
PHYSICAL REVIEW E 102, 022604 (2020)

Traveling bands, clouds, and vortices of chiral active matter
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We consider stochastic dynamics of self-propelled particles with nonlocal normalized alignment interactions
subject to phase lag. The role of the lag is to indirectly generate chirality into particle motion. To understand
large-scale behavior, we derive a continuum description of an active Brownian particle flow with macroscopic
scaling in the form of a partial differential equation for a one-particle probability density function. Due to
indirect chirality, we find a spatially homogeneous nonstationary analytic solution for this class of equations.
Our development of kinetic and hydrodynamic theories towards such a solution reveals the existence of a wide
variety of spatially nonhomogeneous patterns reminiscent of traveling bands, clouds, and vortical structures of
linear active matter. Our model may thereby serve as the basis for understanding the nature of chiral active media
and designing multiagent swarms with designated behavior.
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I. INTRODUCTION

Synchronized motion of collectives of agents is a
widespread phenomenon that can be encountered both in
nature and in artificially manufactured systems. The most
remarkable examples include bacterial swarming, flocking of
birds, schooling of fish, human crowds, and robotic swarms
[1]. It is remarkable that all these systems can exhibit similar
synchronized behavior despite the inherent diversity of the
constituent agents. In order to understand what defines such
behavior, we study minimal models of collective motion. Such
models often describe systems that are far from equilibrium
and are referred to as active matter. It has become a standard
approach to analyze such systems with the Vicsek model
(VM) [2] in discrete time or its time continuous counterpart
often referred to as an active Brownian particle (ABP) model
[3]. Models of this type have been extensively analyzed and
a number of spatially nonhomogeneous structures like large-
scale traveling bands or irregular high-density clouds have
been reported [4–9].

ABP models usually describe the motion of linear swim-
mers. This implies that particles prefer to move in a straight-
forward way rather than perform circular motion. Due to the
lack of possibility for a particle to deliberately undertake
circular motion in such models, there has recently been an
increase of interest in a new class of models now known as
chiral active matter [10–20]. The most prominent examples of
such motion are bacterial swarming close to boundaries of a
substrate [21,22], irregular vortex structures in dense suspen-
sions of swimming bacteria [23], swarming of magnetotactic
bacteria in a rotating magnetic field [24,25], swimming of
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sperm cells [26,27], and shimmering behavior of giant hon-
eybees against predatory wasps [28].

Despite rich diversity of patterns in linear swimmer mod-
els, their chiral counterparts have not yet been shown to
possess the same variety of nonequilibrium dynamics. In-
spired by results on the Kuramoto-Sakaguchi model [29–32]
for networks of phase oscillators, which we might regard as
stationary particles, we generalized it to a self-propelled par-
ticle model and reported the existence of chimeric structures,
i.e., the coexistence of synchronized and chaotic interacting
particle groups even for a zero noise level [33]. However, we
believe that as an ABP model, it might exhibit a much wider
class of nonequilibrium behavior.

This paper investigates the continuum limit of a minimal
ABP model with alignment interactions only. Its key com-
ponents are nonlocality of interactions, alignment subject to
a homogeneous phase lag, and stochasticity of the particle’s
dynamics. The presence of the phase lag induces particle
rotation. We consider its inclusion as an alternative to intro-
ducing chirality explicitly through a rotational frequency for
each particle [10,13]. In particular, for the latter models where
frequencies are heterogeneous [12,14], rotational symmetry
is already broken to start with, whereas our model exhibits
spontaneous symmetry breaking. We analyze our ABP model
by deriving its kinetic and hydrodynamic descriptions and
performing linear stability analysis of several spatially ho-
mogeneous solutions. As a result, we additionally find the
existence of a large variety of spatially nonhomogeneous
regimes, the most prominent of which are traveling bands of
both high- and low-density, dense clouds, and vortices, as well
as multiheaded localized self-propelled chimera states. To the
best of our knowledge, most of these patterns have not yet
been seen in chiral active particle systems. Note that rotating
flocks in Ref. [13] are internally homogeneous whereas our
dense clouds are not. Moreover, the vortices reported here
are stable, they do not disintegrate after several rotations as
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in Ref. [11], and particles may join and leave them. We
also remark that the phenomenon in Ref. [12] is qualitatively
similar to our momentum wave solution but relies on a more
complex model.

