown in Fig. 8.

V. TERMINATION POINTS

At each termination point the equilibrium structure ac-
quires at least one new contact. Illustrative examples were
already included in Figs. 4–7.

For the symmetric structure, a chain with an even number
of spheres takes the terminal form shown in Figs. 5 and 7,
while in the case of a chain with an odd number of spheres it
takes the form shown in Figs. 4 and 6.

We may refer to that of Fig. 5 (or Fig. 7), i.e., the arrange-
ment labeled S2, as a doublet. This simple equilibrium con-
figuration can clearly be constructed anywhere in the chain,
with the same compression �doublet = 3 − √

3 ≈ 1.2679 and
energy Edoublet = 1/4. The energy variation with � as this is
approached is found to be quadratic close to the termination
point:

E − Edoublet ∼ (� − �doublet )
2. (9)

Note also that for hard spheres the compression force G0 is
zero in the case of the doublet, so G0 increases from 1/4
(the same value as for the uniform zigzag) to a maximum and
declines to zero, as compression � is increased from zero.

In general, asymmetric states appear to tend towards the
doublet configuration, but they develop a single additional
contact just before it is formed, and at this point we must
stop, in the present paper. In a real system a small further
compression will bring the second extra contact into play and
the perfect doublet structure will be found.
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FIG. 7. Results for N = 8 spheres. (a) Structures found using the shooting method. (b, c) Bifurcation diagrams. Details of the notation are
the same as for Fig. 4.

Asymmetric structures with a localized peak next to the
wall may tend towards what we call a half doublet (e.g.,
structure F2 in Fig. 7).

Once additional contacts have been formed, we enter a
new regime, beyond the range of the present paper. With
further compression the doublet becomes the nucleus for the
development of a new type of structure, which grows in extent
until it takes over the whole chain. In reality it is unstable with
respect to a twist, so the structure becomes three-dimensional,
if allowed to do so.

It should not be beyond the scope of the recursive method
(suitably adapted) to pursue these higher structures, which
require a different experimental technique from that shown
here [18,20]. We intend to undertake this continuation in the
future. It should complement previous investigations [19])
on the full range of three-dimensional structures, which was
based on energy minimization.

VI. DEPENDENCE OF EQUILIBRIUM PROPERTIES ON
COMPRESSION FOR A DISCRETE CHAIN

The localized buckling that is observed may be conve-
niently characterized by θmax, the maximum value of θ . Its
dependence on compression � is shown in Fig. 9, for the
case of N = 8. An initial increase of θmax that is apparently of
square-root form is followed by a broad linear regime, roughly
speaking, before the terminal regime develops. Also shown
are the variation of G0 and Fmax and the width w, defined in
Sec. III.

While it is possible to discuss these variations within the
discrete model, we have found it illuminating to develop a
continuous description which provides relevant analytical re-
sults and approximations, particularly for small compression.
In Sec. VIII we also show experimental results of the variation
of θmax and width with compression.
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FIG. 8. A linear chain for N = 10 displaying multiple peaks of transverse displacement.

VII. THE CONTINUOUS LIMIT

We have developed an approximate model in which θ , F ,
etc., are continuous functions of the variable u, which replaces
n in the recursion relations for the discrete case (Sec. III).

To do so we have reversed the familiar process by which
derivatives are replaced by finite differences in numerical
methods. This turns out to be a very fruitful approach, leading
to analytic results, and helping to interpret the profiles of the
discrete system for which we have presented results.

It has one major limitation: only the symmetric solution is
found. Asymmetric states are a consequence of discreteness:
see Sec. IV.

Detailed analysis of the model leads us into some deep
mathematics, particularly in relation to the theory of Jacobi
elliptic functions. We will defer the exposition of this and
other technical details to a later paper [21]: here we will
concentrate on its results and their implications.

We shall investigate the continuous formulation for both
finite and infinite systems.

