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Lateral migration of a ferrofluid droplet in a plane Poiseuille flow under uniform magnetic fields
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The lateral migration of a two-dimensional (2D) viscous ferrofluid droplet in a plane Poiseuille flow under a
uniform magnetic field is studied numerically by using the level set method. Focusing on low droplet Reynolds
number flows (Red � 0.05), several numerical simulations are carried out to analyze the effects of magnetic
field direction and strength, droplet size, and viscosity ratio on the lateral migration behavior of the droplet. The
results indicate that the magnetic field direction plays a pivotal role in the trajectory of lateral migration of the
droplet and the final equilibrium position in the channel. When the magnetic field is parallel to the channel,
i.e., α = 0◦ (the direction of magnetic field), the droplet is found to settle closer to the wall with an increase in
magnetic Bond number Bom, while at α = 45◦, the droplet settles closer to the channel center. Varying the initial
droplet sizes at a fixed magnetic Bond number Bom and viscosity ratio λ results in different final equilibrium
positions within the channel. Additionally, the effect of different viscosity ratios on the migration behavior of the
droplet is examined at variable magnetic Bond numbers Bom. At α = 45◦, a critical steady state of deformation
is found for λ = 0.5 and 1 where the droplet changes its migration direction and shifts toward the center of the
channel, while at λ = 0.05, the droplet crosses the center. At α = 90◦, the droplet is found to settle exactly at the
center of the flow domain irrespective of different magnetic Bond numbers, droplet sizes, and viscosity ratios.
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I. INTRODUCTION

Dispersion of droplets in another immiscible fluid is impor-
tant in a number of industrial applications that deal with nat-
ural and synthetic products, including food products, drugs,
and milk [1,2]. Dispersion is also important in a variety of
technological processes that involve liquid-liquid extraction
[3,4] where phase separation is crucial to the purification of
the product, such as separation of water from crude oil and
separation of glycerol from biodiesel [5].

Crude oil from an oil well contains a significant amount
of dispersed water droplets with an average diameter around
50 μm. The volume fraction of water in crude oil must be
reduced to less than 0.3% before further processing in order
to avoid process equipment corrosion and possibly catalyst
poisoning [6,7]. Therefore, understanding the dynamics of
droplets in a channel flow, i.e., Poiseuille flow, is of paramount
importance to the separation of droplets in the microscale. A
single droplet in a pressure-driven flow serves as an excellent
model problem to investigate the lateral migration behavior of
droplets and can provide fundamental insights on the behavior
of more complex phenomena that involves suspension of mul-
tiple droplets, e.g., blood flow through blood vessels, tissue
and bone passages, and transport of emulsions through porous
media [8,9]. In the existing literature, numerous theoretical
[10–12], experimental [13,14], and numerical [15,16] studies
have been carried out to investigate the migration behavior of
droplets in shear flows.

*wancheng@mst.edu

Theoretical investigations on deformed droplets are mostly
restricted to the Stokes flow limit. Reversibility of the Stokes
flow requires that droplets must be deformed in order to
migrate, and small deviations from the spherical shape are
considered in all migration theories corresponding to small
capillary numbers and small Reynolds numbers. Chan and
Leal [17] studied the migration of a nearly spherical drop
(small in size compared to the channel width) and obtained
a closed form solution for the cross-stream migration velocity
in a linear shear flow and two-dimensional Poiseuille flow.
They also found that the axial velocity of the drop always
lags behind the undisturbed velocity of the flow field. Pak
et al. [18] and Hanna and Vlahovska [19] analytically at-
tributed the cross-stream migration of a spherical drop toward
the center of the channel in a Poiseuille flow due to the effect
of surfactant at the drop surface. Zhou and Pozrikidis [20–22]
numerically investigated the migration of a deformable drop
in a two-dimensional Couette flow and Poiseuille flow at
zero Reynolds number and found that the droplet migrates
away from the walls. Cross-stream migration of a deformable
drop in a two-dimensional Hagen-Poiseuille flow has been
studied numerically by Mortazavi and Tryggvason [23], while
Afkhami et al. [24] performed a two-dimensional numerical
analysis to investigate the motion of drops in an unbounded
parabolic field. Also, a three-dimensional single droplet mi-
gration simulation near a wall in a simple shear flow has been
done by Kennedy et al. [25].

In order to provide insights into the droplet dynamics in
a creeping flow condition, several authors, in their experi-
ments, considered the behavior of solitary drops in linear and
parabolic flows. Experimental investigation on the migration
of neutrally buoyant drops and solid particles in a tube flow
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with a near zero Reynolds number has been performed by
Goldsmith and Mason [10,26]. Hiller and Kowalewski [27]
conducted experiments on a very dilute suspension of droplets
in a plane Poiseuille flow in the limit of creeping flow. These
investigations found that at a low viscosity ratio (ratio between
the droplet phase viscosity to the continuous phase viscosity),
the droplet reached an equilibrium position at the channel
axis, whereas at high viscosity ratios the droplet concentration
peak moved to a position between the center and the wall of
the channel. For a comprehensive review on droplet migration
in a Poiseuille flow, readers are referred to Ref. [28], which is
an excellent review article.

Due to the very small size of the droplet, settling of droplets
by means of only gravitation takes a considerable amount
of time. In addition to using viscous shear forces, phase
separation can be enhanced by applying external force fields,
such as electric or magnetic fields [29,30], which provide an
additional means of controlling the dynamics of droplets [31].
Vlahovska [32] performed a perturbation analysis in order
to study the effects of drop deformation and shear rheology
under a uniform electric field in a shear flow field. Cross-
stream migration of a droplet under the effect of a uniform
electric field in a Poiseuille flow is analytically investigated
by Mandal et al. [33], while Feng [34] studied the effect of
surface charge convection on the deformation of a drop in a
leaky dielectric model at finite Reynolds numbers.