II. PARTICLE MODEL

Let U := R/(LZ) and T := R/(2πZ) be one-
dimensional spaces with periodic boundaries extending
from [0, L] and [0, 2π ], respectively. We consider a system of
N particles moving in a two-dimensional space U2 of fixed
size L with periodic boundaries such that the coordinates of
a particle i = 1, . . . , N are given by ri = (xi, yi ) ∈ U2. The
speed of each particle is assumed to be constant v0 ∈ R+ and
its velocity is determined by its directional phase ϕi ∈ T .
Particles interact with each other within a radius �. Therefore,
the set of all neighbors for a particle i is defined as

Bi
� := { j | j ∈ {1, . . . , N}\i, (xi − x j )

2 + (yi − y j )
2 � �2}.

Particles evolve according to the following system of coupled
stochastic differential equations (SDEs):

dxi = v0 cos ϕi dt,

dyi = v0 sin ϕi dt,

dϕi = σ∣∣Bi
�

∣∣ ∑
j∈Bi

�

sin(ϕ j − ϕi − α) dt +√2Dϕ dWi. (1)

According to the third equation, each particle adjusts its
direction of motion to the average one over its nonlocal neigh-
borhood Bi

�, with |Bi
�| denoting the cardinality of the set of

all neighbors. Particle interaction is controlled by a coupling
strength parameter σ ∈ R+ and is additionally generalized by
adding a phase lag parameter α ∈ T , which allows for rotation
upon particle interaction. Note that this implicitly defines
Eq. (1) as a chiral active particle model as long as α �= 0.
Particles are subject to the external source of randomness
with intensity Dϕ ∈ R+, modeled by a family of independent
Wiener processes. Our interest is to investigate the stochastic
dynamics in the large N limit by preserving nonlocality of
particle interactions.

It has been found [33] that Eq. (1) gives rise to such phases
as spatially homogeneous ordered motion (SHOM), which
can be rotational or linear, spatially homogeneous disordered

motion (SHDM), and (self-propelled) localized and nonlo-
calized chimera states. In order to make distinction between
various phases, we consider a complex polar order parameter

R(t )ei�(t ) = 1

N

N∑
j=1

eiϕ j (t ).

Its magnitude R ∈ [0, 1] indicates the extent to which particles
align along the mean direction � ∈ T . If the polar order is
absent, R = 0; if particles become completely synchronized,
R = 1; otherwise, one observes partial synchronization with
respect to particle orientations. In the stochastic setup with
Dϕ > 0, polar order is characterized by some distribution
over particle orientations, and one might say that the system
exhibits partial synchronization since R < 1. If the noise is
removed from the system, polar order is characterized by a
point mass distribution with respect to particle orientations.
By considering sufficiently large phase lag values, it is pos-
sible to observe a phenomenon known as a chimera state.
In such systems, particles decompose into two interacting
populations. The first one is characterized by complete syn-
chronization while the second one remains disordered. Next,
we provide the details on the aforementioned phases.

For α = 0, one might consider Eq. (1) as a time continuous
variation of the Vicsek model [10]. In this case, two solutions
are possible, i.e., one observes the formation of polar order
[cf., Figs. 1(a) and 2(b)], when noise is sufficiently small, or
particles exhibit disordered motion [cf., Fig. 1(c)]. We note
that due to such normalized particle alignment as in Eq. (1),
we have not observed the formation of traveling bands next
to order-disorder transition known for the Vicsek model (see
the discussion in Sec. IV). In the deterministic case Dϕ = 0,
particles orient in the same direction, resulting in complete
synchronization with R = 1 attaining its maximal value.

