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Combined effects of contact friction and particle shape on strength properties and microstructure
of sheared granular media
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We present a systematic numerical investigation concerning the combined effects of sliding friction and
particle shape (i.e., angularity) parameters on the shear strength and microstructure of granular packings. Sliding
friction at contacts varied from 0 (frictionless particles) to 0.7, and the particles were irregular polygons with
an increasing number of sides, ranging from triangles to disks. We find that the effect of local friction on shear
strength follows the same trend for all shapes. Strength first increases with local friction and then saturates at a
shape-dependent value. In contrast, the effect of angularity varies, depending on the level of sliding friction. For
low friction values (i.e., under 0.3), the strength first increases with angularity and then declines for the most
angular shapes. For high friction values, strength systematically increases with angularity. At the microscale, we
focus on the connectivity and texture of the contact and force networks. In general terms, increasing local friction
causes these networks to be less connected and more anisotropic. In contrast, increasing particle angularity may
change the network topology in different directions, directly affecting the macroscopic shear strength. These
analyses and data constitute a first step toward understanding the joint effect of local variables such as friction
and grain shape on the macroscopic rheology of granular systems.
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I. INTRODUCTION

In general terms, the shear strength of an assembly of dry
rigid particles can be characterized through a macroscopic
friction coefficient μ = τ/σ , where τ is the maximal shear
stress that can be applied to a plane with normal stress σ [1].
During shear deformation, a basic observation is that μ first
increases; depending on whether the system is dense or loose,
it may pass through a peak and then reach a steady state
after a sufficiently large deformation. This steady state is
called the “critical state” in soil mechanics [1] and is usually
characterized by a friction coefficient μ∗ and a solid fraction
ρ∗, which are interesting because they are independent of the
initial configuration. In other words, in this state the memory
of the initial configuration has been totally erased by means
of the particles’ rearrangements.

Macroscopic friction results from both the sliding friction
at the contacts, which is characterized by a local friction co-
efficient μs, and the typical disorder of granular arrangements
that is induced by particle sizes and shapes. It is known that
μ∗ first increases with μs and then saturates at a constant
value, irrespective of μs. This has been shown for packings
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made of disks [2–8], and more recently for packings made
of cubelike particles [9] and irregular-shaped structures [10].
Discrete element simulations have also revealed that less than
half of the contacts fully mobilize their frictional strength.
This suggests that sliding is not the dominant mechanism of
relative motion between particles, but that rolling also plays
an important role in this process [6,11].

Several numerical studies have confirmed the major role
played by particle rotation in the strength and deformation of
granular media [12–16]. Specifically, if the relative rotation
between particles is constrained through rolling resistance,
then the local environment is strongly affected leading to
higher values of μ∗ [6,17–20]. This explains why it is difficult
to obtain realistic values of macroscopic friction using model
granular media composed of circular or spherical particles
interacting through sliding friction.

In dry granular media, the restriction of particle rotations
is a consequence of the nonspherical particle shape [21]. A
general observation is that μ∗ increases as the particle shape
deviates even slightly from a circle or a sphere, but then tends
to saturate with shape deviation [22–29]. Another interesting
result concerns the ideal case of frictionless grains. For these,
a nonzero (although weak) value of μ∗ is observed [30–32].

Thus, existing results suggest that local friction and par-
ticle shape strongly affect the macroscopic properties of an
assembly of grains. The pending issue is the joint effect of the
two parameters on the rheology of sheared granular media.
We address this question in the paper and propose a systematic
analysis of the interplay between mechanical effects (induced
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by friction) and geometrical effects (induced by shape). The
local friction coefficient varied from 0 (frictionless systems)
to 0.7, and the shape of the particles varied from disks to tri-
angles. We only considered packings composed of polygonal
particles, since their shape can be easily controlled through
the number of their sides.

Below, in Sec. II we introduce the numerical approach,
system characteristics, and loading parameters. In Sec. III we
present a parametric study of the strength and density of the
systems, as functions of local friction and particle angularity.
Section IV is devoted to the analysis of the contact network:
connectivity and texture. The results are summarized and
discussed in Sec. V, together with some perspectives.

