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Collective effects and pattern formation for directional locking of disks moving
through obstacle arrays
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We examine directional locking effects in an assembly of disks driven through a square array of obstacles as
the angle of drive rotates from 0◦ to 90◦. For increasing disk densities, the system exhibits a series of different
dynamic patterns along certain locking directions, including one-dimensional or multiple-row chain phases and
density-modulated phases. For nonlocking driving directions, the disks form disordered patterns or clusters.
When the obstacles are small or far apart, a large number of locking phases appear; however, as the number
of disks increases, the number of possible locking phases drops due to the increasing frequency of collisions
between the disks and obstacles. For dense arrays or large obstacles, we find an increased clogging effect in
which immobile and moving disks coexist.
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I. INTRODUCTION

In directional locking, the motion of a particle driven over
a periodic substrate such as a square lattice tends to remain
locked at certain symmetry directions of the lattice as the
driving direction is varied [1–6]. For a square lattice, the
strongest directional locking appears when the angle θ be-
tween the driving direction and the lattice symmetry direction
is near θ = 0◦, 45◦, or 90◦; however, locking can occur for
any rational ratio p/q with integer p and q, where the particle
moves exactly p lattice constants in the x direction and q
lattice constants in the y direction during some time interval.
In this case, the directional locking is centered at an angle
θL = arctan(p/q), so that p/q = 0 corresponds to θL = 0◦ and
p/q = 1 gives θL = 45◦. Locking occurs whenever θ = θL ±
�θ , where the width of an individual locking step is defined
to be 2�θ , and the step width is largest for small values of p
and q. This behavior is similar to the Bragg angle scattering
conditions found for a lattice. A devil’s staircase hierarchy of
locking steps can appear in the angle of the particle motion as
a function of the driving angle θ .

Directional locking effects have similarities to the phase
locking phenomena observed in systems with two compet-
ing frequencies. For example, if a particle moving over a
one-dimensional (1D) periodic substrate under a dc drive
is subjected to an additional ac drive in the direction of
motion, locking effects arise due to the interaction between
the frequency ω1 generated by the dc motion of the particle
over the substrate and the ac driving frequency ω2. When ω2

is fixed, the particle velocity locks to a constant value over a
range of dc drive amplitudes in order to maintain resonance
[7–9]. Varying the dc drive changes ω1, so a series of steps
known as Shapiro steps appear in the velocity-force curve at
rational values of ω1/ω2 [7–9]. Directional locking was first
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studied for vortices in type II superconductors driven in a
changing direction over a periodic pinning lattice and occurs
when the direction of vortex motion becomes locked to one
of the substrate symmetry directions [1]. The substrate lattice
structure determines the set of possible directional locking
angles, while the widths of the locking steps can be changed
by varying the strength of the pinning. The lattice over which
the superconducting vortices move is composed of attractive
pinning sites which the vortices must traverse during a locking
step. Due to the relatively long range of the vortex-vortex
interactions, the vortices form a moving lattice or ordered
structure on the locking steps, whereas when the motion is not
locked, the vortex structure is more disordered or liquidlike
[1,10].

Following the vortex work, similar directional locking
effects were proposed to occur for classical electrons moving
over a square antidot lattice [2]. Here, the direction of drive
is controlled by the applied magnetic field, since a larger
magnetic field produces a larger Hall angle. In the presence
of a periodic array of scattering sites, the Hall angle becomes
quantized with steps at rational values of p/q, where the
electron translates by an integer number p and q of substrate
lattice constants in the x and y directions, respectively, during
a period of time.

The first experimental observations of directional lockings
were obtained using colloidal particles moving over a square
optical trap array. When the driving direction is fixed but
the substrate lattice is rotated, the colloidal motion locks
to different symmetry angles [3]. The width 2�θ of the
locking steps depends on the interaction of the particle with
the pinning site or obstacle, implying that if two species of
particles are present, and each interacts differently with the
substrate, the driving conditions can be tuned such that one
species locks to the substrate and the other does not. As a
result, each species moves at a different angle, making it
possible to achieve a spatial separation or fractionation of
the species. This sorting effect based on directional locking
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was first demonstrated experimentally by MacDonald et al.
for colloids of different sizes and different refractive indexes
[5]. Directional locking and sorting effects have been studied
extensively for colloidal systems under different conditions
and geometries, taking into account a variety of dynamical
effects and particle-substrate interactions [5,11–26]. Direc-
tional locking for particles on periodic substrates has also
been studied in the context of skyrmions in chiral magnets.
Skyrmions are particlelike magnetic textures or bubbles which
exhibit a Hall angle that changes with increasing driving
force in the presence of a substrate [27–29]. There are also a
number of systems in which particles moving over periodic
substrates under different driving conditions preferentially
move in certain directions due to the underlying symmetry
of the substrate. This effect has been studied for magnetic
colloids undergoing oscillatory motion [30,31] and for active
matter on periodic obstacle arrays [32,33].

In many studies of directional locking, the dynamics is
effectively in the single-particle limit; however, when collec-
tive effects become important, such as when a large number
of interacting particles are present, changes in the locking
behavior can occur that include modifications of locking step
widths or the formation of different types of patterns in
locking and nonlocking regimes. Collective effects of this
type were studied for superconducting vortices on a peri-
odic pinning array, and they can also appear for vortices or
colloids moving over quasiperiodic arrays, where for certain
driving directions the system forms moving smectic, square,
triangular lattice, or disordered phases [34]. Several of these
phases have been observed in experiments on colloids moving
over quasiperiodic pinning arrays [35]. In the superconducting
vortex system, the directional locking step widths oscillate as
a function of the magnetic field, with wider steps or stronger
locking occurring when the number of vortices is an integer
multiple of the number of pinning sites [36–39].

More recently, the impact of collective effects on locking
phases was studied for colloidal clusters where each indi-
vidual cluster can have different orientations that lock to
the orientation of the underlying substrate lattice [40,41].
Similar effects were observed for the motion of Au islands on
two-dimensional (2D) atomic substrates [42]. Recent studies
focused on collective locking effects for colloids moving over
triangular substrate arrays, where certain driving directions
have two equivalent locking directions. If the particles do not
interact with each other, no net directional locking occurs,
but when particle-particle interactions are added, a global
locking effect appears due to a dynamical symmetry breaking.
The direction of this symmetry breaking can be controlled
using a small biasing field [43]. Similar spontaneous dynamic
symmetry breaking leading to directional locking has also
been found in simulations of colloids [44] and vortices [45]
on periodic substrate arrays.