A. Transition to the continuous model

The discrete model is described by the difference equations
Eqs. (3) and (4). To arrive at a single second-order equation for
the angle θ (u), with 0 � u < ∞ we proceed as follows. We
define θ ′(u) = θn+1 − θn corresponding to a finite difference
equation for u = n + 1/2. Similarly we set θ (u) = 1

2 (θn+1 +
θn). Using an equivalent procedure for the introduction of a
displacement function F (u) results in

F (u) = 1

2
sin

[
θ (u) + θ ′(u)

2

]
, (10)

where we have made use of Eqs. (3) and (4).
Equation (4) can now be rewritten in terms of the contin-

uous functions θ (u) and F (u) and their first derivatives with
respect to u. Further manipulation, involving differentiation of
Eq. (10), then results in the following second-order differen-
tial equation for θ (u) in a continuum description:

2 sin

(
θ ′

2
+ θ

)
−

(
θ ′′

2
+ θ ′

)
cos

(
θ ′

2
+ θ

)

− 8G0
sin(2θ )

cos 2θ + cos θ ′ = 0. (11)

Equation (11) looks unpromising, as it offers little hope of
a closed-form solution. Indeed, for present purposes we will
present numerical solutions using MATHEMATICA.

In order to make sense of these results it is helpful to reduce
the equation to something much simpler, with transparent
properties and qualitatively similar solutions.

B. Reduction of the differential equation

For the following discussion we find it convenient to in-
troduce a small quantity κ , |κ|2 � 1 (called ε in our previous
paper [18]), which may be real or imaginary, by defining

κ2 = G−1
0 − 4. (12)

Equation (11) may be reduced as follows, to arrive at a form
which can be solved analytically. We first expand the sine and
cosine functions to second order in θ and θ ′. We then evaluate
the magnitudes of the various terms involving products of
θ , θ ′, and θ ′′ and their powers in terms of the maximum
value θmax (peak) of a solution. The result is the nonlinear

FIG. 9. Variation of G0, θmax, Fmax, and width w as functions of compressions for a chain of N = 8 spheres for the (a) symmetric (structure
S) and (b) asymmetric case (structure D).
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FIG. 10. Profiles of contact angle θ (u) (red solid line) and
corresponding forces (displacements), F (u) (blue dashed line), as
obtained from a numerical solutions of Eq. (11) for an infinite system
with κ = 0.04, resulting in a value for compression � = 0.0398. The
analytical solution of the first reduced equation, Eq. (17) (dashed
black line), provides an excellent approximation for θ (u). Only for
higher values of κ are differences around the peak noticeable, as is
seen in the inset for κ = 0.35, corresponding to compression � =
0.328. (Note that the analytical solutions are shifted along the u axis
so that their peak positions match those of the numerical solutions.)

differential equation which we refer to as the first reduced
equation:

θ ′′ = κ2θ − 2θ3, for small κ and θ, (13)

which has proved to be useful. We will make only limited
use of it here, and present a full analysis of its solutions,
and further quantitative comparison with those of the full
equation, in a further paper. Further reductions yield the
second reduced equation,

θ ′′ = κ2θ, neglecting the θ3 term, (14)

and the first reduced equation for κ = 0:

θ ′′ = −2θ3. (15)

C. Exact solutions

The value of the reduced (and hence approximate) equa-
tions lies in the availability of exact solutions. These will
be described in detail in a subsequent paper: they have been
used to validate the numerical treatment of the full equation,
presented below.

The simplest example is that of the second reduced equa-
tion (14), which is linear and has exponential solutions,
given by

θ (u) ∼ exp(±κu). (16)

These apply away from the peak, in the tails of the profile for
the infinite case, as in Fig. 10.

The first reduced equation (13) has much more general
applicability, and develops all the features of the solution of
the full equation, for low compression. Its exact solution is
given by

θ (u) = κ sech(κu). (17)

The inflection points beyond which the exponential tails de-
velop are at u = (ln

√
2 ± 1)/κ .

The compression � may be evaluated using

� =
∫ ∞

0
[1 − cos θ (u)]du. (18)

Approximating 1 − cos θ by θ2

2 , we find that

� ≈ κ ≈ θmax as κ → 0. (19)

Further exact but less transparent solutions are provided by
Jacobi functions which will be fully described in a subsequent
publication [21].

D. Numerical solutions

We have used standard MATHEMATICA routines to compute
numerical solutions of the full equation (11) for both infinite
and finite systems.

1. Infinite system

We model the infinite system by defining boundary con-
ditions at a position well out in the exponential tail of the
solution (here set at u = 0). For a given value of κ the
conditions then are θ (0)/θmax = θ (0)/κ � 1, and θ ′(0) =
κθ (0), consistent with Eq. (17). From the solution θ (u) we
then obtain the corresponding value for compression � by
numerically performing the integration of Eq. (18). The force
profile is computed from Eq. (10).