II. NUMERICAL PROCEDURES

A. Simulation method

The simulations were carried out by means of the contact
dynamics (CD) method, which is suitable for simulating
large assemblies of rigid massive particles [23,33–35]. In
this method, the equations of motion (i.e., Newton’s laws)
are integrated over a small time step and combined with
the kinematic constraints resulting from contact interactions.
These interactions are characterized by three parameters: the
coefficient of friction μs and the coefficients restitution in
the normal and tangential directions, which control the rate
of energy dissipation. Contact interactions are thus rewritten
as complementarity relations between velocity changes and
impulses; the normal interaction is described by the Signorini
condition and the tangential interaction is described through
Coulomb’s friction law. In other words, contact laws are not
regularized, as is the case in smooth approaches such as the
molecular dynamics (MD) method and the like. Moreover,
since small contact deformations do not need to be resolved
to calculate the forces, the time step can be larger than in
MD. In CD, an iterative and parallelized algorithm [36] based
on a nonlinear Gauss-Seidel scheme is used to determine the
contact forces and particle velocities simultaneously at all
potential contacts. It must be noted that in all the simulations
presented in this paper the restitution coefficients are set to
zero. In fact, it has been shown that the quasistatic behavior
of sheared granular systems is independent of the coefficient
of restitution unless this parameter is set to very large values
(i.e., above 0.8) [37]. For an explanation of the specific
implementation of the method, see Refs. [34,35].

When treating contacts between polygonal particles, three
situations may arise: side-to-side (ss) contacts, side-to-vertex
(sv) contacts, and vertex-to-vertex (vv) contacts; see Fig. 1.
For sv contacts, a single contact point is used, and the normal
vector lies perpendicular to the side. ss contacts are repre-
sented by two points located along the sides that touch each
other (i.e., the points located at the extremities of the contact
segment), and the normal vector is perpendicular to these
common sides. Numerically, this means that two forces are
calculated. However, physically only their resultant and appli-
cation points are of interest. vv contacts are rare, but when
such a situation arises they are treated as ss or sv contacts,
depending on the path followed by the two particles. Note
that a complete description of the CD method is presented in

FIG. 1. Examples of the most common types of contacts between
polygonal particles: side-to-vertex (sv) contacts between pairs of
particles {k, i} and {k, j}, and side-to-side (ss) contact between the
pair of particles {i, j}. The red arrows represent the unit normal
vector.

the annex in [23], including the special treatment for contacts
between polygonal particles.

We used the LMGC90 open-source platform, developed
in the University of Montpellier, France. This is extensively
employed in research on the simulation of granular materials,
in two and three dimensions, with particles of arbitrary shape,
size, and with different types of mechanical behavior.1

B. Packing construction and biaxial tests

Our numerical samples were composed of Np = 10000
particles placed in a rectangular box bounded by frictionless
walls, with density ρ and with diameters (i.e., circumscribed
circles) d varying between dmin = 0.8dmax and dmax, with a
uniform distribution of particle volume fractions (i.e., each
size class occupies the same volume in the sample), where
dmax is the maximum diameter. A set of 11 different packings
was prepared, each composed of particles having the same
number of sides: one packing of disks and 10 packings
with ns ∈ [50, 30, 20, 10, 8, 7, 6, 5, 4, 3]. In other words, the
angularity of the particles, defined as α = 2π/ns, varied from
0 (disks) to 2π/3 (triangles). To avoid local ordering, slightly
irregular polygons were used. The level of irregularity was
controlled by randomly perturbing the position θi of each
vertex i according to the simple formula: θi = θ0 + 2π i/ns ±
δπ/ns [38], with δ = 0.3. In the following, particle-wall fric-
tion and gravity were set to zero in all our simulations.