Up until now, collective locking on pinning arrays has been
studied for particles with relatively long-range interactions,
such as superconducting vortices or charged colloids. Far less
is known about the impact of collective effects on locking
when the particles have short-range interactions and are mov-
ing over arrays of repulsive obstacles or posts. A limited study
addressed the dense particle limit of bidisperse disks moving
through a square obstacle array and showed that a clogged

state can appear in which the disk density becomes strongly
inhomogeneous and the disks pile up behind each other [46].
In this case, the clogging susceptibility depends on the drive
angle, with clogging occurring much more readily at certain
driving angles.

In this work we study directional locking for a monodis-
perse assembly of disks moving through a square array of
obstacles where we vary the density of the moving disks as
well as the radius and lattice constant of the obstacles. For
low disk densities and small obstacle sizes, strong directional
locking occurs and the system is nearly always in a locked
state with θL = arctan(p/q). As the disk density increases,
fewer locking steps appear and the disks form 1D chains
at certain driving directions. For higher disk densities, the
chains thicken and we find that two to three rows of disks can
move between adjacent obstacles. When an integer number of
rows of moving disks is unable to form, the locking effects
are lost. This is similar to the frustration effect found for
the ordering of rows of disks on quasi-1D substrates. On
other locking steps, the system forms a density-modulated
state where the overall configuration is disordered but the
trajectories of individual disks are ordered. In the nonlocking
regimes, the disk configurations are more disordered and
mixing of the disks occurs. The velocity of the disks in a
locking region is not constant but changes nonmonotonically
with driving angle θ , exhibiting peaks and valleys. In contrast,
the direction of disk motion is constant on a locking step.
There are pronounced cusps and dips in the disk velocity at
the transitions into and out of the locking phases. At high
disk densities, we find that the p/q = 1.0 locking step is lost
due to a dynamical frustration effect, but some other locking
phases remain present. When the obstacle size is increased
in a system with a fixed disk density, the width of the locking
phases varies nonmonotonically and a clogging effect emerges
in which a portion of the disks becomes blocked behind the
obstacles. The amount of clogging that occurs depends on
the direction of driving, and the disks are able to slide more
easily when the drive is aligned with 0◦, 90◦, or 45◦. For the
largest obstacles or for high disk densities, we find a complete
clogging where all disk flow ceases. When the disk density
and obstacle size are held constant but the obstacle lattice
constant is increased, the number of locking steps increases
but the width of the locking phases is reduced. Our results
should be relevant to the flow of uncharged colloids, bubbles
or emulsions over obstacle arrays and suggest new ways to
generate different dynamical patterns.

II. SIMULATION

We consider a 2D system of size L × L with periodic
boundary conditions in the x and y directions where L =
36. The sample contains a square lattice of Nobs obstacles
modeled as harmonically repulsive posts with radius Robs

and lattice constant a, as well as Nd harmonically repulsive
disks of radius Rd . The overall system density φ is defined
to be the total area covered by both obstacles and disks, φ =
(NobsπR2

obs + NdπR2
d )/L2. The dynamics of disk i is obtained

by integrating the following overdamped equation of motion:

αd vi = Fdd
i + Fobs

i + FD. (1)
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FIG. 1. The obstacle locations (red circles) and the mobile disks
(blue circles) for a system with disk radius Rd = 0.5 and driving
force F D = 0.5 applied at an angle θ = 3◦ from the positive x axis.
The disk motion is locked to θL = 0◦. (a) Obstacle lattice constant
a = 4.0 and radius Robs = 0.35 at a total disk density of φ = 0.217.
(b) For a = 4.0, Robs = 1.0, and a larger number of mobile disks
giving φ = 0.57, there are two mobile rows of disks between each
row of obstacles. (c) a = 6.0, Robs = 1.0, and φ = 0.55, where a
density-modulated state appears. (d) a = 2.0, Robs = 0.5, and φ =
0.242.

Here ri is the disk position, vi = dri/dt is the disk velocity,
and αd is the damping constant, which we set to αd = 1.0.
The disk-disk interaction force is Fdd

i and the disk-obstacle
interaction force is Fobs, while the driving force is FD =
F D cos(θ )x̂ + F D sin(θ )ŷ. We gradually increase θ from 0 so
that FD is initially aligned with the x direction and rotates
into the y direction. We measure the average velocity in the
x and y directions, 〈Vx〉 = ∑Nd

i=1 vi · x̂ and 〈Vy〉 = ∑Nd
i=1 vi · ŷ,

as well as the net velocity, 〈V 〉 = √〈Vx〉2 + 〈Vy〉2. The drive
is fixed to F D = 0.5 and we increment θ by an amount �θ =
0.057◦ every 104 simulation time steps. We have also used
slower increment rates for the smaller obstacle radii in order
to resolve the higher-order directional locking effects.

III. VARIED DISK DENSITY

In Fig. 1 we illustrate the positions of the disks and obsta-
cles for a disk radius of Rd = 0.5 when the driving angle has
reached θ = 3◦. In the absence of a substrate the disks would
move along the θ direction, but in the presence of obstacles
the motion locks to θL = 0◦, corresponding to p/q = 0, due to
the symmetry of the substrate lattice. In Fig. 1(a), the obstacle
lattice constant is a = 4.0, the obstacle radius is Robs = 0.35,
and the sample contains Nobs = 81 obstacles and Nd = 319
disks, for a total density of φ = 0.217. Here the disks form
nearly 1D chains of single rows which brush up against the
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FIG. 2. (a) Velocities 〈Vx〉 in the x direction (blue curve) and
〈Vy〉 in the y direction (red curve) vs drive angle θ for the system
in Fig. 1(a) with a = 4.0, Robs = 0.35, and φ = 0.217. (b) p/q or
〈Vy〉/〈Vx〉 vs θ showing a series of directional locking steps. The steps
at 0, 1/4, 1/3, 1/2, 2/3, 1/1, 3/2, 2/1, 3/1, and 4/1 are highlighted.

obstacles due to the nonzero driving angle. In Fig. 1(b), we
show the same system for a larger obstacle radius Robs =
1.0 and larger number of disks Nd = 619, giving a total
density of φ = 0.57. The disks now form stripes composed
of two rows of disks. For a system with a = 6.0, Robs =
1.0, and φ = 0.55, Fig. 1(c) indicates that the disks form
a density-modulated state in which stripes appear that are
almost four disks wide. In Fig. 1(d), the disks in a sample
with a = 2.0, Robs = 0.5, and φ = 0.242 are more uniformly
distributed.

