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Active matter: Quantifying the departure from equilibrium
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Active matter systems are driven out of equilibrium at the level of individual constituents. One widely studied
class are systems of athermal particles that move under the combined influence of interparticle interactions and
self-propulsions, with the latter evolving according to the Ornstein-Uhlenbeck stochastic process. Intuitively,
these so-called active Ornstein-Uhlenbeck particle (AOUP) systems are farther from equilibrium for longer
self-propulsion persistence times. Quantitatively, this is confirmed by the increasing equal-time velocity
correlations (which are trivial in equilibrium) and by the increasing violation of the Einstein relation between the
self-diffusion and mobility coefficients. In contrast, the entropy production rate, calculated from the ratio of the
probabilities of the position space trajectory and its time-reversed counterpart, has a nonmonotonic dependence
on the persistence time. Thus, it does not properly quantify the departure of AOUP systems from equilibrium.
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I. INTRODUCTION

The focus of our study are model active matter sys-
tems consisting of athermal self-propelled particles, which
move due to interparticle interactions and self-propulsions,
with the self-propulsions evolving independently of the po-
sitions of the particles [1,2]. To fully define these systems,
one needs to specify the properties of the self-propulsions.
Two popular choices are active Brownian particles (ABPs)
[3,4], which are endowed with self-propulsions of a constant
magnitude and evolving via rotational diffusion, and active
Ornstein-Uhlenbeck particles (AOUPs) [5–7], for which the
self-propulsions evolve according to the Ornstein-Uhlenbeck
stochastic process. Since our fundamental understanding of
nonequilibrium systems is not well developed, one oft-used
approach to study systems of self-propelled particles is to
approximate them by appropriately chosen thermal equilib-
rium systems [6,8,9]. Intuitively, whether such an approach
is sensible depends on the degree of nonequilibrium in the
active systems[10]. Thus, a recurring question in the re-
cent literature is how to quantify the departure of the sys-
tems of self-propelled particles from thermal equilibrium.
To paraphrase a recent article [12], we want to replace
a binary in-out of equilibrium classification with a more
quantitative one.

One possibility is to generalize the stochastic thermo-
dynamics approach and to evaluate the entropy production
defined through a ratio of the probability of the forward
trajectory and that of its time-reversed version. For systems of
AOUPs, this approach was first proposed by Fodor et al. [7]
and then elaborated on by Nardini et al. [13] and by Puglisi,
Marconi, Maggi, and collaborators [14,15]. They defined the
entropy production in terms of the ratio of the probabilities
of the forward and reversed trajectories in the position space
and derived a compact expression, which makes a numerical
evaluation of the entropy production straightforward.

There have been other attempts to define the entropy pro-
duction. Mandal et al. [16] defined the entropy production in
terms of the ratio of the probabilities of the forward trajectory
and a trajectory following time-reversed evolution. Dabelow
et al. [17] argued that the relation between the entropy
production and the trajectory probability ratio involves an
additional quantity originating from the “mutual information”
between the trajectory and the environment. Shankar and
Marchetti [18] proposed calculating the entropy production
from the ratio of the probabilities of the forward and reversed
trajectories in the enlarged phase space consisting of the
particle’s position and self-propulsion. While they considered
only a single free self-propelled particle, their approach was
generalized by one of us to a single AOUP in an external
potential [19]. Additionally, Pietzonka and Seifert [20] argued
that the most fundamental consideration of entropy production
should also include the contribution from physicochemical
processes that give rise to the self-propulsion.

Here we present the results of a simulational investigation
of the entropy production according to Fodor et al. for systems
of interacting AOUPs. The most intuitive control parameter
tuning the departure of these systems from equilibrium is the
persistence time of the self-propulsion. We present quantita-
tive numerical results supporting this expectation. Then, we
show that the expression for the entropy production derived
in Ref. [7] has a nonmonotonic dependence on the self-
propulsion persistence time. Thus, it is not a good measure
of the departure of AOUP systems from thermal equilibrium.
Numerical evaluation of the alternative proposals to define the
entropy production [16–19] is left for a future study.