First, a dense packing of disks was constructed by means of
a layer-by-layer deposition model, such as those described in
Ref. [39]. Basically, the disks were deposited sequentially on
a substrate. Each new disk was placed at the lowest possible
position at the free surface as a function of its diameter. This
procedure produced a dense packing in which each disk was
supported by two underlying disks. For polygonal particles,
the same disk packing was used, with each disk serving as
the circumscribing circle of a polygonal particle. The latter

1LMGC90 (2018), https://git-xen.lmgc.univ-montp2.fr/lmgc90/
lmgc90_user/wikis/home.
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was inscribed with the given value of α and at a random
orientation. Then, each packing was compressed isotropically
by applying a stress σ0 on all walls. During this phase,
sliding friction μs was set to zero, both between particles and
between particles and walls. This procedure allowed to obtain
dense systems, similar to the so-called random close pack-
ing state. Figure 2 shows several particle-scale views at the
end of the isotropic compression phase, for different values
of ns.

Second, the isotropically prepared samples were biaxially
sheared by imposing a vertical velocity vy on the upper wall
while maintaining a confining stress σ0 on the lateral walls.
The velocity vy was such that tests could be considered to be in
the quasi-static limit. This was quantified through the inertial
number I , defined as [40]

I = vy

H
d

√
ρ

σ0
, (1)

where H is the sample height, ρ is the particle den-
sity, and d is the mean diameter. In all our sim-
ulations, I was equal to 5 × 10−4. Starting from the
same dense samples, several biaxial tests were conducted,
one for each value of the interparticle friction μs ∈
[0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7], while keeping
the coefficient of friction with the walls and the gravity equal
to 0. Hence, a total of 121 simulations were performed: 11
isotropic compressions with μs = 0 and α ∈ [0, 2π/3] and
110 biaxial shears for μs ∈ [0, 0.7] and α ∈ [0, 2π/3].

III. STRENGTH AND PACKING FRACTIONS

A. Definitions

As was explained in the Introduction, the shear strength
of an assembly of grains can be described using the ratio of
the shear to normal stress μ = τ/σ . However, in a biaxial
geometry it is more convenient to express the macroscopic
friction in terms of the invariants of the stress tensor. Let σi,
with i ∈ {1, 2} in 2D, be the principal stresses. The average
stress is given by p = (σ1 + σ2)/2, and the deviatoric stress
can be written as q = (σ1 − σ2)/2. Then, using the Mohr
representation and the Coulomb failure criterion, it can be
shown that μ � q/p [41].

To calculate the stress tensor σ, we used the formula based
on the averages of the “tensorial moment” Mξ of the particles
ξ in a volume (area in 2D) V [42] that is now considered
classical:

σ = 1

V

∑
ξ∈V

Mξ , (2)

with

Mξ
i j =

∑
c∈ξ

f c
i rc

j , (3)

where f c
i is the i component of the force exerted on a particle ξ

in contact c, rc
j is the j component of the position vector of the

same contact, and the sum runs over all the contact neighbors
of the particle ξ .

(a)

(b)

(c)

(d)

(e)

FIG. 2. Particle-scale views of the some of the packings gen-
erated in the isotropic compression phase: (a) ns = 3, (b) ns = 5,
(c) ns = 7, (d) ns = 20, and (e) disks.

The packing fraction ρ is defined as the ratio Vp/V , where
Vp is the volume occupied by the particles and V is the total
volume. The vertical strain ε1 is defined as �h/h0, where
�h = h0 − h is the downward displacement of the upper wall,
h0 is the initial height and h is the height.

022901-3



THEECHALIT BINAREE et al. PHYSICAL REVIEW E 102, 022901 (2020)

FIG. 3. Stress ratio q/p and solid fraction ρ (insets) as functions
of the vertical strain ε1. (a) Packings of pentagons for all values of
the local friction μs. (b) Packings with μs = 0.5 for all shapes.