In Fig. 2(a) we plot 〈Vx〉 and 〈Vy〉 versus the angle θ of the
system in Fig. 1(a) at a drive of F D = 0.5, while in Fig. 2(b)
we show the corresponding value of p/q or 〈Vy〉/〈Vx〉 versus
θ . The velocity steps in Fig. 2(a) are not flat but take the form
of rounded humps bracketed by cusps at the jumps in and out
of the locking phases. In contrast, we do find flat steps in the
value of p/q, indicating that although the velocity of the disks
is changing, the direction of disk motion is fixed. On the 1/1
step, Fig. 2(b) indicates that the direction of motion is locked
over a fixed interval centered at θ = 45◦, while prominent
steps also appear at p/q = 0, 1/4, 1/3, 1/2, 2/3, 1, 3/2, 2,
3, and 4. The upper edge of the p/q = 0 locking step falls at
θ = 7◦.

In Fig. 3(a) we show a snapshot of the disks from the
system in Fig. 2 at θ = 11.5◦ where the motion is not locked
and the disk structure is disordered. Figure 3(b) illustrates the
p/q = 1/3 locking step in the same system at a drive angle of
θ = 18.4◦, where the disks are more ordered and have a weak
density modulation perpendicular to the driving direction. In
Fig. 3(c) we plot the disk trajectories during a fixed time for
the sample in Fig. 3(a). The trajectories are disordered, with
a mixing character, and over long times a given disk diffuses
gradually through the sample, indicating that this is a liquid
state. Figure 3(d) shows the trajectories for the p/q = 1/3 step
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FIG. 3. (a) Obstacle (red circles) and disk (blue circles) locations
for the system in Fig. 2 with a = 4.0, Robs = 0.35, φ = 0.217, and
Rd = 0.5. (a) A nonlocking regime at a drive angle of θ = 11.5◦,
where the disk configuration is disordered. (b) The p/q = 1/3 step
at a drive angle of θ = 18.4◦, where the disks are more ordered.
(c) Disordered disk trajectories (green lines) for the system in (a).
(d) One-dimensional ordered disk trajectories for the system in (b).
In (c) and (d), the mobile disks are drawn as open circles for clarity.

from Fig. 3(b), where the trajectories are strongly ordered and
form 1D patterns oriented along θL = arctan(1/3) = 18.435◦.
Here, each disk maintains the same neighbors as it moves, and
there is no long-time diffusion.

In general, the disk motion is more ordered along the
locking steps and more disordered or liquid in the nonlock-
ing regimes; however, within the locking regions, different
structures can arise. In Fig. 4(a) we plot the disk positions for
the system in Fig. 2 at the p/q = 1/2 step where a partially
square lattice appears. On the p/q = 2/3 step in Fig. 4(b),
the configuration is disordered but shows some partial clus-
tering or density modulation. Figure 4(c) illustrates the disk
positions in a nonstep region just below the p/q = 1/1 step,
where the system is disordered but the density is uniform. On
the p/q = 1/1 locking step in Fig. 4(d), we find ordered 1D
chains aligned at 45◦ such that the disks do not collide with
the obstacles. At p/q = 3/1 in Fig. 4(e), a strongly density
modulated state appears, while in Fig. 4(f) on the 90◦ locking
step, a series of nearly 1D chains form that are aligned with
the y direction. The 1D lanes on the 90◦ step are more ordered
than the lanes found on the 0◦ step in Fig. 1(a). This is
the result of the partial dynamic annealing produced when
the disks pass through multiple fluctuating nonlocked regions
before reaching the 90◦ locking step. The fluctuating states
allow the disks to reach more ordered configurations, whereas
on the 0◦ locking step, the disks remain trapped in their initial
configuration. The difference in ordering between the 0◦ and
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FIG. 4. Obstacle (red circles) and disk (blue circles) locations
for the system in Fig. 2 with a = 4.0, Robs = 0.35, φ = 0.217, and
Rd = 0.5. (a) A square lattice configuration at p/q = 1/2. (b) Cluster
formation at p/q = 2/3. (c) A disordered configuration just below
the p/q = 1/1 locking step. (d) Ordered 1D chains at p/q = 1/1. (e)
A density-modulated phase at p/q = 3/1. (f) Nearly 1D channels at
the 90◦ locking step.

the 90◦ steps would be less pronounced if the temperature
were finite.

In Fig. 5 we plot the disk positions and trajectories for
the system in Fig. 4. At p/q = 1/2 in Fig. 5(a), the disks
follow 1D paths and move a distance 2a in the x direction
for each translation by a in the y direction. No collisions
occur between the moving disks and the obstacles. Figure 5(b)
shows that the trajectories are disordered for the system in
Fig. 4(c) just below the p/q = 1/1 locking step. In Fig. 5(c),
the trajectories on the p/q = 1/1 step exhibit ordered 1D
motion. At p/q = 3/1 in Fig. 5(d), the disks form a disordered
density-modulated phase in which the trajectories are ordered.
In general, for the locking phases the disks move elastically
and maintain the same neighbors, while in the nonlocking
phases, the disks diffuse with respect to each other, forming
a liquid state.

In Fig. 6 we plot the net velocity 〈V 〉 = √〈Vx〉2 + 〈Vy〉2

versus θ for the system in Fig. 2 at densities of φ = 0.096,
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FIG. 5. Obstacle (red circles) and disk (open circles) locations
along with disk trajectories (green symbols) for the system in
Fig. 2 with a = 4.0, Robs = 0.35, φ = 0.217, and Rd = 0.5. (a) One-
dimensional trajectories at p/q = 1/2. (b) Disordered trajectories in
the nonstep region just below the p/q = 1/1 locking step. (c) At
p/q = 1/1, the disks move in 1D chains along θL = 45◦. (d) At
p/q = 3/1, the system forms a density-modulated phase with or-
dered trajectories.

0.217, 0.3857, 0.46, and 0.558. The net velocity passes
through a local maximum at the center of each locking regime,
corresponding to the points at which the interactions between
the disks and the obstacles are minimized. For the lowest
density of φ = 0.096, we find a range of values 0.35 < 〈V 〉 <

0 10 20 30 40 50 60 70 80 90
θ

0.3

0.4

0.5

0.6

0.7

0.8

<
V

>

FIG. 6. Net velocity 〈V 〉 vs θ for the system in Fig. 2 with
a = 4.0, Robs = 0.35, and Rd = 0.5 at densities φ = 0.096 (red
curve), 0.217 (light-blue curve), 0.3857 (green curve), 0.46 (dark-
blue curve), and 0.558 (orange curve), from bottom to top. The
curves have been shifted vertically by intervals of 0.1 for clarity.
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FIG. 7. p/q vs θ for the system in Fig. 6 with a = 4.0, Robs =
0.35, and Rd = 0.5 at φ = 0.096 (dark-orange curve), 0.1567 (light-
blue curve), 0.217 (dark-green curve), 0.278 (dark-blue curve),
0.3857 (light-orange curve), 0.46 (light-purple curve), 0.52 (light-
green curve), and 0.558 (red curve). The steps gradually disappear as
the disk density increases.