II. SIMULATIONS

We simulated interacting, athermal AOUPs [5–7], moving
in a viscous medium, without inertia, under the combined
influence of the interparticle forces and self-propulsions,
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with the latter evolving according to the Ornstein-Uhlenbeck
stochastic process. The equations of motions read

ṙi = ξ−1
0 [Fi + fi], (1)

τpḟi = −fi + ηi. (2)

In Eq. (1), ri is the position of particle i, ξ0 is the friction
coefficient of an isolated particle, Fi is the interparticle force,
and fi is the self-propulsion. In Eq. (2), τp is the persis-
tence time of the self-propulsion and ηi is the internal Gaus-
sian noise with zero mean and variance, 〈ηi(t )η j (t

′)〉
noise

=
2ξ0kBTaIδi jδ(t − t ′), where 〈· · · 〉noise denotes averaging over
the noise distribution, Ta is the “active” temperature, and I is
the unit tensor. We choose a system of units such that ξ0 = 1
and kB = 1. We emphasize that Ta characterizes the strength of
the self-propulsion; it is called the active temperature because
it determines the long-time diffusion coefficient of a single
free AOUP, D0 = kBTa/ξ0 ≡ Ta.

We studied a 50:50 binary mixture of N = 1000 parti-
cles in d = 3, interacting via the smoothed Weeks-Chandler-
Andersen truncation of the Lennard-Jones potential, Vαβ (r) =
4ε[( σαβ

r )
12 − ( σαβ

r )
6
] + V cut

αβ (r), where α, β denote the particle
species A or B, ε = 1, σAA = 1.4, σAB = 1.2, σBB = 1.0, and
V cut

αβ (r) = c0 + c2(r/σαβ )2 + +c4(r/σαβ )4 + c6(r/σαβ )6. The
potential is truncated and shifted at ςαβ = 21/6σαβ , and the
parameters c0, c2, c4, and c6 are chosen such that the potential
and its first three derivatives are continuous at the cutoff. The
resulting interparticle force Fi = −∑

j �=i ∂riVαβ (ri j ) is purely
repulsive. All the quantities presented in this work except for
the velocity correlations, Eq. (3), pertain to all, i.e., large and
small, particles. The velocity correlations were calculated for
the large particles only; the correlations for the small particles
are qualitatively the same.

Our control parameters were the active temperature Ta,
the packing fraction φ = πN[ς3

AA + ς3
BB]/(12L3), and the

persistence time τp, where L is the simulation box length.
We performed simulations along two lines in this three-
dimensional space, specified by [Ta = 1.0, φ = 0.64] and
[Ta = 0.01, φ = 0.58]. As a shortcut, we refer to these two
lines as two “state points,” in spite of the fact that the full
specification of the state point requires also τp. When the
persistence time goes to zero at a fixed active temperature,
our system becomes equivalent to a Brownian system at
temperature T = Ta. We chose the two state points in such
a way that we could observe qualitatively different changes
of the single-particle dynamics with increasing persistence
time [21].

III. EQUAL-TIME VELOCITY CORRELATIONS

Intuitively, by increasing persistence time we displace an
AOUP system farther from thermal equilibrium. To give some
quantitative support to this statement, we investigated equal-
time correlations of the velocities of the active particles. These
correlations are trivial for equilibrium thermal systems. We
note that nontrivial equal-time velocity correlations were ob-
served in an experimental study of active cellular motion [22]
and in a simulational investigation of the dense phase in an

FIG. 1. The wave-vector dependence of the equal-time nonequi-
librium velocity correlation function ω‖(q) normalized by its large
wave-vector limit, ω‖(∞), for (a) Ta = 1.0 and φ = 0.64 and
(b) Ta = 0.01 and φ = 0.76, and different self-propulsion persistence
times. The nontrivial character of the velocity correlations increases
monotonically with increasing persistence time.

active system undergoing mobility-induced phase separation
[11].

