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Freezing and reentrant melting of hard disks in a one-dimensional potential:
Predictions based on a pressure-balance equation
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We investigate theoretically the freezing behavior of a two-dimensional system of hard disks on a one-
dimensional external potential (typically called laser-induced freezing). As shown by earlier theoretical and
numerical studies, one observes freezing of the modulated liquid upon increase of the substrate potential
amplitude, and reentrant melting back into the modulated liquid when the substrate potential amplitude is
increased even further. The purpose of our present work is to calculate the freezing and reentrant melting phase
diagram based on information from the bulk system. To this end, we employ an integrated pressure-balance
equation derived from density functional theory [Phys. Rev. E 101, 012609 (2020)]. Furthermore, we define
a measure to quantify the influence of registration effects that qualitatively explain reentrant melting. Despite
severe approximations, the calculated phase diagram shows good agreement with the known phase diagram
obtained by Monte Carlo simulations.
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I. INTRODUCTION

Hard-body interactions represent the simplest form of in-
teraction between particles and are frequently used as ref-
erence systems in the statistical-mechanical description of
classical many-body systems [1]. The earliest work on the
freezing of hard bodies dates back to the seminal computer
simulation study of Alder and Wainwright [2] for hard spheres
in three dimensions. They established the concept of an
(entropy-driven) freezing transition of particles that purely
interact via repulsion [1]. Whereas the phase diagrams of
homogeneous (bulk) systems of hard spheres and hard disks
are well understood in three dimensions [1,3,4] and two
dimensions [5–7], the theoretical prediction of the hard-body
phase behavior in complex geometries or inhomogeneous
external potentials remains difficult.

In this work, we are interested in hard spheres confined
to two dimensions (hard disks) and subjected to a one-
dimensional (1D) periodic substrate potential, here taken as
a sine substrate. The phenomenon of freezing of a two-
dimensional (2D) colloidal suspension on a 1D periodic sub-
strate is commonly denoted as laser-induced freezing (LIF)
and was first discovered experimentally by Chowdhury, Ack-
erson, and Clark [8] in a 2D monolayer of charged spheri-
cal particles subjected to a commensurate 1D periodic light
field. This observation led to a series of studies by theory
[9–18], computer simulations [11,15,17–27], and experiments
[28–32]. From the theoretical side, a major step towards an
understanding of the full LIF scenario was provided by the
work of Frey et al. [12,13]. They extended the concept of
dislocation-mediated melting in two dimensions described
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by KTHNY theory [33–36] to the presence of 1D periodic
substrates. Extensive Monte Carlo (MC) simulation studies
[23–25,27] later confirmed their results.

However, whereas the physical concepts underlying LIF
have been understood for more than two decades, it remains
difficult to make quantitative theoretical predictions for LIF in
different model systems (i.e., different interaction potentials).
The LIF phase diagram of hard disks has been obtained
through extensive MC simulation studies [23] and was studied
theoretically [15,17] based on renormalization group flow
equations, with input from constrained MC simulations. The
simplest (and to our knowledge the only) purely theoretical
prediction for the phase diagram is based on density functional
theory (DFT) [14]. However, the resulting diagram differs
qualitatively (and, thus, also quantitatively) from the one
obtained from MC simulations [23] due to severe approxi-
mations for the excess free energy. Here we propose another
strategy.

In previous work, we developed a framework based on a
pressure-balance equation [37] to theoretically predict the LIF
of ultrasoft particles on two different substrate types (cosine
and Gaussian). The results agreed well with numerical calcu-
lations based on DFT [38,39]. The core idea of our approach
is that the modulation by the 1D periodic substrate leads to an
increase of a (suitably defined) effective average density close
to the potential minima. This region can be characterized by
a width Lc which is smaller than the substrate periodicity Ls.
The developed framework [37] allows one to calculate Lc as a
function of the system parameters (such as the average system
density ρ̄) and as a function of the substrate parameters (such
as the potential strength V0). Typically, Lc decreases with
increasing V0 at fixed overall density. The resulting increase of
effective average density ρ̄eff within this region of confinement
then leads to LIF. One goal of our present work is to utilize this
strategy [37] to predict LIF in a hard-disk system.
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FIG. 1. (a) The phase diagram as obtained in Monte Carlo simulations in Ref. [23], where V ∗
0 = βV0 and ρ∗ = ρ̄ σ 2 in our nomenclature.