0.5. The maximum velocity cannot exceed the driving force
value, F D = 0.5. We obtain 〈V 〉 = F D whenever the moving
disks cease interacting with the obstacles, which occurs for
p/q = 0, 1/2, 1/1 and in the 90◦ locking phase. Here the
disks move in 1D chains and do not come into contact
with the obstacles, as illustrated in Fig. 5(a) for p/q = 1/2
and in Fig. 4(d) for p/q = 1/1. Some of the directionally
locked regimes have a reduced maximum velocity due to disk-
obstacle collisions, as shown in Fig. 5(d) for p/q = 3/1 and
in Fig. 3(d) for p/q = 1/3. The lowest velocity values appear
in the nonlocking regimes. As the density of mobile disks
increases, the number of locked phases diminishes and the
maxima and minima in 〈V 〉 become less distinct. For example,
at the highest density of φ = 0.58, we find only small peaks
in 〈V 〉 at p/q = 1/3, 2/3, 1/1, 3/2, and 3/1, while the peaks
at 1/4, 1/2, 2/1, and 4/1 have disappeared.

The evolution of the locking regimes is illustrated in the
plot of p/q versus θ at different values of φ in Fig. 7.
The p/q = 1/3, 2/3, and 3/2 steps decrease in width as φ

increases but remain present even for the highest disk den-
sities, whereas the p/q = 1/2 locking step disappears when
φ > 0.5. At φ = 0.46, the 1/2 step is partially locked and
p/q does not remain constant on the step but shows a linear
increase. For the p/q = 1/1 step, complete locking is lost
when φ > 0.53 and there is only partial locking at φ = 0.558.

Based on curves such as those shown in Fig. 7, we
construct a phase diagram highlighting the different locking
phases. In Fig. 8 we plot the locations of the locked phases as
a function of θ versus φ. The most prominent locking steps
appear at p/q = 1/1, 0◦, and 90◦. The p/q = 1/2 and 2/1
steps disappear when φ > 0.4 and the disks become dense
enough that 1D ordered chains can no longer form. In general,
the widths of all of the steps decrease with increasing φ.

In Fig. 9(a) we illustrate the disk configurations for the sys-
tem in Fig. 8 at φ = 0.52 and p/q = 1/3, where a directional
locking step occurs and the disks are partially ordered. In the
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FIG. 8. Locked regions (shaded areas) as a function of θ vs disk
density φ for the system in Fig. 7 with a = 4.0, Robs = 0.35, and
Rd = 0.5. The p/q = 0, 1/4, 1/3, 1/2, 2/3, 1/1, 3/2, 2/1, 3/1, 4/1,
and 90◦ steps are labeled. The p/q = 1/2 and 2/1 steps are the first
to disappear as φ increases.

same system at p/q = 1/2, Fig. 9(b) shows that the disks are
much more disordered and there is no directional locking. In
general, as the disk density increases, it is more difficult for
the disks to move around the obstacles in an ordered fashion
in order to form a locked state.

The width of the locking steps as a function of φ is affected
by the value of the obstacle radius Robs. In Fig. 10(a) we plot
〈Vx〉 and 〈Vy〉 versus θ for the system from Fig. 1 with Robs =
1.0, Rd = 0.5, and φ = 0.39, while in Fig. 10(b) we show the
corresponding p/q versus θ . Here, locking steps appear only
for p/q = 0, 1/2, 1/1, 2/1, and 90◦. Figures 10(c) and 10(d)
show 〈Vx〉, 〈Vy〉, and p/q versus θ for the same system at the
higher mobile disk density of φ = 0.57. Locking occurs only
at angles of 0◦ and 90◦, while the other locking steps are lost.

In Fig. 11(a) we show the disk configurations and trajec-
tories for the system in Fig. 10(a) on the p/q = 1/2 locking
step where the system forms a partially clustered state with
ordered trajectories. Figure 11(b) illustrates the disordered
disk trajectories that appear in the same system at φ = 0.51
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FIG. 9. (a) Obstacle (red circles) and disk (blue circles) locations
for the system in Fig. 8 with a = 4.0, Robs = 0.35, and Rd = 0.5 at
φ = 0.52. (a) At p/q = 1/3, there is a locking step and the disk
positions are partially disordered. (b) At p/q = 1/2, there is no
directional locking and the disk configuration is disordered.
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FIG. 10. (a) 〈Vx〉 (blue curve) and 〈Vy〉 (red curve) vs θ for the
system in Fig. 1 with a = 4.0, Robs = 1.0, Rd = 0.5, and φ = 0.39.
(b) The corresponding p/q vs θ showing locking steps at p/q = 0,
1/2, 1/1, 2/1, and 90◦. (c) 〈Vx〉 (blue curve) and 〈Vy〉 (red curve) vs θ

for the system in Fig. 1(b) with φ = 0.57, where locking steps appear
only at 0◦ and 90◦. (d) The corresponding p/q vs θ .
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FIG. 11. (a) Obstacle (red circles) and disk (blue and open cir-
cles) locations along with disk trajectories (green symbols) for the
system in Fig. 10(a) with a = 4.0, Robs = 1.0, Rd = 0.5, and φ =
0.39 in the p/q = 1/2 locking phase where the disk configurations
are heterogeneous but the trajectories are ordered. (b) The same
system at a higher mobile disk density of φ = 0.51 in the nonlocking
regime just above the p/q = 1/2 locking step, where the trajectories
are disordered. (c) Image without trajectories of the p/q = 1/1
locking step for the same system at φ = 0.46 and θ = 45◦. (d) The
system in Fig. 10(c) with φ = 0.57 at p/q = 1/1, where there is no
directional locking and the disk configuration is disordered.
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FIG. 12. Locked regions (shaded areas) as a function of θ vs φ

for the system in Fig. 10 with a = 4.0, F D = 0.5, Robs = 1.0, and
Rd = 0.5, showing directional locking at p/q = 0, 1/2, 1/1, 2/1, and
90◦. The 1/1 step is lost when φ > 0.4.