Magnetic fields can also be used to manipulate the shape
of a ferrofluid droplet [35,36] or an emulsion system [37].
In particular, the ease of both integration and flexibility of
operation render a magnetic field as a popular means of
droplet manipulation in microfluidic devices. In order to use
magnetic manipulation, either the droplet or the suspending
medium needs to be a ferrofluid—a dispersion of magnetic
nanoparticles (diameter typically around 10 nm and volume
fraction about 5%). Due to the presence of different magnetic
properties, Maxwell stresses occur at the fluid-fluid interface
in addition to the hydrodynamic stresses. Additionally, mul-
tiphase ferrofluid droplets have notable biomedical applica-
tions, such as treatment of retinal detachment [38], due to their
ability to be delivered to a specific site with the help of proper
manipulation of a magnetic field. Liu et al. [39] studied the
ferrofluid droplet formation under a uniform magnetic field.
Afkhami et al. [40] numerically investigated the deformation
of a neutrally buoyant hydrophobic ferrofluid droplet sus-
pended in a viscous fluid under a uniform magnetic field. Shi
et al. [41] numerically investigated the dynamics of a falling
ferrofluid droplet in a nonmagnetic fluid under the influence
of a uniform magnetic field. A thorough investigation on
the deformation and orientation of a ferrofluid droplet under
uniform magnetic fields has been carried out in our recent
work [42].

Until now, only a few have studied the lateral migration
behavior of a ferrofluid droplet in a Poiseuille flow under
the influence of a uniform magnetic field. Recently, Zhang
et al. [43] experimentally investigated the effects of magnetic
field strength, direction, and interfacial tension on the lateral
migration mechanism of a ferrofluid droplet and found that
the migration speed increases with an increase in magnetic
field strength and a decrease in interfacial tension. However,
a comprehensive numerical understanding on the effect of

other important parameters (i.e., droplet size and viscosity
ratio) on the migration behavior of a ferrofluid droplet in
a Poiseuille flow under a uniform magnetic field is missing
in the existing literature. Therefore, in this paper, we focus
on investigating the lateral migration behavior of a ferrofluid
droplet in a plane Poiseuille flow under a uniform magnetic
field along a few specific directions. Here a two-dimensional
(2D) numerical simulation model is chosen in order to study a
wide range of parameters, i.e., magnetic Bond number, droplet
size, viscosity ratio, and field direction. Prior studies show
that 2D numerical models are capable of qualitatively and
correctly capturing the deformation of a ferrofluid droplet
under a uniform magnetic field with great computational effi-
ciency [29,30,41,42,44,45]. Our numerical model, built with a
commercial FEM solver, models the droplet interface by using
the level set method and coupling the magnetic and flow fields.

The remainder of this paper is organized as follows: The
numerical model is described in Sec. II. In Sec. III, we present
the numerical and mathematical methods that are required to
solve our computational model. In Sec. IV, we first validate
our model in a Poiseuille flow with different viscosity ratios
by comparing our results against the existing theories in
the literature and then examine the effect of magnetic field
direction, magnetic field strength, droplet size, and viscosity
ratio on the migration behavior of the droplet. Finally, the
major findings are summarized in Sec. V.

II. NUMERICAL MODEL

Figure 1 schematically represents the suspension of a
viscous ferrofluid droplet in another viscous medium in a
Poiseuille flow under a uniform magnetic field, H0. Initially,
the viscosity of both phases are matched with each other
(i.e., ηd = ηc). Here the magnetic susceptibility of the droplet
phase is considered as χd = 0.25, while it is zero (i.e., χc = 0)
in the surrounding phase. The interfacial tension between the
two phases is considered as σ = 0.0135 N/m. Note that the
values of interfacial tension and magnetic susceptibility are
chosen to be typical for actual experiments.

In the current investigation, all the distances are measured
from the center of the droplet, and, initially, a circular fer-
rofluid droplet with a radius of 75 μm is placed 80 μm below

FIG. 1. Schematic representation of a viscous ferrofluid droplet
suspended in another viscous medium in a Poiseuille flow under a
uniform magnetic field, H0, at arbitrary directions, α.
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TABLE I. Simulation parameters and values.

Parameter Symbol Value Unit

Channel height Hd 500 μm
Permeability of vacuum μ0 4π × 10−7 H/m
Initial droplet radius R0 75 μm
Interfacial tension σ 0.0135 N/m
Average flow velocity ua 50 mm/s
Density of droplet phase ρd 1000 kg/m3