B. Stress-strain behavior

Figure 3 shows the evolution of the stress ratio q/p and
the packing fraction ρ (insets) as functions of the vertical
strain ε1. It can be seen that for the lowest values of the
local friction μs the stress ratio q/p first increases and then
stabilizes at a constant value within fluctuations. In contrast,
for the largest values of μs (i.e., for μs > 0.1) q/p passes
through a maximum before decreasing and stabilizing. Hence,
an important remark is that the existence of the strength peak
cannot be attributed exclusively to high values of the packing
fraction (all samples are initially dense) but also involves
friction between particles. We also observe that within a good
approximation a constant shear strength is reached for ε1 �
0.3. In the following, all reported quantities correspond to
the mean values in the steady state (i.e., for ε1 > 0.3), and
they are thus independent of the initial configuration of the
samples. As mentioned in Sec. II B, all samples are initially
dense. For this reason, ρ decreases from its initial value ρ0

and stabilizes at a practically constant value for larger ε1.
It can be noted that dilation diminishes with μs → 0, and,
remarkably, no dilation is observed in the limit of frictionless
particles. This observation is consistent with previous results
obtained for packings of frictionless disks, pentagons, and
spheres [30,31,43].

Figure 4 shows the macroscopic friction coefficient μ∗ and
the packing fraction ρ∗ (defined from the mean values of
q/p and ρ, respectively, in the steady state) as functions of
both the local friction μs and the particle angularity α. For
all shapes, μ∗ first increases with μs and then saturates at
a shape-dependent value. These results extend to the family
of polygonal particles a similar behavior to that observed
for disks, spheres, and cubelike particles [4,6,8,9,44]. It can

FIG. 4. Macroscopic friction coefficient μ∗ and packing fraction
ρ∗ (insets) in the steady state, as functions of both the local friction
μs (a) and the particle angularity α (b). The dashed line in the inset
of (b) represents the initial solid fraction ρ0. Error bars represent the
standard deviation in the steady state.

be noted that a similar trend is followed for all shapes. In
contrast, the evolution of μ∗ with α depends heavily on μs.
For weakly frictional systems (i.e., for μs below 0.3), μ∗
first increases with α but surprisingly it declines as particles
become more angular (i.e., for ns below 6). This means that
a weakly frictional packing composed of triangles or squares
can have a macroscopic friction that is smaller than that of
a packing of disks! For more frictional systems, μ∗ is an
increasing function of α. This behavior is rather unexpected,
and suggests a complex interplay at the microscopic scale, as
will be discussed in Sec. IV.

The insets in Fig. 4 show that the evolution of ρ∗ with μs

and α is almost the inverse of that of μ∗. Typically, ρ∗ declines
with μs for all shapes. In contrast, ρ∗ increases with α in
weakly frictional systems and declines with α for the largest
values of μs. The initial solid fraction ρ0 is shown using a
dashed line. Remarkably, ρ∗ � ρ0 for frictionless particles
of all shapes. This confirms that “Frictionless granular packs
have macroscopic friction, but no dilatancy” [30] and extends
this finding to the family of noncircular particles.

In the following sections, we analyze the micromechanical
properties of our packings of polygonal particles with the aim
of identifying the origins of the nonlinear variation of the
shear strength with local friction and particle angularity.

IV. MICROMECHANICAL ANALYSIS

A. Connectivity

The principal effect of friction is to enhance arching effects
inside the material. In contrast, the principal effect of polyg-
onal shapes is to allow for side-to-side contacts, which are
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FIG. 5. Particle-scale views of the contact network in six pack-
ings, for different values of local friction μs and particle angularity
α. Contacts are shown as black lines joining the contact points to the
center of the particles, and floating particles (i.e., particles with 0 or
1 contact) are shown in light gray.

particularly stable. Thus, both local friction and particle an-
gularity are expected to have a strong effect on the struc-
ture of the contact network. As an example, Fig. 5 shows
particle-scale views of the contact network of six packings,
for different values of local friction μs and particle angularity
α. Contacts are represented as lines joining the contact points
to the center of the particles. Floating grains (i.e., grains with
zero or one contact) are shown in light grey. First, it can
be seen that the contact network density (i.e., the number of
contacts per particle) decreases as μs increases. Hence, fric-
tional systems exhibit a larger proportion of floating grains,
which tend to group together. Second, it can be seen that
increasing μs increases the network anisotropy, allowing for
the formation of chains of contacts that are more or less
oriented along the principal stress direction. Then, it can be
observed that for systems with the most angular particles the
contact network is more tortuous.