for the nonlocking regime just above the p/q = 1/2 lock-
ing step. In Fig. 11(c) we plot the disk positions without
trajectories for a sample with φ = 0.46 at θ = 45◦ on the
p/q = 1/1 locking step, where the disks move in 1D channels
oriented 45◦ from the x axis. The same system is shown at
φ = 0.57 in Fig. 11(d), where the locking step is absent and
the disk configuration is disordered. As φ increases, ordered
locking flow can occur at p/q = 1/1 as long as the chains of
moving disks remain narrow enough to avoid colliding with
the obstacles while moving. When the obstacle radius is small,
the number n of rows of moving disks that can fit between the
obstacles is limited by the diameter of the disks. Specifically,
if n rows of disks are driven at an angle θ , obstacle-disk
collisions can be avoided only if nRd + Robs � a

2 cos θ , giving
the criterion n � (1/Rd )( a

2 cos θ − Robs). For the system in
Fig. 11 with a = 4.0, Rd = 0.5, and Robs = 1.0, we obtain
n � 2 when θ = 0, indicating that locking of two rows can
occur on the p/q = 0 step, while n � 0.8 when θ = 45◦,
showing that no locking occurs at p/q = 1/1.

In Fig. 12 we show the locations of the locking steps as
a function of θ versus φ for the system in Fig. 10. There
are only five steps, at p/q = 0, 1/2, 1/1, 2/1, and 90◦. The
1/1 step disappears when φ > 0.45, the 1/2 and 2/1 steps
vanish above φ = 0.55, and the 0◦ and 90◦ steps persist up
to φ = 0.6. As Robs increases, the number of locking phases
decreases.

IV. VARIED OBSTACLE RADIUS AND CLOGGING

We next vary the radius of the obstacles while holding the
lattice constant at a = 4.0 and fixing the number of mobile
disks. As the obstacle radius decreases, we find a larger
number of possible locking phases. In the inset in Fig. 13 we
plot 〈Vx〉 and 〈Vy〉 versus θ for a system with Rd = 0.5, Robs =
0.025, and φ = 0.1934. Here Nobs = 81 and Nd = 319. A
series of dips appears in the velocity curves at the edges of
each locking phase, and on the p/q = 1/1 locking step we
find 〈Vx〉 = 〈Vy〉. In Fig. 13(b), we show the corresponding
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FIG. 13. p/q vs θ for the same system over the range 0 � θ �
86◦. Locking steps with p/q = 0, 1/4, 1/1, 2/1, 7/2, 3/1, 4/1, 5/1,
6/1, and 7/1 are labeled. There is also another step at p/q = 8/1
which is not shown. Inset: 〈Vx〉 (blue curve) and 〈Vy〉 (red curve) vs θ

for a system with Rd = 0.5, Robs = 0.025, a = 4.0, and φ = 0.1934.

p/q versus θ curve up to θ = 86◦, with labels indicating the
steps where p/q = 0, 1/4, 1/1, 2/1, 7/2, 3/1, 4/1, 5/1, 6/1,
and 7/1. There is an additional step at p/q = 8/1, which is
not shown.

In Fig. 14 we show a blowup of the p/q versus θ curve
in Fig. 13(b) to better illustrate the additional locking phases
at p/q = 0, 1/7, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4,
4/5, 1/1, 5/4, 4/3, 3/2, 5/3, and 2/1. As the obstacle density
decreases, the number of possible p/q locking steps increases,
as described in Sec. V. The presence of the higher-order
values of p/q is limited by the radius and density of the mobile
disks as well as by the system size. For example, if we increase
the number of mobile disks so that φ is larger, the higher-order
locking steps disappear.
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FIG. 14. A zoomed-in view of p/q = 〈Vy〉/〈Vx〉 vs θ for the
system in Fig. 13 with Rd = 0.5, Robs = 0.025, a = 4.0, and φ =
0.1934. Labels indicate the locking steps at p/q = 0, 1/7, 1/6, 1/5,
1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1, 5/4, 4/3, 3/2, 5/3, and
2/1.
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FIG. 15. (a) 〈Vx〉 vs θ curve for the system in Fig. 13 with
Rd = 0.5, a = 4.0, and φ = 0.1934 at Robs = 0.0125, 0.025, 0.05,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.45, from top to bottom.
(b) The same for Robs ranging from Robs = 0.05 to Robs = 1.45 at
intervals of 0.05, from top to bottom. As Robs increases, both the
velocity and the number of steps decrease.

In Fig. 15(a) we plot 〈Vx〉 versus θ for the system in
Fig. 13 for varied Robs from Robs = 0.0125 to Robs = 0.45. At
the p/q = 1/2, 1/1, and 2/1 locking steps, 〈Vx〉 reaches the
same maximum value regardless of the value of Robs. At the
maximum of each of these steps, the disks no longer collide
with the obstacles so the velocity is insensitive to the obstacle
radius. For other locking steps, there are always disk-obstacle
collisions and therefore 〈Vx〉 decreases with increasing Robs.
In general, for each p/q step there is a particular value of Robs

above which 〈Vx〉 begins to decrease with increasing Robs. The
higher-order p/q locking phases also gradually disappear as
Robs increases.

In Fig. 15(b) we plot 〈Vx〉 versus θ for the same system as
in Fig. 15(a) over the range 0.5 � Robs � 1.45. At the peak of
the p/q = 1/1 locking step, the value of 〈Vx〉 remains constant
for Robs � 0.9, while for larger values of Robs, 〈Vx〉 begins
to decrease. The width of the p/q = 1/1 step increases with
increasing Robs up to Robs = 1.35, after which it decreases
again, while the steps with p/q = 1/3, 1/2, 2/1, and 3/1
decrease in width until for Robs = 1.45 they are absorbed by
the 0◦, 90◦, and p/q = 1/1 locking regimes.

In Fig. 16 we plot 〈Vx〉 versus θ for the same system in
Fig. 15 at Robs = 1.45, 1.475, 1.5, 1.5125, 1.525, 1.55, 1.575,
1.5875, 1.6, 1.6025, 1.6075, and 1.6375. The velocity de-
creases with increasing Robs and reaches 0 for Robs = 1.6375.
The p/q = 1/1 locking step is lost when Robs � 1.575. For
Robs = 1.6025, the system reaches a clogged state near θ ≈
38◦. In this regime, an increasing fraction of the sample
contains mobile disk configurations that block the flow. When
Robs � 1.6125, the flow is blocked for all driving angles.