Symbols denotes the phase boundary between the locked floating solid phase (above) and the modulated liquid (below the symbols).
(b) Theoretical prediction for the onset of LIF and for reentrant melting (ML). The calculated curves have been cut off at the intersection
point, since reentrant melting should occur only after prior freezing.

Besides freezing, one observes for various types of systems
[16] exposed to 1D periodic substrates a reentrant melting.
Here the liquid first freezes at some potential strength V0

and then melts again for sufficiently large values of V0. The
reentrant melting was attributed by Wei et al. [29] to a
reduced “registration” of particles in neighboring potential
minima, caused by a decrease of fluctuations perpendicular
to the standing-wave pattern. This provides an intuitive un-
derstanding of the reentrant melting phenomenon. However,
it is unclear to which extent the registration has to be reduced
to induce reentrant melting. In the present work, we therefore
define a measure to quantify the registration effect introduced
in Ref. [29]. Extending our framework by this registration
measure (which is based on Lc), we can make a prediction
for reentrant melting. Altogether, our work provides a recipe
how to calculate the 2D phase diagram of hard disks on a 1D
periodic substrate based on information from the bulk system
and known limiting behaviors.

This article is organized as follows: In Sec. II we intro-
duce our model and summarize key steps of our theoretical
prediction [37]. By this, we make predictions for the onset of
LIF and reentrant melting. In Sec. III we discuss our calcu-
lated phase diagram and compare it with the phase diagram
obtained by MC simulations [23]. We summarize our findings
and outline directions for future research in Sec. IV.

II. CALCULATION OF THE PHASE DIAGRAM

In this work, we calculate the phase diagram for hard disks
in two dimensions (located along the x-y plane) with diameter
σ and interaction potential V (r),

V (r) =
{∞ r � σ

0 r > σ
, (1)

on an external sine potential along the x direction, that is,

Vext(x) = V0 sin

(
2πx

Ls

)
, (2)

with periodicity Ls and potential amplitude V0 (thus with po-
tential difference 2V0). The substrate periodicity Ls is given in

units of the lattice constant a of the solid, i.e., a = (2/
√

3ρ̄ )
1
2

with average system density ρ̄ = N/A, number of particles N ,
and system area A. Specifically, we set Ls/a = √

3/2. This
choice of the substrate potential and periodicity is in agree-
ment with Ref. [23], where the phase diagram was calculated
by MC simulations. In particular, the choice for Ls ensures
that the 1D periodic substrate is commensurate [40] with the
hexagonal solid.

The phase diagram obtained in Ref. [23] is shown in
Fig. 1(a). Below the phase boundary, the system displays a
so-called modulated liquid phase. Here the density profile
is modulated by the external potential [see Eq. (2)] along
the x direction but is constant along the y direction. Thus,
ρ(x, y) = ρ(x). For the so-called locked floating solid which
appears above the phase boundary in Fig. 1(a), the density
profile ρ(x, y) is truly 2D; it reflects the formation of a
hexagonal solid that is commensurate with the substrate. As
indicated by the phase boundary in Fig. 1(a), freezing on a
1D periodic substrate shows two prominent features. First,
upon increasing V0 from zero at fixed density ρ∗ = ρ̄σ 2, one
observes freezing below the bulk freezing density (ρ̄ f σ

2 =
0.93 [7]). Second, there is a range of densities ρ∗ where laser-
induced freezing is followed by reentrant melting upon further
increase of the potential amplitude V0. The goal of our work
is to reproduce these two phenomena based on a theoretical
framework [37] which involves information from the bulk
system.

A. Details of the theoretical framework

In our previous work on LIF of ultrasoft particles [37],
which involved numerical DFT calculations, we found ev-
idence that LIF can be seen as a density-driven transition
induced by the increase of the (suitably defined) effective av-
erage density, ρ̄eff, in the vicinity of the potential minima. We
then assumed that there is a “critical” threshold ρ̄eff,c which,
upon exceeding, leads to spontaneous symmetry breaking,
that is, a change of the density profile from ρ(x) to ρ(x, y).