In our earlier investigations of glassy dynamics in interact-
ing AOUP systems [21,23,24], we found that the equal-time
velocity correlation function defined below determines the
short-time dynamics of the active particles and also appears
in an approximate mode-coupling-like theory of the long-time
dynamics,

ω‖(q) = 1

Nξ 2
0

〈∣∣∣∣∣
∑

i

q̂ · (fi + Fi )e
−iq·ri

∣∣∣∣∣
2〉

. (3)

Here q̂ = q/|q|, and ξ−1
0 (fi + Fi ) is the instantaneous velocity

of particle i; see Eq. (1).
In Fig. 1 we show that, while velocity correlations as

characterized by ω‖(q) become trivial (featureless) in the limit
of vanishing persistence time of the self-propulsions, they
increase monotonically with the persistence time. We note
that we have already reported on this increase before [21].
The results shown in Fig. 1 pertain to the present system
with interaction potential vanishing smoothly at the cutoff,
and they have been obtained for a significantly larger range
of persistence times.
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FIG. 2. The persistence time dependence of the mean-square
displacement 〈δr2(t )〉 for (a) Ta = 1.0 and φ = 0.64 and (b) Ta =
0.01 and φ = 0.76. The insets show the persistence time dependence
of the self-diffusion coefficient at each state point. With increasing
persistence time, the steady-state dynamics of the system studied
at Ta = 1.0 slows down monotonically. However, with increasing
persistence time in the system studied at Ta = 0.01, the steady-state
dynamics initially speeds up and then begins to slow down for the
largest persistence times studied.

IV. EFFECTIVE TEMPERATURE BASED
ON THE EINSTEIN RELATION

The validity/violation of fluctuation-dissipation relations
is a sensitive signature for a system to be in/out of equilibrium
[25]. To further verify that a system of interacting AOUPs
is progressively displaced away from equilibrium with in-
creasing persistence time, we test the validity of the simplest
fluctuation-dissipation relation between the self-diffusion and
mobility coefficients. We compare the effective tempera-
ture defined as the ratio of these coefficients to the active
temperature.

In Fig. 2 we show the persistence time depen-
dence of the mean-square displacement, 〈δr2(t )〉 =
N−1〈∑i [ri(t ) − ri(0)]2〉, and of the self-diffusion coefficient,
D = limt→∞ 〈δr2(t )〉/(6t ). At both state points, we observe
that D is initially almost persistence time-independent
(there is some slight nonmonotonic dependence of D on
τp, analogous to that reported earlier [23]). Then D starts
to decrease rapidly with τp for the system at Ta = 1.0. In
contrast, for the system at Ta = 0.01, D starts to increase
with increasing τp. This behavior was previously observed in

a similar system [21]. However, with increasing persistence
time further than in this earlier study, the self-diffusion
coefficient of the system at Ta = 0.01 goes through a
maximum and starts decreasing.

We define the time-dependent mobility function as in
Ref. [26]: At t = 0, a weak constant force λe is applied to
one (tagged, t) particle. Here λ measures the magnitude of
the force and e is a unit vector. Under the influence of this
force, the average position of the tagged particle will change
systematically,

〈rt (t ) − rt (0)〉 = λχ (t )e + o(λ), (4)

where χ (t ) is the time-dependent mobility. We define the
mobility coefficient through the long-time limit of the time-
dependent mobility function, μ = limt→∞ χ (t )/t . We note
that for an equilibrium system, the Einstein relation holds and
〈δr2(t )〉/6 = T χ (t ), and D = T μ, where T is the system’s
temperature.

To calculate the time-dependent mobility of our active
matter system, we used the procedure proposed in Ref. [26],
which allows one to evaluate a linear-response function of
an AOUP system using trajectories generated without any
external force. We note that, in general, longer trajectories are
needed to accurately evaluate the mobility function χ (t ) than
the mean-square displacement 〈δr2(t )〉.