By introducing phase lag α, the synchronized particle
system starts to rotate with some constant group velocity
v, which conversely depends on α [cf., Fig. 1(b) and a
corresponding movie in Ref. [50,51]]. By increasing α as
well as by increasing Dϕ , particles become less ordered. In
Ref. [33] we referred to such a spatially homogeneous rotating
solution as the nonlocalized chimera state. For |α| � π/2,
particles do not synchronize [cf., Figs. 1(c) and 2(b)]. Note
that the chimera state is a purely deterministic construct, i.e.,

FIG. 1. Examples of homogeneous particle dynamics according to Eq. (1). (a) Linear polar (Vicsek) phase with α = 0. (b) Nonlocalized
chimera state at consecutive time points t1 < t2 < t3 with α = 1.3 (see the Supplemental Material [50,51] for a corresponding movie).
(c) Disordered motion with α = 1.6. Particles are colored according to their instantaneous orientations. White arrows indicate the mean
direction of motion. Other parameters: v0 = 1.0, σ = 1.0, � = 0.01, Dϕ = 0.01, N = 5 × 103.
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FIG. 2. Description of homogeneous particle dynamics. (a) Parti-
cle phase distributions for the dynamics presented in Fig. 1. The main
figure shows the distributions for respective snapshots in Fig. 1(b).
The insets show the respective distributions for particle dynamics
in Figs. 1(a) and 1(c). (b) Evolution of the polar order parameter
magnitude over time starting from random initial conditions for
different values of phase lag α. The curves show its mean value out of
100 experiments, with standard deviation shown as shaded regions.
Model parameters are the same as in Fig. 1.

the separation of particles into synchronized and disordered
populations occurs for sufficiently high values of phase lag in
the absence of noise Dϕ = 0. Therefore, in the deterministic
setup, one differentiates between complete synchronization of
rotating particles (with R = 1) and the nonlocalized chimera
state (with R < 1) where such synchronization coexists with
disordered group of particles. In the stochastic setup, how-
ever, both solutions consist of partially synchronized particles
whose phases follow some skewed unimodal distribution [cf.,
Fig. 2(a)], and we cannot differentiate between them anymore.
In this paper, we investigate the stochastic particle dynamics
only and we will generally refer to such solutions as SHOM.
We would like to mention that for sufficiently large α by
varying the radius of interaction �, one might observe a
spatially nonhomogeneous localized chimera state. In the rest
of the main text, we will not discuss it and refer the interested
reader to Ref. [33] for its detailed description and to Appendix
A for an example of such dynamics.

To reduce the number of independent parameters, we
choose time and space units as 1/σ and L, respectively.
Thus, the model has four control parameters, e.g., the particle
velocity v̂0 = v0/(Lσ ), the radius of interaction �, the phase
lag α, and the rotational diffusion rate relative to the coupling
strength D̂ϕ = Dϕ/σ . We will study a continuum limit of
Eq. (1), where each particle is considered to be a point mass.
In this case, we can find a limit with N → ∞ with the system
size fixed L = const. Therefore, we put L = 1 without loss
of generality. Similar limits for weakly interacting particle
systems with a large radius of interaction are known in kinetic
theory as Vlasov limits [34,35]. Note that a particle density,
usually defined as ρ0 = N/L2, which plays an important role
in the standard VM [2], does not arise here as an independent
parameter due to the probabilistic interpretation of the density
function in this setup (therefore, it is now fixed as ρ0 ≡ 1). It
should be treated as the average number of particles per unit
length in the system of fixed size L × L = 1 [36] divided into√

N × √
N units in two dimensions.

III. CONTINUUM LIMIT

To understand mechanisms leading to spatially nonhomo-
geneous behavior in the large N limit, we derive a continuum
limit [37] of the Langevin dynamics (1) within the framework
of Fokker-Planck equations [38] and look subsequently for
solutions of a resulting partial differential equation (PDE).
The approach we follow here [39] (see Appendix B) provides
us with the hierarchy of evolution equations for n-particle den-
sity functions (DFs) that incorporate interactions of any order.
Admitting a molecular chaos assumption [40], we close the
hierarchy at the first order and obtain a differential equation
for a desired one-particle DF f = f (r, ϕ, t ):

∂t f = −v0e(ϕ) · ∇r f + Dϕ∂ϕϕ f

− ∂ϕ

[
f

|C(r)|
∫

C(r)
sin(ϕ′−ϕ−α) f (r′, ϕ′, t ) dr′ dϕ′

]
,

where r = (x, y) ∈ U2 is a position vector, e(ϕ) =
(cos ϕ, sin ϕ) ∈ S1 ⊂ R2 is a unit velocity vector in
the direction of ϕ ∈ T , ∇r = (∂x, ∂y) denotes a spatial
gradient, and the nonlocal neighborhood domain is
defined as C(r) = {(r′, ϕ′) ∈ U2 × T | ‖r′ − r‖ � �}. The
normalization by the neighborhood mass corresponds to
the respective normalization in the alignment term of the
Langevin dynamics (1), and it reads

|C(r)| =
∫

C(r)
f (r′, ϕ′, t ) dr′ dϕ′.