Density of continuous phase ρc 840 kg/m3

Magnetic permeability of droplet phase μd 1.25 μ0 H/m
Magnetic permeability of continuous phase μc μ0 H/m

the center of the domain, which indicates 80-μm vertical
separation between the droplet center and center of the flow
domain, while it is placed far from the inlet along the hori-
zontal direction to ignore the entrance effect. The velocity at
any point in the computational domain can be calculated as
u = um(1 − 4Y ∗2), where um is the maximum flow velocity
in the domain, and the velocity profile is symmetric with
respect to the x axis along the center of the domain. The
dimensionless parameter Y ∗ defines the relative position of the

droplet in the channel along y direction (i.e., Y ∗ = y

Hd
). The

average velocity at the inlet is taken as 50 mm/s. A no-slip
boundary condition is applied to both the top and bottom
walls. Additionally, a uniform magnetic field is applied along
an arbitrary direction to the flow domain, which is denoted by
the angle α. The deformation of the droplet is characterized
by the largest dimension L and smallest dimension B along the
major and minor axes of the droplet, respectively. The droplet
shapes are analyzed in MATLAB to find the properties related
to the deformed droplets where the centroid of the droplet
is determined by the arithmetic mean of all the points in
different coordinate directions. Additionally, when a droplet
deforms, it is approximately transformed into an ellipsoidal
shape, and the major axis of the droplet refers to the diameter
of the ellipsoid along the major-axis direction. Afterward,
the orientation angle of the droplet θ is defined as the angle
between the major axis of the droplet and positive x axis,
measured in the counterclockwise direction. Additionally, for
the convenience of the readers, the magnitudes of different
parameters that are implemented in the simulations are listed
in Table I.

III. NUMERICAL SIMULATION METHOD

A. Level set method

In order to track the dynamic evolution of the droplet
interface between the two phases, a conservative level set
method is used in our model. The level set method uses an
auxiliary scalar step function, φ, which has a value of 1 in
droplet phase and zero in continuous phase. It varies smoothly
from 0 to 1 between the two phases across the interface of the
droplet, and φ = 0.5 defines the interface of the droplet. The
level set function is governed by the following equation [46]:

dφ

dt
+ u · ∇φ = γ∇ ·

[
ε∇φ − φ(1 − φ)

∇φ

|∇φ|
]
, (1)

where γ and ε denote the amount of reinitialization and the
thickness of the droplet interface, respectively. The terms
on the left-hand side of the equation represent the motion
of the interface, while the terms on the right-hand side are
required for numerical stability. The thickness of the interface
ε is set equal to the largest mesh size of the domain. The
reinitialization parameter γ ensures that the level set function
gradient remains concentrated to the droplet interface thick-
ness over time, which again needs to be tuned carefully to
obtain accurate results. A lower magnitude of γ results in the
entrapment of level set function variation in the bulk of one of
the fluids, while a higher magnitude leads to smaller time steps
and larger computational times. The maximum magnitude of
the velocity in the flow domain is considered as a suitable
value of γ in level set method. The level set function can also
be used to find the unit normal to the interface n:

n = ∇φ

|∇φ| . (2)

The level set method treats a multiphase flow as a single-
phase flow, but the flow properties across the flow domain
vary according to the level set function. The properties of the
fluids such as density (ρ), dynamic viscosity (η), magnetic
permeability (μ), and magnetic susceptibility (χ ) can be
related to φ through the following equations:

ρ = ρc + (ρd − ρc)φ, η = ηc + (ηd − ηc)φ, (3)

μ = μc + (μd − μc)φ, χ = χc + (χd − χc)φ, (4)

where the subscripts c and d represent the continuous and
droplet phases, respectively.

B. Governing equations

The flow field consisting of an incompressible, immiscible
ferrofluid droplet suspended in another incompressible, im-
miscible medium under the application of a uniform magnetic
field is governed via the following continuity and momentum
equations:

∇ · u = 0 (5)

and

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ + Fσ + Fm, (6)

where p denotes pressure, τ = [η(∇u + (∇u)T )] denotes vis-
cous stress, and Fσ and Fm represent the surface tension and
magnetic forces per unit volume, respectively. The surface
tension force Fσ is defined as

Fσ = ∇ · [σ {I + (−nnT )}δ], (7)

where σ is the coefficient of surface tension, I is the second-
order identity tensor, δ is the Dirac delta function, and n is
the unit normal to the interface that can be calculated using
Equation (2). The Dirac delta function δ is approximated using
the level set function as

δ = 6|φ(1 − φ)||∇φ|. (8)
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TABLE II. Mesh element sizes for grid independence test.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7

Flow field domain 53 870 65 532 82 076 102 976 132 624 143 734 155 866

The magnetic force can be calculated as [47]

Fm = ∇ · τm = ∇ ·
(

μHH − μ

2
H2I

)
(9)

where τm is the magnetic stress tensor for the applied mag-
netic field and H2 = H · H = |H|2. To calculate the magnetic
stress tensor, the magnetostatics equations, including mag-
netic induction (B), magnetization (M), and magnetic field
(H), are solved. Assuming linear and homogeneous material
properties, the magnetostatic Maxwell equation relates B, H,
and M via the following relationships [48]:

∇ · B = 0, ∇ × H = 0, M = χH, and

B = μ0(H + M) = μ0(1 + χ )H, (10)

where μ0 = 4π × 10−7 N/A2 is the permeability of vacuum
and μ and χ depend on the phase function φ according to
Eq. (4). A scalar potential ψ can be defined, and its gradient
represents curl-free H (i.e., H = −∇ψ). We can now write

∇ · (μ∇ψ ) = 0. (11)

C. Governing equations in nondimensional form

Now we rewrite the governing equations into nondimen-
sional forms to understand the effect of different nondimen-
sional groups on the droplet dynamics. The length and time
are scaled by the height of the channel Hd and the inverse of
the average shear rate γ̇a, respectively. The parameter γ̇a can

be defined as
2ua

Hd
, where ua is the average velocity in the flow

domain, which again equals 2/3 times the maximum velocity
um in the flow domain (i.e., ua = 2

3 um). The other dimensional
variables are converted to nondimensional forms through the
following relationships:

X ∗ = x

Hd
, Y ∗ = y

Hd
, R∗ = R0

Hd
, p∗

a = p

ηγ̇a

ρ∗ = ρ

ρc
, η∗ = η

ηc
, μ∗ = μ

μ0
, H∗ = H

H0
,

where Hd is the channel height and H0 is the magnitude of
the externally applied magnetic field H0. Therefore, governing
equations (5) and (6) can be written as

∇∗ · u∗ = 0 (12)

and

Red

(
ρ∗ Du∗

Dt∗

)
= −∇∗ p∗

a + ∇∗ · τ ∗ + 2
Bom

Ca
∇∗ · τ∗

m

+ 1

Ca
F∗

σ . (13)

In the above equations, the superscript ∗ represents the
nondimensional variables. The different dimensionless groups
are the droplet Reynolds number (Red ), average capillary

number (Ca), and magnetic Bond number (Bom), which are
defined as follows:

Red = ρcR0
2γ̇a

ηc
, (14)

Ca = ηcR0γ̇a

σ
, (15)

and

Bom = R0μ0H0
2

2σ
. (16)

The viscosity ratio λ and permeability ratio ζ are also
defined as follows:

λ = ηd

ηc
and ζ = μd

μ0
. (17)

Here we will mainly concentrate on the effects of
Bom, α, R0, and λ on the lateral migration behavior of the
droplet in low droplet Reynolds number flows (Red � 0.05).

D. Grid independence test

A grid independence test is performed to determine the
optimum size of the mesh elements that gives accurate results,
while saving a reasonable amount of computational time. In
this case, we have used different mesh sizes and compared the
lateral migration behavior of the droplet. Different triangular
mesh element sizes for the grid independence test are tabu-
lated in Table II, and Fig. 2 represents the lateral migration
of the droplet Y ∗

d for the respective configurations. It can be
seen that when there are more than 132,624 elements in the
flow field domain, the lateral migration profiles of the droplet
(Meshes 6 and 7) completely overlap with each other. We have

FIG. 2. Grid independence test: The time evolution of lateral
migration behavior of the droplet, Y ∗

d , for different mesh configu-
rations: Mesh 1, blue (solid) line; Mesh 2, orange (diamond) line;
Mesh 3, yellow (plus) line; Mesh 4, violet (dash-dot) line; Mesh 5,
green (circle) line; Mesh 6, cyan (dashed) line; and Mesh 7, maroon
(dotted) line.
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FIG. 3. Time evolution of droplet trajectory in a Poiseuille flow at Red = 0.03 and Bom = 0. (a) Lateral migration of droplet for different
viscosity ratios, Yd vs. t∗; (b) comparison of simulated droplet deformation D results against Taylor’s theory at variable capillary numbers, D
vs. Ca at λ = 0.05.

used 143 734 elements for the simulations throughout the rest
of the paper.

IV. RESULTS AND DISCUSSIONS

A. Validation of numerical method

Droplet migration in a Poiseuille flow

At first, we validated our model by comparing the results
against the existing theories in the literature in terms of the
lateral migration of a droplet in a Poiseuille flow for different
viscosity ratios at Red = 0.03 and Bom = 0. The most thor-
ough theoretical analysis on droplet migration behavior in a
two-dimensional Poiseuille flow is given by Chan and Leal
[17], who considered the effect of the deformed shape of the
droplet as a critical factor on the droplet trajectory motion
in a unidirectional shear flow. Two different hydrodynamic
interactions are mainly responsible for droplet migration. First
is the interaction between the deformed drop and the bottom
wall of the channel, which causes the droplet to migrate away
from the bottom wall toward the center of the flow domain,
and this interaction gradually decreases as the distance be-
tween the droplet and bottom wall increases. Second is the
interaction between the deformed drop and the flow field,
which vanishes in a simple shear flow but plays an important
role in the quadratic flow field [27]. According to Chan and
Leal [17], the migration behavior of the droplet due to its
interaction with the flow field is essentially dependent on the
viscosity ratio λ. When λ < 0.5 and λ > 10, both types of
interactions act in the same direction, and the droplet migrates
toward the centerline of the channel. On the other hand, for
intermediate values of viscosity ratios (0.5 < λ < 10), the
interaction of the deformed droplet with the velocity profile
forces the droplet to migrate toward the bottom wall. Since,
for 0.5 < λ < 10, both types of interactions take place at the
same time and are in opposite directions, the droplet finds a
steady-state position at some point between the center and
the bottom wall of the channel due to the combined effect
of these forces. Moreover, it is important to note that this
equilibrium position where the two forces become equal also
depends on the relative size of the droplet [27]. Experimental

investigations of Karnis and Mason [10] show that a single
drop moves away from the wall in a pressure-driven channel
flow and reaches the center of the channel for low viscosity
ratios. Furthermore, Hiller and Kowaleski [27] experimentally
found the highest drop number density at the center line for
the low viscosity ratio (i.e., λ = 0.1), while for the moderate
viscosity ratio (i.e., λ = 1), the highest concentration was
located at a position between the center and the wall.

Figure 3(a) represents the lateral migration behavior of
a droplet for different viscosity ratios. It can be seen that
when λ = 0.05, the droplet migrates toward the center of the
channel. On the other hand, at λ = 1, the droplet settles down
at a point between the center and wall of the channel. Both
simulation results qualitatively agree well with the existing
theories in the literature.