In Fig. 3 we show the persistence time dependence of
the time-dependent mobility function and of the mobility
coefficient at both state points. Comparing the main panels
of Figs. 2 and 3, we see that the time dependence of 〈δr2(t )〉
and χ (t ) at short times is qualitatively different. At long times,
however, both functions grow linearly with time. Comparing
the insets in Figs. 2 and 3, we see that, although the persistence
time dependence of D and μ is qualitatively similar, there are
significant quantitative differences.

We recall that in the limit of vanishing persistence time,
our system becomes equivalent to a Brownian system at
temperature T = Ta. Thus, we expect that in the τp → 0
limit the ratio D/μ should be approaching Ta. For longer
persistence times, we define an effective temperature based
on the Einstein relation as

T E
eff = D/μ. (5)

The difference between the active temperature Ta and the
effective temperature T E

eff based on the Einstein relation quan-
tifies the departure of our active matter system from ther-
mal equilibrium. We note, however, that in the small den-
sity (single-particle) limit, T E

eff = Ta for all persistence times.
Thus, the ratio T E

eff/Ta is not a good indicator of the departure
from equilibrium of a free AOUP.

In Fig. 4 we show the persistence time dependence of the
ratio of the effective temperature T E

eff based on the Einstein
relation and the active temperature Ta. We observe that for
sufficiently short persistence times T E

eff/Ta is constant and
equal to 1 (within error bars). With increasing persistence time
this ratio starts decreasing monotonically [27]. This behavior
agrees with physical expectations and a small τp expansion
[7]. For short persistence times, the system is in an effective
equilibrium state that can be described in terms of the active
temperature, but with increasing persistence time the system
is progressively displaced away from equilibrium [29].
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FIG. 3. The persistence time dependence of the time-dependent
mobility function, χ (t ), for (a) Ta = 1.0 and φ = 0.64 and (b) Ta =
0.01 and φ = 0.76. The insets show the persistence time dependence
of the mobility coefficient at each state point. With increasing per-
sistence time, the mobility of the system studied at Ta = 1.0 slows
down monotonically. In contrast, with increasing persistence time in
the system studied at Ta = 0.01, the mobility initially speeds up and
then begins to slow down for the largest persistence times studied.

The results shown in Fig. 4 significantly extend the ones
reported in Ref. [26]: Here we show that the monotonic
dependence of T E

eff/Ta on the persistence time is observed even
though the self-diffusion and mobility coefficients exhibit a
nonmonotonic dependence on τp. In contrast, in Ref. [26]
we only examined a limited range of persistence times for
which the self-diffusion and mobility coefficients were vary-
ing monotonically with τp (for a slightly different system from
the one investigated there).

We note that the dependence of the ratio T E
eff/Ta on the

persistence time is opposite the dependence on the shear
rate of the ratio of the same effective temperature and the
temperature T for a sheared Brownian system. In the latter
case, the ratio T E

eff/T increases monotonically [30,31] with
increasing shear rate, i.e., with increasing departure from
equilibrium.

V. ENTROPY PRODUCTION RATE

Fodor et al. [7] started from a definition of the en-
tropy production in terms of a ratio of the probabilities of
a position space trajectory and its time-reversed version,
and they derived the following expression for the entropy

FIG. 4. The persistence time dependence of the ratio of the effec-
tive and active temperatures, T E

eff/Ta (open circles), and of the entropy
production σ as defined by Fodor et al. [7] (filled squares). The ratio
T E

eff/Ta decreases monotonically with increasing persistence time,
whereas σ exhibits a nonmonotonic dependence on the persistence
time.

production rate:

σ = τ 2
p

2Ta

〈(∑
i

ṙi · ∂ri

)3 ∑
k>l

V (rkl )

〉
. (6)

We note that this expression involves third derivatives of
the potential energy, and in order to avoid any problems
associated with singular contributions we used an interparticle
potential whose first three derivatives are continuous.