The continuum limit equation has two spatially homoge-
neous fixed points, i.e., f = f (ϕ, t ). The first one is trivial and
is a uniform probability DF f (ϕ, t ) = 1/(2π ). It corresponds
to disordered motion of a particle system. The second solution
is a von Misés DF,

f (ϕ, t ) = exp[R cos(ϕ − �)/D̂ϕ]

2π I0(R/D̂ϕ )
, (2)

where I0 is the modified Bessel function of the first kind, and
the parameters R and � are redefined as the magnitude and
direction of the polar order parameter according to

R(t )ei�(t ) =
∫
T

eiϕ f (ϕ, t ) dϕ.

The latter solution is valid only for α = 0 and is a solution to
the time continuous VM [10] or the Kuramoto model (KM)
for coupled noisy phase oscillators [41–43]. It corresponds to
polarized motion of particles, where the degree of polarization
is given by R, and � is the direction of collective motion. Note
that in the limit of zero noise D̂ϕ → 0+, one obtains complete
synchronization of a system.

A more interesting regime is the one with nonzero phase
lag, which introduces constant motion of a DF with some
group velocity v ∈ R, the sign of which conversely depends
on α. Introducing a traveling wave ansatz into the PDE and
solving the resulting equation (see Appendix C), we find

f (ϕ, t ) = c0E (ϕ, t )

[
1 + c1

∫ ϕ−vt
0 E−1(ϕ, 0) dϕ∫
T E−1(ϕ, 0) dϕ

]
, (3)

where c0 ∈ R is a normalization constant, c1 =
exp (2πv/D̂ϕ ) − 1 accounts for a periodicity constraint
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FIG. 3. Solution of the system of self-consistent equations (see
Appendix C) comprising a DF as a traveling wave solution (3) and
a complex order parameter defined by that solution. (a) The order
parameter magnitude R and (b) the group velocity v versus the
phase lag α and the noise strength Dϕ . The dark gray line indicates
the order-disorder transition line Dϕ = 1

2 cos α. The critical group
velocity along that line is v = − 1

2 sin α.

f (0, t ) = f (2π, t ), and

E (ϕ, t ) = exp[−vϕ/D̂ϕ + R cos(ϕ − vt + α)/D̂ϕ]

is an auxiliary function. Equation (3) is a continuum limit
representation of a nonlocalized chimera state reported in
Ref. [33]. The solution depends on the order parameter mag-
nitude R, which is in turn defined in terms of this DF. To
be able to use this solution, we must solve the system of
self-consistent equations for f and the complex order param-
eter R(t )ei�(t ) = ∫T eiϕ f (ϕ, t ) dϕ, the solution of which is
presented in Fig. 3. The resulting DF is a 2π -periodic skewed
function [cf., Fig. 4(a)]. By expanding the self-consistent
equations with respect to R around R = 0, we find a line
indicating the onset of orientational order D̂ϕ = 1

2 cos α as
well as a critical group velocity v = − 1

2 sin α from within the
region of existence of Eq. (3). One can check that in the Vicsek
regime α = 0, Eq. (3) simplifies to the von Misés DF (2).
Note that because Eq. (3) is not symmetric, first and second
moments do not characterize it completely. The third moment
allows us to quantify the extent, to which particle motion
deviates from polar order [cf., Fig. 4(b)].

FIG. 4. Examples of a spatially homogeneous traveling wave
solution (3). (a) DFs for the different values of the phase lag
α. (b) The circular skewness of Eq. (3) versus the phase lag
and the noise, quantified by a circular skewness coefficient ŝ =
E[sin 2(ϕ − �)]/(1 − |E[eiϕ]|)3/2 [44]. Crosses indicate the parame-
ter values used to generate the DFs in (a). The dark gray line indicates
the order-disorder transition line, to compare with Fig. 3.