We also validated the deformation of the droplet D at
different positions in the channel against Taylor’s theory.
According to Taylor [49,50], the deformation of a neutrally
buoyant droplet suspended in another incompressible and
immiscible viscous medium at the Stokes flow limit under a
simple shear flow can be calculated as

D = L − B

L + B
= 19ηd + 16ηc

16ηd + 16ηc
Ca, (18)

where the average capillary number Ca is defined in Eq. (15).
Equation (18) is based on the assumption of an unbounded
shear flow and a vanishing Reynolds number. Figure 3(b) il-
lustrates the comparison of simulation results against Taylor’s
theory, which are in very good agreement with each other.
Additionally, we validated the ferrofluid droplet deformation
in a quiescent flow under a uniform magnetic field in our
previous work [42].

B. Lateral migration behavior of a droplet under uniform
magnetic fields

1. Effect of magnetic field direction

When a magnetic field is applied to a ferrofluid droplet in a
Poiseuille flow, the droplet undergoes deformation due to the
combined effect of the shear flow and the magnetic field [42].
Here, in this section, we investigate the effect of magnetic field
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FIG. 4. Effect of different magnetic field directions on the migration behavior of the droplet at Red = 0.03 and λ = 1. (a) Bom = 0 and
(b) Bom = 8.72.

directions on the lateral migration behavior of the ferrofluid
droplet suspended in a parabolic flow field. For the subsequent
studies, we will use a droplet Reynolds number, Red = 0.03
and λ = 1.

Figure 4 shows the effect of different magnetic field di-
rections on the migration behavior of the droplet. Here we
have chosen some representative α for better illustration of
the results. From Fig. 4(a), we can see that in the absence
of any magnetic field, at λ = 1, the droplet finally settles
down approximately 0.038 below the center of the channel,
which also takes a considerable amount of time to reach the
equilibrium position. In contrast, from Fig. 4(b), it can be seen
that applying a uniform magnetic field from different arbitrary
directions results in different final equilibrium positions along

the channel relatively in a shorter period of time. Interestingly,
we can also see that the droplet follows different trajectories
before reaching the final equilibrium position. For example,
when α = 45◦ and 90◦, the droplet migrates upward, while
at α = 0◦, the droplet migrates downward. A magnetic field
strength of H0 = 50 000 A/m is used in all these cases, which
corresponds to a magnetic bond number equal to 8.72. Fig-
ure 5 depicts the steady-state velocity, magnetic field profiles,
and equilibrium droplet shapes at Red = 0.03 and Bom =
8.72. It can be seen that the droplet undergoes deformation
and tends to orient itself along the direction of the magnetic
field, which is also consistent with our previous findings [42].
At α = 90◦, the droplet shape is found to be symmetric with
respect to the x axis, which in turn aids the droplet to settle at

FIG. 5. Steady-state velocity, magnetic field profiles, and equilibrium droplet shapes at Red = 0.03 and Bom = 8.72. (a) α = 0◦, (b) α =
45◦, and (c) α = 90◦.
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FIG. 6. Effect of magnetic field strengths, H0, on the migration behavior of the droplet at α = 0◦, Red = 0.03, and λ = 1. (a) Y ∗
d vs. t∗,

(b) D vs. t∗, and (c) θ vs. t∗.

the center of the channel. Contrarily, at α = 0◦ and 45◦, due
to the asymmetry in the shape of the droplet, the droplet
experiences different hydrodynamic interactions along the in-
terface of the droplet, which force it to find an equilibrium po-
sition at a point somewhere between the center and the bottom
wall of the channel. The flow field becomes more distorted as
the droplet tends to further align itself in the vertical direction
to conform to the droplet shape. From the magnetic field
profiles, it can be seen that the droplet experiences maximum
magnetic field strength along the direction the magnetic field
is applied, while the strength is least in magnitude in the other
orthogonal direction. The magnetic field is also uniform both
inside and far outside the droplet. Additionally, the magnetic
field lines are parallel to each other; however, they are slightly
deflected at the interface of the droplet due to the change in
magnetic susceptibility at the interface. Therefore, it is clear
that the different droplet shapes and their alignment with the
flow field along with hydrodynamic interactions play a crucial
role in the trajectory of the lateral migration and the final
equilibrium position in a channel.

2. Effect of magnetic field strength

External force fields, i.e., magnetic fields, electric fields
are capable of inducing topological changes to a droplet
suspended in another medium, and in the previous section,
we observed that the magnetic field direction can significantly
influence the final equilibrium position of a ferrofluid droplet
in a channel flow. Now, we apply variable magnetic field

strengths along different directions to analyze how they affect
the lateral migration behavior of the droplet at λ = 1.

a. α = 0◦. Figure 6 illustrates the effect of different mag-
netic field strengths on the migration behavior of the droplet
at α = 0◦. From Fig. 6(a), it can be seen that as the magnetic
field strength increases, the droplet moves closer to the bottom
wall of the channel, while the droplet was found to settle
closer to the center of the channel in the absence of any
external forces. The droplet settles faster at the equilibrium
position at a higher magnetic field strength. This is because
with increasing magnetic field strength, the droplet under-
goes greater deformation, which is clearly demonstrated in
Fig. 6(b). Additionally, if we look at the trend in the orien-
tation angle of the droplet in Fig. 6(c), then it can be seen
that with increasing magnetic field strength, the orientation
angle decreases. This is because as the droplet moves closer
to the wall, the shear rate increases, which in turn reduces
the orientation angle values of the droplet [42]. Moreover, the
increasing magnetic field strength forces the droplet to align
itself more toward the direction of the magnetic field. As a
result, the resultant between the direction of the flow field and
magnetic field decreases, i.e., the orientation angle decreases.
In this case, the deformation of the droplet in combination
with the orientation angle plays a pivotal role in determining
the final equilibrium position of the droplet.