The actual calculations are based on an ansatz for the
density profile around the potential minimum, say, x = 0. [For
notational convenience, we assume a symmetric and appropri-
ately shifted external potential such that Vext(x) = Vext(−x),
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Vext(0) = 0.] The ansatz has the form of a rectangular function
with width Lc and height ρ̄eff, namely,

ρ(x) = ρ̄eff rect

(
x

Lc

)
=

{
ρ̄eff if |x| � Lc

2
0 else

, (3a)

where

ρ̄eff = ρ̄
Ls

Lc
. (3b)

The parameters Lc and ρ̄eff are related by the conservation
of particles [see Eq. (3b)]. The idea behind the ansatz (3) is
that the majority of particles are effectively located within
a “confining” region (around the substrate minima) which
is smaller than the substrate periodicity itself. We then de-
veloped a framework to calculate such a “confining length”
Lc and consequently the effective average density ρ̄eff [see
Eq. (3)] as a function of the system parameters, such as the
average system density ρ̄, and of the external potential, par-
ticularly the potential amplitude V0. To do so, we started from
an integrated version of the (exact) stress balance equation
and then performed approximations involving the rectangular
density profile (3a) and a corresponding rectangular pressure
profile (for a summary, see Appendix A). This leads us to the
equation

2 p(ρ̄eff ) + Ĩτ (ρ̄eff, Lc) = 2 ρ̄effVext

(
Lc

2

)
(4)

for an effective bulk liquid with density ρ̄eff. In Eq. (4),
p(ρ̄eff ) is the bulk pressure at density ρ̄eff, and Ĩτ (ρ̄eff, Lc)
is a correction term due to inhomogeneity, both of which
arise when decomposing [41] the stress tensor σ according
to σ = −p 1 + τ. We employed a prescribed threshold value
for ρ̄eff taken from the bulk system. We remark that the
derivation of Eq. (4) does not require an explicit choice
of the particle interaction or correlation functions. Both are
encapsulated within p and Ĩτ , which allows us to transfer the
previously developed LIF prediction to other systems, as we
will demonstrate in this work.

Our starting point will be again Eq. (4), which we rewrite
in the form

Z (ρ̄eff ) + �̃(ρ̄eff, Lc) = βVext

(
Lc

2

)
, (5)

where we identified the compressibility factor Z =
β p(ρ̄eff )/ρ̄eff, and we defined

�̃ ≡ β Ĩτ (ρ̄eff, Lc)/(2ρ̄eff ). (6)

We note that ρ̄eff depends on the system density ρ̄ and Lc

through Eq. (3b); therefore �̃ = �̃(ρ̄eff(ρ̄, Lc), Lc). Further,
the compressibility factor Z corresponds to a bulk system
of density ρ̄eff. The latter is usually known for the system
of interest, as the (homogeneous) bulk system is typically
studied before proceeding to inhomogeneous systems. The
quantity �̃ [see Eq. (6)] is generally unknown. Here we will
make approximations that allow us to calculate the LIF phase
diagram solely from bulk quantities.

B. Prediction for the onset of LIF

We now propose a strategy how to use existing numerical
or experimental data as an input for the quantities appearing in

Eq. (5). We specialize on a hard-disk system. The equation of
state for hard disks was determined experimentally in Ref. [7],
yielding the compressibility factor

Z = β p

ρ̄
=

⎧⎨
⎩

1/(1 − φ)2, 0 � φ � φlc

1/(1 − φlc )2 = const, φlc � φ � φhc

a/(φcp − φ), φhc � φ � φcp

, (7)

where φ = ρ̄σ 2 π/4 denotes the packing fraction, φlc = 0.68
and φhc = 0.70 are the liquid and hexatic phase coexistence
packing fractions, respectively, φcp = π/

√
12 is the hard-

disk close packing fraction and a = (φcp − φhc)/(1 − φlc )2 is
simply a number. In Eq. (7), the expression for the range
φ � φlc stems from scaled particle theory for the liquid
phase [42,43]. The high packing fraction branch φ � φhc is
a semiempirical fit [44] of experimental data of Ref. [7]. We
note that the hard-disk solid melts (or in reverse, freezes) via
unbinding of dislocation pairs at the hexatic-solid transition at
φ f = 0.73 according to KTHNY theory [33–36], without any
signatures in the equation of state. The corresponding reduced
density ρ∗

f = ρ̄ f σ
2 = φ f 4/π then follows as ρ∗

f = 0.93. To
summarize, Eq. (7) describes a first-order transition between
the liquid and a hexatic phase, followed by a continuous
transition from the hexatic to the solid phase. The same
sequence and order of transitions has been found in computer
simulations [5,6].