We evaluated the persistence time dependence of the en-
tropy production rate given by expression (6) for both state
points. The results shown in Fig. 4 do not follow our physical
expectation. The quantity given by expression (6) has a non-
monotonic dependence on the persistence time, and moreover,
this dependence is qualitatively different for the two active
temperatures Ta.

For both Ta, at small persistence times σ increases with
increasing persistence time, as predicted in Ref. [7]. At Ta =
1.0, at the persistence time at which the ratio T E

eff/Ta is about
0.8, σ exhibits a maximum and then starts to decrease for
longer persistence times. At Ta = 0.01, we observe initially a
very similar persistence time dependence, with the maximum
occurring for the persistence time at which the ratio T E

eff/Ta is

022607-4



ACTIVE MATTER: QUANTIFYING THE DEPARTURE FROM … PHYSICAL REVIEW E 102, 022607 (2020)

FIG. 5. The persistence time dependence of the entropy produc-
tion rate normalized by the self-diffusion coefficient, σ/D.

about 0.9. However, in this case for longer persistence times σ

exhibits a local minimum and then it starts to increase again.
We note that the range of persistence times investigated at
Ta = 1.0 is smaller than that investigated at Ta = 0.01. The
reason is that at Ta = 1.0 at persistence times longer than
τp = 10 very slow dynamics prevented us from reaching a
stationary state.

We note that the relation between the location of the
maximum of the entropy production as a function of the
persistence time and the value of the ratio T E

eff/Ta is not
necessarily universal and deserves further study.

Finally, one may observe that the physically important
quantity is the amount of entropy produced during the time
it takes the system to forget its given state. In other words, the
entropy production rate should perhaps be normalized by a
characteristic relaxation time of the system τrel, i.e., instead
of σ one should examine στrel. We used the characteristic
diffusion time σ 2

BB/D, where σBB is the B particle size, as a
measure of the relaxation time, and we examined σσ 2

BB/D as
a function of the persistence time. In Fig. 5 we show that σ/D
(recall that σBB = 1) exhibits a nonmonotonic dependence
on τp at Ta = 0.01 but increases monotonically with τp at
Ta = 1.0.

VI. DISCUSSION

Our physical expectation is that increasing persistence
time displaces an AOUP system progressively away from

equilibrium. This is supported by the monotonically increas-
ing nontrivial equal-time correlations between AOUP veloc-
ities and the monotonically decreasing ratio of the effective
temperature based on the Einstein relation and the active
temperature. Surprisingly, the dependence of the entropy
production rate calculated according to Fodor et al. on the
persistence time does not agree with this expectation. This
suggests that expression (6) is not a good quantitative measure
of the departure from thermal equilibrium.

We recall that expression (6) also predicts vanishing en-
tropy production for a single freely moving AOUP and
for a single AOUP in a harmonic potential. Both findings
are often claimed to be counterintuitive. Some of the al-
ternative approaches to the entropy production [16–19] find
nonvanishing entropy production for a freely moving AOUP
and/or for an AOUP in a harmonic potential. It would be
interesting to check what these approaches predict for systems
of interacting AOUPs.

We note that approaches of Refs. [17–19] either implicitly
or explicitly consider trajectories in the space of positions and
self-propulsions. Thus, at least in spirit, they are similar to
the approach of Pietzonka and Seifert [20], who argue that, in
order to properly evaluate the entropy production, one has to
consider the physicochemical processes giving rise to the self-
propulsion. It would be very interesting to investigate whether
the minimal approach adopted in Refs. [17–19] is sufficient to
define and evaluate the entropy production or whether one has
to follow the full treatment of Ref. [20].

Finally, we admit that one can adopt an alternative view of
the results presented here by acknowledging that the expres-
sion derived by Fodor et al. really measures the breakdown of
the time-reversal symmetry. Then, our results imply that in-
creasing departure from thermal equilibrium, quantified by the
nontrivial character of the equal-time velocity correlations or
of the effective temperature, is not necessarily monotonically
related to the degree of the breakdown of the time-reversal
symmetry. A deeper investigation of this disconnect is left for
future work.
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