b. α = 45◦. When we apply the magnetic field at 45◦, it
can be seen from Fig. 7(a) that the droplet migrates upward
toward the center of the channel, and as the magnetic field
strength increases, it migrates further away from the bottom
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FIG. 7. Effect of magnetic field strengths, H0, on the migration behavior of the droplet at α = 45◦, Red = 0.03, and λ = 1. (a) Y ∗
d vs. t∗,

(b) D vs. t∗, and (c) θ vs. t∗.

wall of the channel; however, the change in migration rate
is much smaller in this case compared to each other. The
primary reason behind the migration behavior is related to the
deformation of the droplet, which increases with increasing
magnetic field strength [Fig. 7(b)]. In addition, it takes less
time to reach a steady state at a higher magnetic field strength,
which is similar to the previous case mentioned above. Fig-
ure 7(c) represents the orientation angle for all cases. It can
be seen that the results overlap with each other, and the
orientation angle reaches a saturation point, which is close to
the direction along which the magnetic field is applied. Since
the orientation angle remains the same irrespective of different
magnetic field strengths, in this case, it is clear that droplet
deformation is crucial to the final equilibrium position of the
droplet.

c. α = 90◦. Finally, we applied the magnetic field along
a direction perpendicular to the direction of the flow field
to observe its effect on the lateral migration behavior of the
droplet. We can see from Fig. 8(a) that the droplet finally
settles at the center of the channel for all the cases, and with
increasing magnetic field strength, the droplet settles faster
in the equilibrium position. The reason behind this can be
attributed to the droplet deformation trend with increasing
magnetic field strength [Fig. 8(b)]. Figure 8(c) represents the
orientation angle trends of the droplet, and it is clear that
at a steady-state condition, the orientation angle becomes
approximately equal to 90◦ for all the cases. Additionally,
the steady-state droplet shape is found to be symmetric with
respect to the center of the domain, which also helps the

droplet to maintain the final equilibrium position at the center
of the channel. Therefore, the results show that at a fixed
viscosity ratio, the final equilibrium position of the droplet
in a Poiseuille flow can be manipulated by means of applying
magnetic fields of different strengths along various directions.

3. Effect of droplet size

In this section, we investigate the dependence of the migra-
tion behavior of the droplet on different initial droplet sizes at
λ = 1. Like previous sections, surface tension and magnetic
susceptibility of the ferrofluid droplet are kept constant, i.e.,
σ = 0.0135 N/m and χd = 0.25, while the droplet aspect
ratios R∗

0 are varied from 0.11 to 0.24. Here we also apply
the magnetic field in arbitrary directions to observe its effect
on the final equilibrium position of the droplet in the channel.

a. α = 0◦. Figure 9 illustrates the effect of different droplet
sizes on the migration behavior of the droplet at α = 0◦. From
Fig. 9(a), it can be seen that when the magnetic field is applied,
the droplet starts to migrate downward, and as the droplet size
increases, it settles at a position far away from the bottom wall.
This behavior can be directly attributed to the deformed shape
of the droplet. Figure 9(b) shows that with the increase in the
size of the droplet, the deformation of the droplet increases,
and this phenomenon can be explained by the definition of the
magnetic Bond number [Eq. (16)]. Since the magnetic Bond
number is directly proportional to the size of the droplet, as
the droplet size increases, the magnetic force becomes larger
compared to the interfacial force, i.e., droplet deformation
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FIG. 8. Effect of magnetic field strengths, H0, on the migration behavior of the droplet at α = 90◦, Red = 0.03, and λ = 1. (a) Y ∗
d vs. t∗,

(b) D vs. t∗, and (c) θ vs. t∗.

increases. Consequently, as the droplet becomes larger, the
gap between the deformed droplet and bottom wall decreases,
which in turn increases the force exerted by the wall, and
therefore the centroid of the droplet is pushed further away
from the bottom wall. Furthermore, the droplet reaches its
final equilibrium position faster with an increase in the initial
size of the droplet.

b. α = 45◦. Now we apply the magnetic field along α =
45◦ to analyze its effect on the final equilibrium position of
different initial sized droplets. Figure 10 represents the effect

of different droplet sizes, R∗
0, on the migration behavior of the

droplet at α = 45◦, and it can be seen from Fig. 10(a) that for
all initial sizes, the droplet migrates away from the bottom
wall, and with an increase in droplet size, it moves closer
to the center of the channel. Additionally, as the droplet size
increases, the droplet finds its equilibrium position along the
flow domain in a relatively short period of time. Similarly to
the previous case mentioned above, this migration behavior is
also related to the deformation of the droplet. As we can see
from Fig. 10(b), the droplet undergoes a larger deformation

FIG. 9. Effect of different droplet sizes, R∗
0, on the migration behavior of the droplet at α = 0◦, Red = 0.03, and λ = 1. (a) Y ∗

d vs. t∗ and
(b) D vs. t∗.
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FIG. 10. Effect of droplet sizes, R∗
0, on the migration behavior of the droplet at α = 45◦, Red = 0.03, and λ = 1. (a) Y ∗

d vs. t∗ and (b) D
vs. t∗.

and reaches a steady-state deformation faster with an increase
in the initial droplet sizes. Furthermore, the droplet is found
to orient itself along the direction of the magnetic field where
the orientation angle reaches a saturation point close to 45◦.