We now turn to the prediction for the onset of LIF. The
remaining task is to construct an approximation for �̃ [see
Eq. (6)] for the hard-disk system. To this end we consider
two limiting cases: (1) the limit of densities close to the
bulk freezing transition (i.e., ρ̄ → ρ̄ f ) and (2) the limit of
vanishing densities (ρ̄ → 0).

(1) We consider a confined system with an average density
ρ̄ somewhat below the bulk freezing density, ρ̄ f . In the limit
ρ̄ → ρ̄ f , the potential amplitude V0 which is required to
induce LIF goes to zero. This is known from the MC phase
diagram [23], and it is also consistent with our expectation: At
bulk density, the system does not “need” a substrate to freeze.
Turning now to Eq. (5), we see that, for a vanishing external
potential, the right side vanishes. This implies that the left side
of Eq. (5) must vanish as well, yielding

lim
ρ̄→ρ̄ f

�̃(ρ̄eff(ρ̄, Lc), Lc) = −Z (ρ̄ f ), (8)

where we explicitly highlighted the dependency of ρ̄eff on the
system density ρ̄ [see Eq. (3b)].

(2) We can extract a further limiting case for �̃ in the
limit of vanishing density, i.e., ρ̄ → 0. Physically, we simply
expect that since there are no particles, the correction term in
the stress tensor due to inhomogeneity vanishes, and thus

lim
ρ̄→0

�̃(ρ̄, Lc) = 0, (9)

with �̃(ρ̄, Lc) being the compact notation for the dependency
�̃(ρ̄eff(ρ̄, Lc), Lc). We note that Eq. (9) is consistent with our
starting point, Eq. (4). For ρ̄ → 0, ρ̄eff vanishes as well, and
so does p(ρ̄eff ). Combing this with the zero at the right side of
Eq. (4), one arrives at Eq. (9).

There remains the question how �̃ depends on ρ̄ in be-
tween the limits considered in Eqs. (8) and (9). One possible
approach is to just interpolate between these two limiting
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behaviors. Here we use a simple ansatz for �̃ which satisfies
both limits, namely,

�̃ = −Z (ρ f )

(
ρ̄

ρ̄ f

)n

. (10)

We stress that there is no a priori justification for the ansatz
(10) for densities 0 < ρ̄ < ρ̄ f . However, the ansatz turns
out to be surprisingly robust. In particular, as shown in Ap-
pendix B, the results are not very sensitive to n. For simplicity,
we therefore set n = 1.

Based on the expressions for Z and �̃ we can now calculate
the onset of LIF as shown in our previous work [37]. The
idea is to prescribe a threshold value ρ̄eff = ρ̄eff,c which the
effective average density has to exceed at the LIF phase
transition. The corresponding confining length then follows
from Eq. (3b) as

Lc = ρ̄

ρ̄eff
Ls. (11)

For the external potential considered in a typical LIF setup, we
can explicitly factor out the potential amplitude V0 such that
Vext(x) = V0Ṽext(x). The required potential amplitude V0 to
enforce the relocation of particles from Ls to Lc (thus causing
an increase from ρ̄ to ρ̄eff) can then be explicitly calculated
from Eq. (5) as

βV0 = Z (ρ̄eff ) + �̃(ρ̄eff, Lc)

Ṽext
( Lc

2

) . (12)

For given ρ̄eff,c, Eq. (12) yields the required potential ampli-
tude βV0 for the onset of LIF. As stated earlier, we assume that
spontaneous symmetry breaking occurs when the effective
average density ρ̄eff in the vicinity of the minima exceeds a
critical value ρ̄eff,c. A reasonable estimate of this critical value
can be taken from the instability (with respect to freezing) of
the corresponding bulk system (without Vext). For the hard-
disk bulk system, the freezing transition occurs at ρ̄ f σ

2 =
0.93 [7], and we take this value as the critical value for the
onset of LIF, i.e., ρ̄eff,c σ 2 = 0.93. The resulting prediction for
the onset of LIF is shown as the red curve in Fig. 1(b). We will
discuss this curve in more detail in Sec. III in combination
with the prediction for reentrant melting (see below).