IV. STABILITY ANALYSIS OF THE TRAVELING
WAVE SOLUTION

To reveal the emergence of spatially nonhomogeneous pat-
terns, we perform stability analysis of Eq. (3) as a solution to a
spatially dependent PDE. First, we discuss the hydrodynamic
theory approach (see Appendix E), in which we elaborate the
continuum limit description of a particle system in terms of a
marginal DF ρ(r, t ) and a momentum field w(r, t ).

Under the large diffusion approximation (see Appendix
E 1), we find the following closed system of hydrodynamic
equations

∂tρ = −v̂0∇ · w,

∂tw = − v̂0

2
∇ρ − Dϕw + v̂2

0

16Dϕ


w + ρ

2
Q−αW

+ v̂0

8Dϕ

{
1

2
Qα[(W · ∇)w + (W ⊥ · ∇)w⊥]

+ Q−α[∇(w · W ) − (W · ∇)w − (∇ · W )w

− W (∇ · w) − (w · ∇)W ]

}
− 1

8Dϕ

w‖W‖2,

(4)

where w⊥ = (−wy,wx )T and W ⊥ = (−Wy,Wx )T denote vec-
tors orthogonal to w and W , respectively. We have denoted a
spatially averaged momentum field as

W = W (r, t ) =
∫∫

B(r;�) w(r′, t ) dr′∫∫
B(r;�) ρ(r′, t ) dr′

arising due to the nonlocal interaction term in Eq. (1).
The neighborhood domain is defined as B(r; �) =
{r′ ∈ U2 | ‖r′ − r‖ � �}. The matrix Qα represents
anticlockwise rotation by α radians. Note that the particle
density ρ0 does not appear in Eq. (4) due to the type of the
continuum limit we derived [36]. We have the following
terms in the right-hand side of the momentum equation. The
first term is a pressure gradient. The second and the last terms
constitute the relaxation of the momentum field. The third
term represents the damping of collective motion. The fourth
term generates coupling between density and momentum
fields. The rest of the terms appear as a result of the broken
Galilean invariance. Up to the rotational operation and
integration over a nonlocal neighborhood, they constitute all
three combinations of one spatial gradient and two momenta,
as described in Ref. [45]. Equation (4) allows for the stability
analysis of the stationary solutions, i.e., either disordered or
synchronized motion for α = 0. When α �= 0, the particle
flow is described by the nonstationary solution (3), and
we cannot apply the same stability analysis to it directly.
Therefore, we rederive hydrodynamic equations in a moving
reference frame in which such a solution becomes stationary.
The form of those hydrodynamic equations is functionally
similar to Eq. (4) except for couplings between longitudinal
and transversal directions as the result of applying a suitable
ansatz (see Appendix E).

Apart from the impact of α and the ansatz, the apparent
distinction of Eq. (4) from the majority of equations of
the Toner-Tu kind is the frequent appearance of the nonlo-
cally averaged momentum field W . This is the result of the
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continuum limit approach that allowed us to preserve nonlo-
cality of interactions. From Eq. (4), we see that both v̂0 and
� influence the length scale. Therefore, if we rescale spatial
variables and introduce a normalized radius �̃ = �/v̂0, we
conclude that there are three independent parameters in our
model, i.e., the phase lag α, the noise strength D̂ϕ , and the
normalized radius �̃.

The hydrodynamic equations in a moving reference frame
have two stationary spatially homogeneous solutions. The first
one is (ρ,w) = (1, 0, 0), and it represents spatially homo-
geneous disordered motion of particles. The second solution
represents partially synchronized collective motion (ρ,w) =
(1, ‖w∗‖ cos ϕ0, ‖w∗‖ sin ϕ0), where the degree of polariza-
tion is found to be

‖w∗‖ =
√

1

D̂ϕ

(
4D̂2

ϕ + v2
)
(cos α − 2D̂ϕ ) (5)

and ϕ0 ∈ T is an arbitrary direction subject to initial con-
ditions. In this regime, the macroscopic fraction of particles
synchronizes in phase and rotates steadily with frequency
v. One of the assumptions that we have used to derive the
hydrodynamic equations is that diffusion is strong enough
to guarantee the negligence of higher order Fourier modes,
i.e., n � 3. The limitations are that Eq. (5) is valid only
close to the order-disorder transition line D̂ϕ = 1