The system’s connectivity can be quantified by means of
two descriptors: the coordination number Z and the proportion
of floating particles Pf . We define Z = 2Nc/[Np(1 − Pf )],

FIG. 6. Coordination number Z and proportion of floating par-
ticles Pf (insets) in the steady state, as functions of both the local
friction μs (a) and the particle angularity α (b). Error bars represent
the standard deviation in the steady state.

where Nc is the number of contacts (side-to-side (ss) con-
tacts are counted as one contact) and Np is the number of
particles. Then, Pf = N f

p /Np, where N f
p is the number of

floating particles. Figure 6 shows Z and Pf (insets) in the
steady state as functions of both μs and α. For all shapes, Z
decreases with μs and tends to saturate for the largest values of
local friction. Values are remarkably close between different
shapes, except for triangles. In contrast, the evolution of Z
with α depends strongly on μs. For weakly frictional systems
(i.e., for μs below 0.2), Z is an increasing function of α. For
more frictional systems, Z first decreases with α but then
increases as particles become more angular (i.e., for ns below
6). The increase of Z with α is explained by the fact that the
most angular particles, those with sharper corners, can form
contacts that cannot be reached by the less angular particles.
However, these results show that this property is hindered by
the effect of friction.

The insets in Fig. 6 show that the evolution of Pf with μs

and α is almost the inverse of that of Z , indicating that arching
effects can be reduced or enhanced by angularity, whether the
friction is low or high, respectively. It is also interesting to
note that Z and μ∗ follow opposite trends. This means that the
most connected systems are not necessarily those with higher
shear strength.

It is interesting to note that for disks (i.e., for α = 0) Z
varies with μs in the range μs ∈ [3, 4]. This is to be expected.
In fact, in the frictionless limit the system is isostatic, and
Z � Ziso = 2D = 4 for assemblies of disks, with D being the
space dimension (2 in our simulations). On the other end, if
contact sliding is prohibited, which is partially true in very
frictional systems, then Z � D + 1 [45,46]. For polygons,

022901-5



THEECHALIT BINAREE et al. PHYSICAL REVIEW E 102, 022901 (2020)

FIG. 7. Proportion of ss contacts Pss as a function of both the
particle angularity α and the local friction μs (inset). Error bars
represent the standard deviation in the steady state.

one must consider the rotational degree of freedom, and the
connectivity number (defined as the number of constraints
per particle, by counting the side-side contacts twice [47]) in
the isostatic limit is given by Zc,iso = D(D + 1) = 6, which is
well verified in our simulations.

Finally, Fig. 7 shows the proportion of ss contacts Pss

in the steady state as a function of α, for all values of μs.
Necessarily, Pss = 0 for disks (i.e., for α = 0). Then, it can
be seen that Pss increases with α, since more angular shapes
have longer sides which tend to form very stable contacts.
We note also that the decrease in Pss to zero as α → 0
is steeper as μs → 0. Such observation is compatible with
previous works on assemblies of frictionless spherocylinders,
for which a discontinuous variation in Pss is observed as the
particles’ shape tends to a sphere [48]. We see here that
this discontinuity might vanish when one adds interparticle
friction. Finally, it can be seen that for all shapes Pss tends
to decrease as μs increases. This is certainly correlated with
the decrease in packing fraction shown in Fig. 4, showing that
contact friction allows for more stable structures that depend
less on the formation of ss contacts.

B. Texture and anisotropy

Figure 8 shows particle-scale views of the normal force
network of six packings, for different values of the local
friction μs and particle angularity α. Forces are represented by
lines, whose thickness is proportional to the force magnitude.
Again, it can be seen that the structure of the force network is
heavily dependent on contact parameters. It can be seen that
the network’s anisotropy increases with μs. Moreover, it can
be observed that both μs and α enhance the formation of force
chains, and these force chains tend to carry large forces along
the principal stress direction. So, anisotropy is evident, not
only regarding contact orientation but also force magnitude.
As will be shown below, the anisotropic nature of this network
can be directly linked to the system’s shear strength.