C. Quantitative registration measure
and reentrant melting prediction

We now turn to the prediction for the reentrant melting
curve. Reentrant melting is indeed a quite subtle effect, whose
origin can be explained as follows [29]. In the locked floating
solid phase, the fluctuations in y direction (i.e., perpendicular
to the substrate) are still quite large. These fluctuations are
important for the mutual effective interaction between par-
ticles in adjacent minima. In particular, they contribute to
the registration effect and are thus a crucial ingredient for
the formation of the ordered phase. Upon a further increase
of V0 (at given density ρ̄), the potential barriers become
larger and larger; leading to a decrease of particle correlations
between adjacent minima and, thus, to a reduction of the
registration effect. In the most extreme case (V0 → ∞), the
2D system is effectively reduced to 1D lines of particles
which are known to have no positional order [45,46]. Due

to the role of fluctuations for reentrant melting, it is not
surprising that this phenomenon is not predicted by mean-
field-like-theories (see a comparison of mean-field-DFT [9]
and MC simulation [20] studies). Within the present approach,
the problem of describing reentrant melting is even more
severe because we are working with a parametrized density
profile [see Eq. (3)] where the density is described by only
two parameters: The density inside the minima, ρ̄eff, and the
confining length Lc measuring the actually accessible width
of a minimum. As shown in our previous work where we
numerically investigated LIF of ultrasoft spheres [37], Lc

decreases with increasing V0. This obviously implies that the
difference Ls − Lc, with Ls being the substrate periodicity,
increases with V0 as well (physically, Ls − Lc corresponds to
the excluded space). Moreover, our calculations in Ref. [37]
showed that when Ls − Lc exceeds a certain fraction of the
lattice constant a, there appears a gradual loss of correlations
between adjacent lines, i.e., a reduction of registration. This
observation motivates us to consider the gap parameter

r = Ls − Lc

a
(13)

as an indirect measure for the importance of perpendicular
correlations. We further assume that there is a threshold value
rc, beyond which the correlations are not sufficient anymore
to support the registration. Using Eq. (13), this translates into
a threshold value for the confining length Lc, that is,

L(r)
c

a
= Ls

a
− rc. (14)

Choosing rc appropriately and inserting the resulting value for
L(r)

c into Eq. (12) finally allows us to calculate the potential
amplitude V0, at which, in our framework, reentrant melting
sets in. Clearly, the remaining task is to choose the value
for rc. In Fig. 2 we present results for the reentrant melting
curve for different values of rc. It is seen that variation of
rc yields a monotonous shift of the entire curve, whereas
the functional dependence on V0 remains the same (this is

FIG. 2. Reentrant melting (ML) curves for different values of the
critical value rc of the registration parameter r [see Eq. (13)]. Also
shown is our prediction for the onset of freezing [dashed line; see also
Fig. 1(b)]. Note that all melting curves are cut off at the intersection
point, since reentrant melting should occur only after prior freezing.
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also true for other choices of the exponent n involved in the
calculation of �̃; see Appendix B). In particular, any choice
of rc leads to a saturation of the density values related to
melting when V0 becomes large. In view of this behavior, we
choose rc such that the limiting density ρ̄∞ coincides with the
corresponding value from MC simulations [17,23], ρ̄∞σ 2 =
0.9. This calculation can be done numerically (by iteration).
Alternatively, one can estimate rc directly from Eq. (12). To
this end we note that if V0 → ∞, i.e., if the left side of Eq. (12)
diverges, the right side must diverge as well. This indeed
happens when the density reaches its closed-packed limit,
since then the compressibility factor diverges [see Eq. (7)].
Using Eq. (3b) with ρ̄ = ρ̄∞ and ρ̄eff = ρ̄cp, and Lc = L(r)

c
given by Eq. (14), a simple calculation yields rc ≈ 0.19. We
henceforth take this value to calculate the reentrant melting
curve [see blue curve in the phase diagram in Fig. 1(b)].