Figure 17 illustrates the disk configurations on the 0◦
locking step for different obstacle sizes, showing the evolution
into a clogged state. At Robs = 0.75 in Fig. 17(a), the disks
form flowing 1D chains. In Fig. 17(b) at Robs = 1.4, the disks
interact more strongly with the obstacles but no clogging
occurs. When Robs = 1.55 as in Fig. 17(c), trimer configura-
tions form between adjacent obstacles, intermittently blocking
the flow. At Robs = 1.6125 in Fig. 17(d), the system is in a
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FIG. 16. (a) 〈Vx〉 vs θ for the system in Fig. 13 with Rd =
0.5, a = 4.0, and φ = 0.1934 at Robs = 1.45, 1.475, 1.5, 1.5125,
1.525, 1.55, 1.575, 1.5875, 1.6, 1.6025, 1.6075, and 1.6375, from
top to bottom. As Robs increases, the system becomes clogged over a
greater range of driving angles. At Robs = 1.5875 and 1.6, directional
locking still occurs, while for Robs = 1.6375, there is complete
clogging at every driving angle.

completely clogged state. The local disk density is strongly
heterogeneous in a clogged sample, with some regions of high
disk density accompanied by other regions that contain no
disks. The clogged state we observe is similar to that found
for binary disks moving through periodic obstacle arrays [46].
For Robs = 1.6025 and 1.6075, the clogging is directionally
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x(c)

y

x(d)
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FIG. 17. Obstacle (red circles) and disk (blue circles) locations
for the system in Figs. 15 and 16 with Rd = 0.5, a = 4.0, and
φ = 0.1934 in the 0◦ locking phase. (a) Robs = 0.75. (b) Robs = 1.4.
(c) Robs = 1.55, where partial clogging begins to occur. (d) Robs =
1.6125, where there is a clogged state.
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FIG. 18. (a) Obstacle (red circles) and disk (open circles) loca-
tions along with the disk trajectories (green symbols) for the system
in Fig. 16 with Rd = 0.5, a = 4.0, and φ = 0.1934 for θ = 40◦.
(a) Robs = 3.15. (b) The same as (a), showing only the obstacles and
the trajectories. (c) Robs = 3.2. (d) The same as (c), showing only
the obstacles and the trajectories, indicating that a partially clogged
phase is present.

dependent and the system does not clog for flow along the
x, y, or 45◦ directions but becomes completely blocked for
flow at the other angles.

In Fig. 18(a) we plot the obstacle and disk configurations
along with the trajectories at θ = 40◦ in the system from
Fig. 16 with Robs = 1.575, while in Fig. 18(b) we show only
the trajectories and obstacles. The disks are beginning to
accumulate behind the obstacles but continue to flow around
the obstacles, as indicated in Fig. 18(b). The obstacles, disk
configurations, and trajectories for the same system with
Robs = 1.6 appear in Fig. 18(c), while Fig. 18(d) shows only
the obstacles and trajectories. The system is in a partially
clogged phase containing large regions where there is no
flow interspersed with some winding channels. Those disks
that continue to move channel predominantly along the 0◦
direction with occasional vertical jumping from one channel
to the next.

The transition to a clogged state can be quantified by
measuring 〈Vx〉 as a function of Robs for a specific value of
θ . In Fig. 19 we plot 〈Vx〉 versus Robs for θ = 3◦ and θ = 45◦.
When θ = 3.0◦, the flow is locked along 0◦ and the velocity
remains constant up to Robs = 1.45, above which the velocity
drops until reaching 0 near Robs = 1.61. For θ = 45◦, there is
a smaller overall value of 〈Vx〉, which remains constant up to
Robs = 0.9, decreases linearly for 0.9 < Robs < 1.54, and then
decreases more rapidly before reaching 0 near Robs = 1.61.
For other locking steps, we find a similar behavior in which
〈Vx〉 remains constant below a certain value of Robs before
decreasing linearly and then dropping rapidly to 〈Vx〉 = 0 at
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FIG. 19. 〈Vx〉 vs Robs for a system with Rd = 0.5 and a = 4.0
on the 0◦ locking step at θ = 3◦ (red circles) and on the p/q = 1/1
locking step at θ = 45◦ (blue squares), showing the crossover from a
constant value to a clogged state.

higher Robs. In Fig. 20 we plot the step regions and clogged
regions as a function of θ versus Robs for the system in Fig. 16.
We highlight the p/q = 0, 1/3, 1/2, 1/1, 2/1, 3/1, and 90◦
steps, where the step width in θ generally increases with Robs

up to some critical value of Robs before decreasing again. The
higher-order locking steps disappear for Robs > 0.5. The 0◦
and 90◦ locking steps diminish in width near Robs = 1.45,
which is correlated with the onset of the partially clogged
states.

We refer to the states in which the flow drops to 0 as
clogged rather than jammed. Jamming typically describes
amorphous systems composed of loose particles such as
grains, emulsions, or disks which have no quenched disorder
[47–52]. In 2D systems, jamming is typically associated with
some type of long-range growing rigid correlation length due
to the buildup of contact forces between the particles [51].
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FIG. 20. Locked regions (pink area) and clogged region (blue
area) as a function of θ vs Robs for the system in Figs. 15 and 16
with Rd = 0.5 and a = 4.0. Locking steps with p/q = 0, 1/3, 1/2,
1/1, 2/1, and 3/1 are labeled along with the 90◦ locking step.
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FIG. 21. 〈Vx〉 vs θ for samples with Nd = 400, Rd = 0.5, and
Robs = 1.0 at a = 18, 12, 9, 7.2, 6.0, 4.5, 3.6, 3.0, 2.5, and 2.25, from
top to bottom. At a = 2.25, the system is in a clogged state.

In a clogged system, the cessation of flow is more local and
is associated with individual bottlenecks [53,54]. Clogging
can occur for particles flowing through an individual hopper
when the particles adopt an arched configuration near the
mouth of the aperture. The susceptibility to clogging in this
case increases as the width of the aperture decreases. In
the clogging we observe, the flow stops when the distance
between the obstacles is reduced due to an increase in Robs,
so the system can be regarded as a series of coupled hoppers.