Let us start by briefly recalling the stress-force-fabric re-
lationship allowing linking of the anisotropic nature of the
contact and force networks to the macroscopic shear strength.
Further explanations can be found in the following refer-
ences [22,24,49]. Let us consider the normal vector n between
two particles that touch each other. In 2D, n is parametrized

FIG. 8. Particle-scale views of the normal force network of six
packings, for different values of local friction μs and particle angular-
ity α. Forces are represented as lines, whose thickness is proportional
to the force magnitude.

by a single angle. The probability density P(θ ) of contact ori-
entations θ encapsulates useful statistical information about
the anisotropy of the contact network. Similarly, the contact
forces f can be represented by their normal and tangential
components as follows, f = fnn + ft t . Thus, along with P(θ ),
averages 〈 fn〉(θ ) and 〈 ft 〉(θ ) of normal and tangential forces
provide the suitable statistical tools to describe the anisotropic
state of a granular material.

As an example, Fig. 9 shows functions P(θ ), 〈 fn〉(θ ), and
〈 ft 〉(θ ) for packings composed of hexagons, for two values of
local friction μs: 0.2 and 0.5. It can be seen that in the steady
state the above functions tend to take a simple shape that is
well approximated by a first order Fourier expansion:

⎧⎪⎨
⎪⎩

P(θ ) = 1
2π

{1 + ac cos 2(θ − θc)},
〈 fn〉(θ ) = 〈 fn〉{1 + a f n cos 2(θ − θ f n)},
〈 ft 〉(θ ) = 〈 fn〉a f t sin 2(θ − θ f t ),

(4)

where ac is the contact orientation anisotropy, a f n the nor-
mal force anisotropy, and a f t the tangential force anisotropy.
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FIG. 9. Polar representation of: (a) probability density of contact
orientations P(θ ), (b) mean normal force 〈 fn〉(θ ), and (c) mean
tangential force 〈 ft 〉(θ ), as functions of contact orientation θ . Blue
and red lines show the approximations given by Eq. (4) for packings
composed of hexagons, for two values of the local friction μs, 0.5
and 0.2, respectively.

The angles θc, θ f n, and θ f t are the corresponding privileged
directions, which coincide with the major stress direction
θσ = π/2. It should be noted that in practice anisotropic
parameters are calculated through the force and fabric tensors,
as presented in Ref. [22]. The analytical form of 〈 ft 〉(θ ) results
from the orthonormal nature of the Fourier basis and the fact

FIG. 10. Macroscopic friction coefficient μ∗ as a function of the
particle angularity α, for all values of the local friction μs (full
symbols), together with the prediction given by Eq. (5) (dashed
lines). Error bars represent the standard deviation in the steady state.

that the mean 〈 ft 〉 value vanishes as a consequence of force
balance.

Considering the expression of the stress tensor and after
some mathematical manipulations and hypotheses (e.g., ne-
glecting cross products between anisotropy parameters and as-
suming a low span in particle size distribution), the following
simple relationship is obtained [22,49]:

μ∗ � 1
2 (ac + a f n + a f t ). (5)

Equation (5) highlights the key role of anisotropy parameters,
as a means to explain the micromechanical origins of shear
strength. Figure 10 shows the macroscopic friction coefficient
μ∗ as a function of α, for all values of μs, together with
the prediction given by Eq. (5). It can be seen that the
approximation is almost perfect, even for the most angular
shapes. Therefore, it is interesting to analyze the effects of
both μs and α on the evolution of ac, a f n, and a f t , to shed
light on the physical origins of the nonlinear variation of μ∗.