III. DISCUSSION OF THE PHASE DIAGRAM

The full phase diagram consists of predictions for LIF and
reentrant melting as described in Secs. II B and II C. We now
compare our calculated phase diagram [see Fig. 1(b)] with
the phase diagram from the MC simulation study by Strepp
et al. [23] [see Fig. 1(a)]. Overall, we find good agreement, at
least from a qualitative point of view. Indeed, the calculated
diagram accounts for important characteristics of the MC
diagram: Regarding LIF, the associated potential amplitude V0

goes to zero as the density ρ̄ approaches the bulk freezing den-
sity. Upon decreasing ρ̄, V0 increases. Further, the calculated
reentrant melting curve [see blue curve in Fig. 1(b)] displays
a monotonous increase of the associated potential strengths
with the density and reproduces the saturation observed in
MC simulation in the limit V0 → ∞. The combination of the
calculated LIF and reentrant ML curves yields a minimum of
the transition density at roughly the same potential amplitude,
βV0 ≈ 1–2, as found in MC simulations [23]. However, we
remark that the actual value of this minimum density is
underestimated in our approach. Specifically, in the MC sim-
ulation [23] the minimum was found at ρ̄σ 2 ≈ 0.87 (βV0 ≈
1–2), while in our predicted phase diagram, the minimum
occurs at ρ̄σ 2 = 0.73 (βV0 = 1.4). Our calculated minimum
transition density thus underestimates the value from MC
simulations by roughly 16%. This comparison shows that
quantitative deviations in estimating ρ̄ for given V0 seem to
be of the order of 16% or smaller (since both limits V0 → 0
and V0 → ∞ agree exactly and phase boundary curves are
monotonous).

Finally, it is worth commenting on the role of the equation
of state (7), which we have used as an input in our framework.
Indeed, (1) we have also tried alternative equations of state
such as replacing the expression for the liquid branch [see
range 0 � φ � φlc in Eq. (7)] by the Henderson equation
of state [47] with the same treatment for the high packing
fraction branch aH/(φcp − φ) (where aH is a constant that en-
sures the Maxwell construction between both branches at φlc

and φhc, respectively). (2) We also tried the Luding equation
of state [48]. However, in both cases we found only minor
quantitative differences in our calculated LIF phase diagram.
This suggests that the details of the underlying equation of
state do not play a major role.

IV. CONCLUSION

In the present paper, we employed a previously developed
approach based on a pressure balance equation [37] to cal-
culate the onset of freezing of a 2D system of hard disks
subject to a 1D periodic substrate potential. Thereby, one
main goal was to utilize the approach such that it relies on
bulk quantities, particularly, the bulk compressibility factor Z
and the bulk freezing density ρ̄ f . Specifically, to approximate
the contribution to the pressure tensor due to inhomogeneity,
we considered two limiting cases (i.e., ρ̄ → ρ̄ f and ρ̄ → 0)
and connected them by a simple interpolation. Finding further
ways to exploit such limiting cases also for other types of in-
teracting systems might be a potentially fruitful direction that
is worth investigating. We here considered a hard-disk system
since hard-body interactions are often used as a reference for
interacting many-body systems [1] and are thus particularly
relevant. However, our hope is that the approach could also
be applied to other systems, where the bulk behavior is well
understood.

Beyond freezing, we were able to make a prediction for
the reentrant melting that arises when increasing V0 to values
where registration between particles in neighboring minima
is hindered [29], and the system dimensionality is effectively
reduced to 1D channels. To this end, we defined a registration
parameter r [see Eq. (13)] and then claimed a threshold
value rc to arrive at a prediction for reentrant melting. In
particular, we used the value rc = 0.19, based on existing
MC simulations [17,23] in the limit of an infinite potential
amplitude V0 → ∞. Knowing this limiting behavior allows
one to predict reentrant melting at finite values of V0 < ∞.

Combining the predictions for (laser-induced) freezing and
reentrant melting we obtained a phase diagram [see Fig. 1(b)],
which shows unexpectedly good agreement with the phase
diagram obtained by MC simulations [23] [see Fig. 1(a)]. In
view of the rather strong (yet reasonable) approximations,
thereby enabling a calculation based on bulk quantities and
known limiting behaviors, we would not expect exact quan-
titative agreement between the calculated phase diagram and
the one obtained in Ref. [23]. It is indeed surprising that the
quantitative deviations in estimating ρ̄ for given V0 seem to be
of the order of 16% or smaller.

Clearly, our present approach crucially foots on the ex-
ploitation of limiting cases where properties of the inhomo-
geneous system approach those of the homogeneous system.
While this strategy seems fruitful in the present case, it is
clearly important to perform more investigations for other
types of interacting systems. Also it seems worth investigating
if the interpolation between those limiting cases is solely a
technical aspect, or if more can be learned about the way the
interpolation should be chosen.