As an example we show in Fig. 10 tilt angle θ (u) and
force profile F (u) for κ = 0.04, resulting in a compression
� = 0.039 76. [In this case we found setting θ (0) = 10−6κ

sufficiently small for independence of the profile from the
value of θ (0).] For this compression the analytic solution of
the first reduced equation, Eq. (17), plotted as a dashed black
line, provides an excellent approximation of the numerical
solution θ (u) of the full equation. Deviations of the two
solutions become apparent only for larger values of κ , and
thus deformation (see the inset in Fig. 10 which was produced
for κ = 0.35, resulting in � = 0.328).

We have repeated such calculations for a range of values
of κ (and thus �). Figure 11 shows that in the limit of small
compression θmax varies linearly with �, consistent with the
analytic result of Eq. (19) deduced from the solution of the
first reduced equation, Eq. (17).

2. Finite system

A finite chain of N spheres confined by hard walls at
both end points is represented by θ (1) = 0 and θ (N ) = 0.
Only the first equation is directly implemented as a boundary
condition in our numerical scheme. We have proceeded by
setting θ ′(1) = 2 arcsin (2F1) [see Eq. (10)] and increasing
F1 in a procedure similar to that used for the discrete case
described in Sec. III. We thus search for a value of F1 so
that for a given value of κ the numerical solution of the full
equation [Eq. (11)] results in θ (N ) = 0.

Figure 12 shows an example of the profiles θ (u) and F (u)
for N = 10 and κ = 0.03. The corresponding value of com-
pression is computed from Eq. (18), resulting in � = 0.164.

Unlike in the infinite case [Eq. (19)], for finite systems
the value of κ = 0, i.e., G0 = 1/4 [see Eq. (12)], results in a
nonzero compression �. To study the limit � → 0 we require
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FIG. 11. Variation of θmax with compression � for an infinite sys-
tem. Data points are from numerical solutions of the full differential
equation, Eq. (11). The line of slope unity represents the analytical
result obtained for the reduced equation for low compressions,
Eq. (19).

values of G0 > 1/4, i.e., κ2 < 0, corresponding to imaginary
values of κ (i.e., κ = iμ). Solutions at such low compression
have a different qualitative form. Whereas the finite tails
may be approximated by sinh functions at the boundaries for
positive κ (instead of exponentials that we noted in the infinite
case), imaginary κ implies a profile proportional to cos(μu)
as � → 0 [see the second reduced equation, Eq. (14)]. In that
limit we obtain π

μ
= N , to fit both boundary conditions.

Figure 13 shows the variation of κ2 with �, again for the
case N = 10, consistent with the above description. While for
the infinite system κ2 remains positive for all values of �,
there is a crossover to negative values in the case of finite N .

FIG. 12. Profile θ (u) (red solid line) for the case N = 10 and κ =
0.03. This results in a compression � = 0.164. The profile takes on
a roughly sinusoidal form, rather than the form of sech(u) seen in
the infinite case. The force profile F (u), obtained from Eq. (10), is
shown as a blue dashed line. Its maximum is shifted relative to the
maximum of θ , as θ ′(u) is no longer small throughout the solution,
as per Eq. (10).

FIG. 13. The variation of κ2 as a function of compression shows
a qualitative difference for the cases of finite or infinite chain. Finite
systems [here represented by numerical solutions of the full differen-
tial equation, Eq. (11), for N = 10, 15, and 20] show a change in the
sign of κ2. This is accompanied by a change of the functional form of
the profiles for θ (u) and F (u). For the infinite system (Sec. VII D 1)
κ remains positive for all values of compression. The points marked
on the κ2 = 0 line represent predictions from analytic results of the
reduced equation (for details see [21]).

Its value may be estimated using the first reduced equation for
κ = 0, Eq. (15), as �c = π/(2N ) [21].

Figure 14 shows that the two regimes i.e., κ2 ≶ 0 (or
G0 ≶ 1/4), are significant for the variation of θmax (and other
quantities) on �. Whereas for κ2 > 0, where the solution
approaches that of an infinite system, a roughly linear depen-
dence is found (see Fig. 11), there is roughly a square-root
form for κ2 < 0 and this may be shown in the exact asymptote
form.