Figures 11 and 12 show the contact and force anisotropies,
ac, an, and at , as functions of both μs and α (insets). For all
shapes, all anisotropies first increase with μs and then satu-
rate at a shape-dependent value. This response underlies the
observed increase and saturation of the macroscopic friction
coefficient μ∗ with μs. These trends are to be expected, for the
following reasons. First, ac increases with μs, indicating that

FIG. 11. Contact orientation anisotropy ac as a function of both
the particle angularity α and the local friction μs (inset). Error bars
represent the standard deviation in the steady state.
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FIG. 12. Normal force anisotropy af n (a) and tangential force
anisotropy af t (b) as functions of both the particle angularity α

and the local friction μs (insets). Error bars represent the standard
deviation in the steady state.

contact are being lost in the extension direction (see Figs. 8, 6,
and 9). Then, a f n increases with μs as force chains become
more and more anisotropic (see Figs. 8 and 9). Finally, a f t

also increases with μs (see Fig. 9), showing that the stability
of force chains is built upon an increasing mobilization of
friction forces (in fact, a f t ∝ 〈| ft |〉/〈 fn〉 [24,50]). In contrast,
the evolution of anisotropy with α is more complex as it
also depends on μs. For all values of μs, ac and a f n initially
increase with α and then decline as angularity increases. a f t is
an increasing function of α for all frictions, increasing faster
as friction becomes greater.

By analyzing the anisotropy parameters, it can be shown
that the observed increase of μ∗ at low angularities and for all
frictions is due to an increase of all anisotropies. For larger
angularities, different mechanisms come into play depending
on the local friction values. At low frictions, the decrease of
μ∗ with α is mainly due to the rapid falloff of the contact
and normal force anisotropies, which is related to an excess
of contacts. In particular, the force network of assemblies of
triangles is nearly isotropic (i.e., an ∼ 0). This explains why
the macroscopic friction of such a system is smaller than that
of a packing of disks. The nearly isotropic nature of the force
network in packing of frictionless triangles, while the system
is sheared, is also clearly evidenced in Fig. 8. Finally, for
greater frictions the decrease of contact anisotropy is smaller
than the increase of tangential force anisotropy, which leads
to the continuous increase of μ∗ with α.

V. CONCLUDING REMARKS

To sum up, using 2D contact dynamics simulations, we
conducted a systematic analysis of the combined effects of

local friction and particle shape on the quasistatic rheology
of sheared granular materials. The local friction coefficient
was varied from 0 (frictionless systems) to 0.7, and the shape
of the particles was varied from disks to triangles. We only
considered packings composed of polygonal particles, since
their shape can be easily controlled through the number of
sides.

A central finding of this work is that the effect of local
friction on the shear strength follows the same trend for all
shapes, i.e., it first increases with local friction and then
saturates at a shape-dependent value. In contrast, the effect
of the particle angularity on the shear strength depends on
the level of sliding friction. For low frictions, the strength
first increases with angularity but surprisingly it declines for
the most angular shapes. This means that a weakly frictional
packing composed of extremely angular particles can have
a shear strength that is smaller than that of a packing of
disks. For high frictions, the strength systematically increases
with angularity. Interestingly, the evolution of the packing
fraction with friction and shape is found to be almost inverse
relative to that of the shear strength, implying that the dens-
est systems are not necessarily those with the highest shear
strength.

We showed that local friction and particle shape strongly
affect the systems’ microstructure in terms of the connectivity
and the texture of the contact and force networks. Again,
the effects of local friction follow the same trend, regard-
less of the particle shape, whereas the effects of angularity
change depending on the value of local friction. In general
terms, increasing the local friction causes networks to be less
connected and more anisotropic. In contrast, increasing the
particle angularity may change the topology of the networks in
different directions, directly affecting the macroscopic shear
strength. Specifically, we found that the nonlinear evolution
of shear strength observed for the largest values of angularity
is mainly due to compensation mechanisms between geomet-
rical and mechanical anisotropies.

In the specific case of frictionless grains, it could be seen
that a non zero shear strength was exhibited, but no dilatancy.
These results are important, since they extend to the family
of polygonal grains previous results obtained for disks [43],
pentagons [31], and spheres [30]. In a broader context, it
is worth mentioning that it was recently conjectured that
the absence of dilatancy in frictionless systems can be at
the origin of discontinuous shear thickening in some dense
suspensions [51–54]. Our analyses support such hypothesis
for suspensions composed of nonspherical particles.

Our perspective is to extend our analyses to other types
of shapes, in particular elongated ones. Such analyses and
data sets should constitute a first step toward a model able to
predict macroscopic properties from the joint effect of local
variables such as friction and grain shape.
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