APPENDIX A: BACKGROUND OF EQ. (4)

In this Appendix, we provide some background informa-
tion from density functional theory which eventually leads
to Eq. (4) (for a more detailed discussion, we refer to
Ref. [37]). The starting point is the exact balance equation of
hydrostatics [38],

∇ · σ(r) = ρ(r)∇Vext(r), (A1)
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where σ denotes the (second-order) stress tensor, which is the
negative of the usual pressure tensor [49]. Physically, Eq. (A1)
states that the stress inside the system balances the force
stemming from the external potential Vext. More formally,
Eq. (A1) shows that the divergence of the stress tensor σ

is a functional of the density profile ρ(r) (see Ref. [37] for
more details). We note that in the limit of a constant or
vanishing external potential [Vext(x) → 0 or ∇Vext → 0], both
sides of Eq. (A1) become zero (no net external forces and zero
divergence of the stress tensor). Given the true density profile
ρ(r) and the true correlations in the system, Eq. (A1) is exact.

However, the true density profile ρ(r) is typically not
known. The approach that we follow (see Ref. [37]) is to con-
sider a spatially integrated version of Eq. (A1). In particular,
we integrate Eq. (A1) over an area A in the x-y plane and
divide the resulting integrals by that area, yielding

1

A

∫
dA sgn(x) ex ∇ · σ

= (A2)

1

A

∫
dA sgn(x) exρ(r)∇Vext(x),

where ex denotes the unit vector in x direction. The region
A = [− Lx

2 , Lx
2 ] × [− Ly

2 ,
Ly

2 ] is chosen to be centered around
the minimum of the substrate potential Vext(x), say, x = 0 (for
notational convenience). We note that the quantities involved
in Eq. (A1) are antisymmetric with respect to the location of
the minimum, such that a direct average would result to zero.
We thus multiply both sides of Eq. (A1) by sgn(x). We further
multiply with ex, since we are interested in the x component
of the force. Equation (A2) is still exact, providing a starting
point for approximations [37]. Here we use, in particular, a
simple ansatz for the density (and pressure) profile.

Due to this strong approximation several variants are pos-
sible to evaluate Eq. (A2) [37]. We here work with a variant
which worked best for ultrasoft particles [37] and that we
termed variant B.II. In addition to the rectangular ansatz for
the density profile [see Eq. (3)], we also made a rectangular
ansatz for the pressure profile according to

p(x) = p(ρ̄eff ) rect

(
x

Lc

)
, (A3)

where p(ρ̄eff ) is the pressure of a bulk system of constant
density ρ̄eff. Evaluating Eq. (A2) in variant B.II yields Eq. (4).

APPENDIX B: IMPACT OF TECHNICAL PARAMETERS

In this Appendix we discuss different choices for some
technical parameters required for our calculation of the LIF
prediction and reentrant melting prediction (see Secs. II B and
II C). This concerns, in particular, the exponent n appearing
in the interpolation (ρ̄/ρ̄ f )n in Eq. (10), and the parameter rc

appearing in Eq. (14). Results for different choices of these
parameters are shown in Fig. 3. The three parts correspond
to the exponents n = 1, 2, and 3 (we here included the
data for n = 1 already shown in Fig. 2 to enable a better
comparison.) The following observations can be made. Re-
gardless of rc, the minimum (intersection point of curves for

FIG. 3. Predictions of the phase diagram for different exponents
n of the interpolation for �̃ [see Eq. (10)] and for different values
of the critical value rc of the registration parameter r [see Eq. (13)].
Parts (a)–(c) are for the exponents n = 1, 2, 3, where the results for
n = 1 are identical to those in Fig. 2. (Note that all curves are cut off
at the intersection point, since reentrant melting should only occur
after prior freezing.)

LIF prediction and reentrant melting prediction) is shifted to
larger values of βV0 for larger n. Further, we see that the
influence of the exponent n becomes stronger for increasing
distance of ρ̄ values from the bulk freezing density ρ̄ f .
This is somewhat expected because our goal was to make a
prediction based on bulk information. Indeed, for densities
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close to the bulk freezing density, the value of the exponent
n seems to have a negligible influence. Altogether, the general
topology of the phase diagram seems quite insensitive to the
exponent.

In Fig. 3 we also show reentrant melting predictions for
different values of the critical value rc of the registration
parameter r [see Eq. (13)]. We observe that increasing rc shifts
the reentrant melting curve downwards.
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