The clogging we find is similar to the clogging phe-
nomenon studied in disordered systems with random obstacle
arrays. In the latter system, a critical density of obstacles
is required to block the flow and the clogged states are
inhomogeneous since the individual blocked particles produce
higher-density pileups behind them while other regions of the
sample contain few particles [46,55–57]. The clogged state
forms for lower densities when the quenched disorder is ran-
dom compared to systems containing periodic obstacle arrays
[55–57]. When the driving is applied along the x direction
with θ = 0, the obstacles in a periodic obstacle lattice with an
easy flow channel aligned in the x direction must have a fairly
large radius in order to induce clogging, while at larger driving
angles, the clogging is more similar to that found in systems
with random obstacles. At finite temperature, the clogging is
likely to be intermittent, with some clogged states breaking up
thermally and flowing for a period of time before reforming.
The clogging can also be disrupted by the application of an
additional ac drive on top of the dc drive or by reversing
the direction of the drive for a period of time. The clogging
susceptibility also depends on the magnitude of the driving
force F D since the disks are harmonic, so that for weaker
drives, the system can reach a clogged state at lower Robs and
lower φ. This property will be studied in another work.

V. VARIED OBSTACLE LATTICE CONSTANT

We next consider samples with fixed Robs but varied a, fo-
cusing on a system with Nd = 400, Rd = 0.5, and Robs = 1.0.
In Fig. 21 we plot 〈Vx〉 versus θ for a = 18, 12, 9, 7.2, 6.0, 4.5,
3.6, 3.0, 2.5, and 2.25. The velocity is highest for the largest a
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FIG. 22. Obstacle (red circles) and disk (blue and open circles)
locations along with the disk trajectories (green symbols) for the
system in Fig. 21 with Nd = 400, Rd = 0.5, and Robs = 1.0 on the 0◦

locking step at a finite drive angle of θ = 2◦. (a) a = 12. (b) a = 6.0.
(c) a = 3.0, showing a partially clogged state. (d) a = 2.25, where
there is a fully clogged state.

and the locking states appear as bumps. As a decreases, some
of the locking steps such as those at p/q = 1/1 and p/q = 1/2
grow in width while the higher-order locking steps diminish
in size. The extent of the p/q = 1/2 locking step begins to
decrease when a < 3.6, and for a = 3.0, only the 0◦, p/q =
1/1, and 90◦ locking phases appear. The system enters a
partially clogged state at a = 2.5 and becomes fully clogged
at a = 2.25. The evolution of the phases for decreasing a is
similar to that found for fixed a and increasing Robs, since in
both cases the distance between the surfaces of the obstacles
decreases.

In Fig. 22(a) we illustrate the disk configurations on the
0◦ locking step for a drive angle of θ = 2◦ when a = 12,
where the system forms a density-modulated stripe containing
between three and four rows of disks. The stripes are pushed
up against the obstacles due to the finite angle of the drive.
Figure 22(b) shows the same system at a = 6.0, where the
stripes are composed of between one and two rows of disks.
In Fig. 22(c) at a = 3.0, the system forms a partially clogged
state with a single row of disks flowing between the obstacles
coexisting with several regions in which a trimer disk ar-
rangement partially blocks the flow. The fully clogged state at
a = 2.25, shown in Fig. 22(d), occurs when the obstacles are
so dense that individual disks cannot pass between them. For
higher F D, the disks can effectively depin and move between
the obstacles; this will be studied in another work.

At lower obstacle densities, we find various types of pat-
tern formation at the locking phases, including states with a
density gradient. In Fig. 23(a) we show the disk and obstacle
locations for the system in Fig. 21 with a = 9.0 at θ = 10.5◦
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FIG. 23. Obstacle (red circles) and disk (blue circles) locations
for the system in Fig. 21 with Nd = 400, Rd = 0.5, and Robs = 1.0
at a = 9.0. (a) θ = 10.5◦, in a nonlocking regime where a periodic
gradient in the disk density arises. (b) The p/q = 1/4 locking phase.
(c) The p/q = 1/3 locking phase. (d) A nonlocking phase between
p/q = 1/3 and p/q = 1/2. (e) The p/q = 1/2 locking step. (f) The
p/q = 1/1 locking step where a density-modulated stripe structure
appears.

in a nonlocking state. The disks form a partial square lattice in
the regions between the obstacles, while a disordered pileup
of disks forms immediately behind each obstacle. On the
p/q = 1/4 locking step in Fig. 23(b) at θ = 18.7◦, the disks
are more orderly and move in a series of channels, with a
distortion in the rows produced by the deflection that occurs
when the disks collide with the obstacles. In Fig. 23(c),
which shows the p/q = 1/3 locking step, the disks move in
nearly straight lines and undergo very few collisions with the
obstacles. Figure 23(d) shows the disordered configuration in
a nonlocking regime between the p/q = 1/3 and the p/q =
1/2 locking steps. On the p/q = 1/2 step in Fig. 23(e), the
particles form a density-modulated phase, while in Fig. 24(f)
at the p/q = 1/1 locking step, there are two rows of disks
moving at 45◦ between the obstacles. We observe several
ordered and disordered phases on the other locking steps.

0 5 10 15
a

0

20

40

60

80

θ 1/1

0

90
o

1/2

3/2

Clogged

FIG. 24. Locked regions (pink area) and clogged region (blue
area) as a function of θ vs a for the system in Fig. 21 with Nd =
400, Rd = 0.5, and Robs = 1.0. Labels indicate the locations of the
p/q = 0, 1/2, 1/1, 3/2, and 90◦ locking steps. Additional steps
appear at p/q = 1/7, 1/6, 1/5, 2/5, 1/4, 1/3, 3/5, 4/5, 6/5, 4/3,
5/2, 3/1, 4/1, 5/1, 6/1, 7/1, and 8/1.

In Fig. 24 we indicate the locations of the locking steps as
a function of θ versus a for the system in Figs. 21 to 23, with
labels denoting the clogged phase and the p/q = 0, 1/2, 1/1,
3/2, and 90◦ locking steps. Other locking steps also appear for
p/q = 1/7, 1/6, 1/5, 2/5, 1/4, 1/3, 3/5, 4/5, 6/5, 4/3, 5/2,
3/1, 4/1, 5/1, 6/1, 7/1, and 8/1. In systems that are larger
in size than what we consider, additional locking phases with
smaller widths appear at the larger values of a. For 2.25 <

a � 3.0, partial clogging phases occur, while for a � 2.25,
there is a complete clogging phase. For a > 3.0, the widths of
the 0◦ and 90◦ locking steps decrease approximately as 1/a.