c. α = 90◦. Finally, we apply the magnetic field along a
direction perpendicular to the flow domain to observe how
this arbitrary direction affects the settling of the droplet for
different initial size conditions. In this case, we can see from
Fig. 11(a) that the droplet finds its equilibrium position at the
center of the channel irrespective of the initial size conditions.
With an increase in the droplet size, the deformation of the
droplet increases [Fig. 11(b)], which in turn helps the droplet
to reach the equilibrium position faster at the center of the
flow domain. When the magnetic field is applied, the droplet
tries to align itself toward the direction of the magnetic field
due to the dominant nature of the magnetic field at a low
capillary number, and the orientation angle of the droplet be-
comes approximately 90◦ for all the cases. Additionally, this
symmetric shape of the droplet aids the droplet in maintaining
its equilibrium position at the center.

Figure 12 illustrates the effect of different droplet sizes
on the final equilibrium position, Y ∗

e , of the droplet at H0 =
50 000 A/m and λ = 1 along different arbitrary directions. As
we have seen before in Fig. 4(a), at λ = 1, in the absence of
a magnetic field, the droplet settles at a position between the

bottom wall and center of the channel, but Fig. 12 shows that
as the droplet size increases, it moves closer to the center;
however, when the size of the droplet is comparable enough
to the width of the channel, i.e., R∗

0 = 0.24, it migrates toward
the centerline, which is also consistent with the findings in
the literature [23]. Moreover, if we apply a constant magnetic
field strength along different arbitrary directions in addition
to varying sizes of the droplet, the results show that it is
possible to efficiently separate droplets at different positions
along the channel based on the deformation and orientation of
the droplet.

4. Effect of viscosity ratio

The viscosity ratio plays an important role in the exper-
imental analyses that deal with the behavior of drops of
different fluids suspended in another fluid [14,22]. Here we
investigate the contribution of viscosity ratios on the steady-
state position of the droplet in a parabolic flow under the effect
of a uniform magnetic field along different directions. In order
to perform this analysis, the relative size of the droplet is kept
constant, i.e., R∗

0 = 0.15, while the magnetic field is applied
along arbitrary directions for different viscosity ratios.

At first, we apply the magnetic field in a direction parallel
to the flow field to observe its effect on the migration behavior

FIG. 11. Effect of droplet sizes, R∗
0, on the migration behavior of the droplet at α = 90◦, Red = 0.03, and λ = 1. (a) Y ∗

d vs. t∗ and (b) D
vs. t∗.
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FIG. 12. Effect of droplet sizes, R∗
0, on the final equilibrium position, Y ∗

e , of the droplet at H0 = 50000 A/m and λ = 1. (a) α = 0◦,
(b) α = 45◦, and (c) α = 90◦.

of the droplet. Figure 13(a) illustrates the effect of different
viscosity ratios on the lateral migration behavior of the droplet
at α = 0◦. From Fig. 13(a), it can be seen that at a fixed mag-
netic Bond number, Bom, as the viscosity ratio increases, the
droplet starts to migrate away from the center of the channel,
and at a higher magnetic Bond number, i.e., Bom > 8, it settles
closer to the wall. This is because when the magnetic field is
applied at α = 0◦, the steady-state deformation of the droplet
increases with the increase of viscosity ratio at a fixed Bom,
which in turn helps the droplet to settle closer to the wall.
Interestingly, the equilibrium position starts to overlap with
each other at a critical magnetic Bond number, i.e., Bocr ≈ 7,
and a reverse trend appears where the droplet with higher
viscosity is found to settle further away from the bottom wall
compared to the lower viscous drops. This happens because as
the viscosity ratio increases, the increased droplet deformation
at a higher magnetic Bond number reduces the clearance space
between the droplet and the bottom wall. As a result, the
force exerted by the wall increases, which ultimately pushes
the droplet away from the wall toward the center of the flow
domain.

Figure 13(b) represents the effect of different viscosity
ratios on the lateral migration behavior of the droplet at
α = 45◦. Without a magnetic field (i.e., Bom = 0), at λ = 0.5
and 1 the droplet settles at a position between the center
and bottom wall of the channel, while at λ = 0.05, the final
equilibrium position is located at the center. These results
are also consistent with the findings of Chan and Leal [17].

Also, with the decrease in viscosity ratios, the droplet moves
closer to the center of the channel. But in the presence of a
magnetic field, the droplet presents an interesting migration
behavior. Figure 13(b) shows that at λ = 0.5 and 1, as the
magnetic Bond number Bom increases, the droplet starts to
move away from the center, and at a certain magnetic Bond
number, i.e., Bom ≈ 8.72, it changes its migration direction
back toward the center of the channel. We found that there
exists a critical steady-state deformation (i.e., Dcr ≈ 0.12)
where this behavior appears. Additionally, as the magnetic
field strength increases past that critical point, at a fixed
magnetic Bond number Bom, the final equilibrium position of
the droplet moves closer to the center of the channel as the
viscosity ratio decreases. On the other hand, when λ = 0.05,
the droplet starts to cross the center of the channel as soon as
the magnetic field is applied, and as magnetic bond number
increases, the droplet moves further away from the center. In
this case, the asymmetry of the droplet shape helps the droplet
cross the center of the channel.