2 cos α up to
D̂ϕ = 1

4 cos α, where it reaches its maximum. From Fig. 3(a)
we see that the polarization must actually increase further
with D̂ϕ → 0+ for fixed α. Note that in a linear regime
α = 0, particles do not rotate, i.e., v = 0, and we retrieve the
well-known polarization level for the VM and the KM: as

‖w∗‖ = 2
√

D̂ϕ (1 − 2D̂ϕ ).
The linear stability analysis from the point of view of the

hydrodynamic theory of the disordered state as well as the
partially synchronized state for α = 0 does not reveal any
additional instabilities. The latter result appears as a contra-
diction to the one obtained for the standard VM, which was
shown to exhibit longitudinal long-wavelength instabilities
leading to the emergence of traveling bands. The explanation
for this lies in the type of the continuum limit we derived,
and the subsequent requirement to have the normalization in
the alignment term. For many time-continuous modifications
of the VM, in the limit N/L2 = const for N, L → ∞, one
does not use the normalization by the number of particles to
handle the alignment term during the transition N → ∞. In
our case, we do not assume N/L2 = const. Therefore, in order
to keep the alignment term finite in the transition N → ∞,
we have to have the normalization by the number of particles
|Bi

�|. We conclude that the presence of the normalization term
in the continuum limit PDE makes spatially homogeneous
partially synchronized motion more stable against spatially
nonhomogeneous perturbations compared to continuum limit
PDEs without such normalization.

For α �= 0, the linear stability analysis [5,46,47] of Eq. (5)
shows that a parameter regime where instabilities could occur
lies on the margins of validity of the hydrodynamic equations.
Therefore, we turn to the kinetic theory [48] (see Appendixes
D and F). The solution (3) is stable against spatially homo-
geneous perturbations for Dϕ < 1

2 cos α. Regarding spatially

FIG. 5. Phase diagrams in the parameter space of (a) the noise
strength D̂ϕ and the phase lag α, and (b) the rescaled radius of
interaction �/v̂0 and the phase lag, as predicted by the kinetic
theory (see Appendix D). Color shows the maximal real part of the
strongest unstable mode. The gray line is the order-disorder transition
line D̂ϕ = 1

2 cos α. Above the line in (a), spatially homogeneous
disordered motion (SHDM) is stable; below the line in (a) and to the
left in (b), spatially homogeneous ordered motion (SHOM) given by
Eq. (3) is stable in the black region. Gray crosses indicate parameter
values, selected to exemplify particle dynamics in Fig. 6.

nonhomogeneous perturbations, the linear stability analysis
is summarized in the phase diagrams in Fig. 5. All spa-
tially dependent instabilities occur for α sufficiently large.
As one approaches α → π/2, the number of unstable wave
vectors and corresponding maximal real parts of dispersion
relations increase. The phase diagrams were obtained by
considering perturbations of any direction. Note that since
we consider periodic boundary conditions, wave vectors are
discrete (kx, ky) ∈ Z2. As we wanted to emphasize from the
very beginning, varying � may lead to new system behavior.
Such results are summarized in Fig. 5(b). Both phase dia-
grams demonstrate regions where the spatially homogeneous
solution (3) becomes unstable subject to spatially dependent
perturbations whose Fourier transforms contain concrete un-
stable modes (cf., Fig. 10 in Appendix F for examples of
such modes). However, neither does it mean that spatially
nonhomogeneous solutions exclusively exist inside such in-
stability regions nor does it mean that spatially homogeneous
solutions exist only outside them. For an example of such a
conclusion for the Vicsek model with nematic alignment see,
e.g., Ref. [49].