FIG. 14. Variation of θmax as a function of compression � for
N = 10 as obtained from numerical solutions of the continuous
model, Eq. (11). While for low compression θmax ∝ �1/2 (dashed
line), for higher compression the variation is linear (solid line). The
point marked in red corresponds to the critical value of compression
�c = π/20 � 0.156, at κ = 0 (G0 = 1/4), as computed from the
first reduced equation for κ = 0, Eq. (15) [21].
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FIG. 15. Experimental data for a chain of N = 8 hard spheres for four different values of compression �. (a) Transverse displacement
profiles. At compression � = 1.32 we observe a doublet structure. (b) Profiles of contact angles θi for several values of compression. The
experimental data are roughly matched by our numerical results.

The same distinction was seen in the earlier computation
for the discrete chain ([18] and Fig. 9), and could be explained
directly, but the continuous model provides a relatively trans-
parent interpretation.

VIII. EXPERIMENTS

In the previous sections we have presented a number of
numerical results which invite comparison with experiments.
In earlier work our interest lay mainly in the many three-
dimensional structures found under higher compression and
we used a lathe to create a harmonic confining potential
[18,20]. Recently we have demonstrated a much simpler
experimental setup that is sufficient for the regime considered
in this paper. Hard spheres (e.g., ball bearings) placed in
a horizontal cylindrical tube exhibit all of the localization
properties described here (see [22] for full details). Provided
that the diameter of the tube is much greater than that of the
spheres, the system is approximately planar. Gravity gives rise

to the quadratic potential included in the model. We have used
such a system to provide illustrations of the theoretical results
of this paper; one was already shown in Fig. 1 for compression
� = 1.04.

All of these experiments were carried out using eight
steel spheres (ball bearings) with diameter D = 6.33 mm,
confined in a transparent cylindrical tube with inner diameter
20.05 mm. The tube is closed with stoppers at each end, with
one stopper being movable, so that the tube volume can be
smoothly adjusted in the course of an experimental run. In
order to decrease friction between the spheres we immersed
them in vegetable oil. A small hole in the upper half of the
tube allows for the escape of air, as the stopper is pushed
inwards. A spirit level was used to facilitate horizontal align-
ment of the tube. Compression � is given by � = N − L/D,
where L is the chain length; all our experiments were for
N = 8 spheres.

Figure 15(a) shows a sequence of photographs of a chain of
eight spheres for increasing values of compression. Buckling
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is seen to occur around the center of the chain (symmetric
peak); see structure S in our simulations shown in Fig. 7.

From image analysis (using IMAGEJ [23]) we are able to
measure positions and hence angles of the structure. The angle
profiles θn, shown in Fig. 15(b), are found to be in good
agreement with simulations, of the kind described in Secs. III
and IV. The increase of the maximum tilt angle as a function
of compression, and the corresponding decrease of the width
of the angle profile, feature also in our discrete simulations
[see Fig. 9(a)].

IX. CONCLUSION

We have completed an analysis and interpretation of some
of the key properties of the linear chain of hard spheres under
confinement and compression. Understanding of the system
is fairly complete and it can be said to stand as a prototype
for various physical systems of interest. We have deferred to
a later publication the mathematical developments, involving
Jacobi functions, that are mentioned in Sec. VII.

At the same time, the system amenable to experiment,
of which we have shown a simple example. One further
experiment we intend to conduct is the investigation of the
Peierls-Nabarro potential. This is the apparent potential, given
as a function of position, experienced by the localized peak of
buckling when it is moved by an added force. It is a contin-
uous potential, including the values for energy for stable and
unstable solutions [e.g., Fig. 4(c)] as minima and maxima of a
continuous curve. It may also be determined by computation
in an extension of the methods presented here.
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APPENDIX: WHAT ACCOUNTS FOR THE PHENOMENON
LOCALIZATION OF BUCKLING?

We have seen that the localization is a general feature
of the buckling of the linear chain under confinement. One
may rationalize this phenomenon by the following argument,
starting from the uniform (nonlocalized) zigzag structure of
Sec. II.

Consider a long finite zigzag structure of N spheres under
fixed compression. This is to be compared with a second
configuration, in which only a smaller section, consisting of
only M spheres, has a uniform zigzag structure (necessarily
of greater amplitude, in order to maintain the same value
of compression), while the remainder consists of the straight
chain (zero displacement). It is easy to show that the energy of
this localized configuration is smaller than that of the original,
if we ignore boundary contributions where the two structures
meet.

This implies a reduction of energy upon reducing M, until
boundary effects intervene to limit it, in a crude form of
localization.
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