Now we investigate the effect of different viscosity ratios
on the final equilibrium position of the droplet with the mag-
netic field applied perpendicularly to the flow field direction
(i.e., α = 90◦). Figure 13(c) shows that in the presence of
a magnetic field, the droplet finds an equilibrium position
exactly at the center of the channel for all different viscosity
ratios. This happens because as soon as the magnetic field
is applied the droplet undergoes deformation and tries to
orient itself along the direction of the magnetic field, thus
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FIG. 13. Effect of viscosity ratios, λ, on the final equilibrium position, Y ∗
e , of the droplet at R∗

0 = 0.15 and Red = 0.03. (a) α = 0◦,
(b) α = 45◦, and (c) α = 90◦.

resulting in a symmetric shape, which in turn aids the droplet
in maintaining its position at the center. Furthermore, with
decreasing viscosity ratio, the droplet reaches its final equi-
librium position faster in the channel.

Last, an overview on the dependence of lateral migration
behavior of a droplet in a channel flow on the deformation D
and orientation angle θ is illustrated in Fig. 14. Figure 14(a)
shows that in the absence of any external forces (Red =
0.03, Bom = 0), D and θ are dependent on the viscosity ratio
λ and capillary number Ca [i.e., (D, θ ) = f (λ, Ca)], which
ultimately contribute in determining the final equilibrium
position of droplet in a Poiseuille flow. On the other hand,
in the absence of any external flows (Red = 0) in Fig. 14(b),
the magnetic field defines the shape of a droplet, while the
orientation angle is defined by the magnetic field direction
[i.e., (D, θ ) = f (λ, Bom, α)]. As a result, in Fig. 14(c), un-
der the combined effect of flow and magnetic fields, the
lateral migration behavior of droplet becomes more complex
where the final equilibrium position is dictated by the vis-
cosity ratio λ, capillary number Ca, magnetic Bond number
Bom, and magnetic field direction α (i.e., Y ∗

e = f (D, θ ) =
f (λ, Ca, Bom, α)). Additionally, the final equilibrium posi-
tions of droplet under variable magnetic field strengths at
Red = 0.03 and λ = 1 are portrayed in Fig. 15, which further
demonstrate the dependence of final equilibrium position on
the shape and orientation of droplet in a channel.

V. CONCLUSION

The lateral migration of a ferrofluid droplet in a plane
Poiseuille flow under the influence of a uniform magnetic field
along several directions is systematically studied in this paper.
In the absence of a magnetic field, the droplet finds its equi-
librium position at a location between the center and bottom
wall of the channel for λ = 0.5 and 1, while at λ = 0.05 it
settles at the center of the channel. Applying a magnetic field
along arbitrary directions results in different final equilibrium
positions in the channel due to the different alignments of
the droplet with the flow field. As we increase the magnetic
field strength along α = 0◦, at a viscosity ratio λ = 1, the final
equilibrium position of the droplet moves closer to the bottom
wall of the channel. However, if we apply the magnetic field
along α = 45◦, then the droplet moves closer to the center of
the channel as the magnetic field strength is increased. Even-
tually, if the magnetic field is applied along α = 90◦, then the
droplet will find its equilibrium position exactly at the center
of the flow domain. The droplet will reach the equilibrium
position faster as the magnetic field strength increases due to
the increased deformation at a higher magnetic Bond number.
We also found that at a fixed viscosity ratio λ = 1, in the
absence of any magnetic field, as the droplet size increases,
the droplet moves closer to the center of channel, and if the
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FIG. 14. Dependence of lateral migration behavior of a droplet on deformation D and orientation angle θ in a channel flow. (a) Pressure-
driven flow, Red = 0.03, Bom = 0, λ = 1, where the arrow size is proportional to the velocity in the domain; (b) droplet under magnetic field,
Red = 0, Bom = 17.1, α = 45◦, λ = 1; and (c) final equilibrium position of droplet, Red = 0.03, Bom = 17.1, α = 45◦, λ = 1.

droplet size becomes comparable enough to the width of the
channel, i.e., R∗

0 = 0.24, it settles at the center of the flow
domain. Furthermore, if we apply a constant magnetic field
strength along arbitrary directions with variable drop sizes, it
helps manipulate the final equilibrium position of the droplet
along the channel. For example, at α = 0◦ a smaller sized
droplet settles closer to the wall due to reduced steady-state
deformation. On the other hand, at α = 45◦, as the droplet
size increases, the droplet moves closer to the center of the
channel, while at α = 90◦, the equilibrium position is found
at the center for all drop sizes.

Furthermore, we investigated the effect of different vis-
cosity ratios on the lateral migration behavior of the droplet
under the influence of a uniform magnetic field at arbitrary
directions and found that for a fixed droplet size at α = 0◦,
the droplet moves closer to the bottom wall with decreasing
viscosity ratios. At α = 45◦, we observed an interesting be-
havior for λ = 0.5 and 1 where the direction of migration
changes at a critical steady-state deformation and migrates
back toward the center. However, if the magnetic field is
applied along 45◦ at λ = 0.05, then the droplet crosses the

center and settles on the other side of the channel due to
the asymmetry of the droplet shape. Finally, at α = 90◦, the
final equilibrium position of the droplet is found at the center
of the channel irrespective of different viscosity ratios. The
different lateral migration behavior results suggest an efficient
but simple means of separating the ferrofluid droplets from
nonmagnetic droplets along different lateral positions in the
channel based on different magnetic field direction, magnetic
field strength, droplet size, and viscosity ratio at microscale.
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FIG. 15. Final equilibrium positions of droplet under variable magnetic bond numbers Bom at Red = 0.03 and λ = 1. (a) α = 0◦, (b) α =
45◦, and (c) α = 90◦.
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