In Fig. 25 we plot the net velocity 〈V 〉 versus θ for a
system with Nd = 400, Robs = 0.5, and Rd = 0.5 at a = 12,
6, 4, 3, and 2.25, Here we have set Robs = 0.5 in order to
access higher disk densities. For a = 12, only small dips
appear in 〈V 〉, and for certain locking steps, 〈V 〉 = F D = 0.5,
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FIG. 25. Net velocity 〈V 〉 vs θ for a system with Robs =
0.5, Rd = 0.5, Nd = 400, and a = 12, 6, 4, 3, and 2.25, from top
to bottom.
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FIG. 26. p/q vs θ for the system in Fig. 25 with Robs =
0.5, Rd = 0.5, and Nd = 400 plotted over the range 0 � θ � 70◦ and
0 � p/q � 2 for a = 12, 6, 4, 3, and 2.25, from upper left to lower
left. There are fewer, wider steps for smaller a.

indicating that there are no collisions between the disks and
the obstacles. As a decreases, the overall velocity drops. When
a = 4.0, only the p/q = 0, 1/3, 1/2, 1/1, 2/1, 3/1, and 90◦
locking steps are present, while at a = 3.0, we find only the
p/q = 0, 1/2, 1/1, 2/1, and 90◦ locking steps. For a = 2.25,
only the three most robust steps of p/q = 0◦, 1/1, and 90◦
still appear. For smaller a, the system reaches a completely
clogged state. In Fig. 26 we plot p/q versus θ for the system in
Fig. 25, showing the growth of the locking phase step widths
with decreasing a.

We have also examined samples with larger a values and
higher disk densities and find density-modulated states similar
to those described above. In Fig. 27 we show the disk con-
figurations at a = 6.0, Rd = 1.0, Robs = 1.0, and disk density
φ = 0.525. Figure 27(a) illustrates the 0◦ locking step where
a disordered stripe phase appears. For a larger θ that is still
within the 0◦ locking regime, the stripes become more com-
pact and contain only four rows of disks. In Fig. 27(b) we plot
the disk configuration on the p/q = 1/5 locking step, while
in Fig. 27(c) we show the configuration at the p/q = 1/3
locking. Figure 27(d) gives an example of the configuration
in the nonlocking regime just below the p/q = 1/2 locking
step, while Fig. 27(e) shows the locking at p/q = 1/1 where
the system forms an ordered state containing two rows moving
at 45◦. In Fig. 27(f) we illustrate the density-modulated state
which forms at p/q = 6/1.

VI. RANDOM DILUTION

Finally, we test the robustness of the directional lock-
ing against a random dilution of the square obstacle array,
achieved by randomly removing a fraction Pd of the obstacles.
We consider a system with Rd = 0.5, Robs = 1.0, a = 4.0,
and Nd = 30 mobile disks, where the undiluted system has
a density of φ = 0.2145. In this case, strong locking appears
at p/q = 0, 1/2, 1/1, 2/1, and 90◦ in the absence of dilution.
In Fig. 28 we show the evolution of the steps in p/q versus
θ as we randomly remove fractions Pd = 0, 0.12, 0.247, 0.49,
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y

x(c)

y
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y

x(f)
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FIG. 27. Obstacle (red circles) and disk (blue circles) positions
for a system with a = 6.0, Rd = 0.5, Robs = 1.0, and density φ =
0.525 showing pattern formation. (a) The 0◦ locking state. (b) p/q =
1/5 locking. (c) p/q = 1/3 locking. (d) A nonlocking phase just
below the p/q = 1/2 step. (e) p/q = 1/1, where the system is
ordered with two rows of disks. (f) p/q = 6/1, showing a density-
modulated disk arrangement.

0.741, 0.925, and 1.0 of the obstacles. In general, the region of
complete locking shrinks as the dilution fraction Pd increases;
however, even for Pd = 0.925, the p/q = 1/1 locking regime
remains visible, as highlighted in the inset in Fig. 28. For
intermediate dilutions such as Pd = 0.49, additional steps at
p/q = 1/3 and 4/3 start to appear. These additional steps
arise because the dilution produces an effect similar to that of
decreasing the obstacle radius Robs. There are also a number
of smaller steps that arise with widths that depend on the exact
configuration of the dilution. These results indicate that the di-
rectional locking is robust against dilution due to the presence
of a strong long-range periodic component of the obstacle
arrangement. Similar robustness of commensurability effects
was observed previously in a superconducting vortex system
[58,59] interacting with a randomly diluted periodic pinning
array.
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FIG. 28. The evolution of p/q vs θ for a system with a =
4.0, Rd = 0.5, Robs = 1.0, and an undiluted density of φ = 0.2145
as the fraction Pd of randomly removed disks is increased. Pd = 0
(light-green curve), 0.12 (light-blue curve), 0.247 (dark-green curve),
0.49 (dark-blue curve), 741 (orange curve), 0.925 (red curve), and 1.0
(light-purple curve). The arrow indicates the p/q = 1 locking step
for motion along 45◦. Inset: A zoom-in on the data in the main panel
for only the Pd = 0.925 curve, showing that weak locking persists
even when most of the obstacles have been removed.

VII. SUMMARY

We have examined the directional locking for a collection
of disks moving through a square obstacle array, where we
vary the mobile disk density, the obstacle radius, and the
obstacle lattice constant. We find strong collective effects
which produce a rich variety of patterns. On the steps with
strong directional locking, such as 45◦, the disks can form
linear chains containing one or more rows. For other lock-

ing directions, we find square moving lattices or density-
modulated states. The disk trajectories on the locking steps
form ordered patterns and the disks move elastically without
exchanging neighbors. In the nonlocking regimes, disordered
or liquidlike states appear in which the disk trajectories mix.
On the directional locking steps, the disk velocities are not
fixed but form a parabolic shape with minima at the transitions
into and out of the locked phase. In contrast, the ratio p/q
describing the direction of motion is constant on each locking
step. As the disk density increases, the number of possible
locking phases diminishes due to the increasing frequency of
disk-obstacle collisions, which makes it impossible for the
disks to form a collectively moving pattern at certain drive an-
gles. When the obstacle radius becomes larger, the number of
locking steps decreases and the system first reaches a partially
clogged phase in which a portion of the disks is stationary
before entering a fully clogged state. For large obstacle lattice
constants, a variety of moving stripe or density-modulated
states appears on the locking steps, and the number of locking
phases decreases with decreasing obstacle lattice constant un-
til the system reaches a completely clogged state. Our results
should be relevant to bubbles, emulsions, uncharged colloids,
and magnetic textures moving through obstacle arrays, and
they suggest a new way to dynamically generate stripe and
density-modulated phases.
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