Exemplary particle dynamics can be found in Fig. 6, and
respective movies can be found in Refs. [50,51]. We do not
go into the details of analyzing each of those states because it
extends beyond the scope of the paper. We comment only on
their key features. One of the states is a cloud of high density
(DC1 and DC2). In both cases, particles self-organize into cir-
cular shapes of high density (cf., Fig. 7), which we call clouds.
While a momentum field is quite homogeneous for DC1, it
has a clear radial structure for DC2. The same holds true
for traveling bands TB1 and TB2. The dense part of TB1 is
characterized with a uniform momentum field while TB2 has
points with the radial change of a momentum field. Moreover,
we have found a traveling band of low-density TB3 for large �̃

values only. The other dynamics include, first, a multiheaded
chimera state [cf., Fig. 6(f)] characterized by the formation of
several synchronized and spatially localized groups that rotate
with constant frequency. This state is the generalization of a
localized chimera state reported in Ref. [33]. By decreasing �̃,
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FIG. 6. Particle dynamics according to Eq. (1) (see the Supplemental Material [50,51] for corresponding movies). Abbreviations stand for
a dense cloud (DC), a traveling band (TB), a multiheaded chimera (MHC), a stationary vortex (SV), a dynamic vortex (DV), a momentum
wave (MW), and a spatially nonhomogeneous momentum (SNM). Color indicates the direction of motion in the HSV color map. Each
particle is represented as an elongated object over several time points. Parameter values correspond to those marked on the phase diagrams in
Fig. 5. Parameters: N = 5 × 104, L = 1, �̃ = 1, v̂0 = 0.01, (a) � = 0.01, α = 0.78, D̂ϕ = 0.2075, (b) � = 0.01, α = 0.9, D̂ϕ = 0.18, (c) � =
0.01, α = 1.3, D̂ϕ = 0.06, (d) � = 0.01, α = 1.45, D̂ϕ = 0.01, (e) � = 0.4, α = 1.45, D̂ϕ = 0.005, (f) � = 0.2, α = 1.36, D̂ϕ = 0.005, (g)
� = 0.01, α = 1.3, D̂ϕ = 0.02, (h) � = 0.01, α = 1.0, D̂ϕ = 0.0375, (i) � = 0.01, α = 1.0, D̂ϕ = 0.0575, and (j) � = 0.01, α = 1.07, D̂ϕ =
0.145.

one increases the number of chimeric heads. By increasing α,
the chaotic background becomes more pronounced until the
heads become unstable and one observes giant number fluctu-
ations in the density field. Second, there are vortical structures
where each one is either static [cf., Fig. 6(g)] in shape or
periodically expands and shrinks [cf., Fig. 6(h)]. By changing
�̃, one can control the number of vortices appearing. Third,
particles may organize in structures of uniform density but
with the direction of a momentum field uniformly distributed
horizontally or vertically [cf., Fig. 6(i)]. Finally, we also find

a configuration with a spatially homogeneous density but a
nonhomogeneous momentum field [cf., Fig. 6(j)].

V. CONCLUSIONS

In this paper, we have considered the ABP model with
alignment interactions subject to phase lag α. Such interac-
tions facilitate chirality of particle motion which is manifested
only as a collective phenomenon as opposed to other chiral
ABP models with explicit rotational frequencies. We showed

FIG. 7. Coarse-grained marginal density function ρ(r, t ) (the upper row) and the direction of a momentum field w(r, t ) (the lower row).
Parameters: N = 5 × 104, �̃ = 1, v0 = 0.01, (a) � = 0.01, α = 0.78, Dϕ = 0.2075, (b) � = 0.01, α = 0.9, Dϕ = 0.18, (c) � = 0.01, α =
1.3, Dϕ = 0.06, (d) � = 0.01, α = 1.45, Dϕ = 0.01, and (e) � = 0.4, α = 1.45, Dϕ = 0.005.
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that in the continuum limit, there are two spatially homoge-
neous system states, i.e., with particles moving chaotically
or self-organizing into uniformly rotating polar clusters. The
transition between these two states is of second order and
depends not only on the interplay between coupling and
noise coefficients but also on the phase lag. When the lag
is zero, our model becomes a continuous time variation of
the Vicsek model. Moreover, for sufficiently large phase lags,
the spatially homogeneous ordered motion becomes linearly
unstable against spatially dependent perturbations, and we
observe a wide range of spatially nonhomogeneous patters,
e.g., traveling bands, dense clouds, vortical motion, irregular
momentum fields, and multiheaded chimera states.

We have illustrated that nonlocalized interactions in the
large N limit play a significant role as well. Namely, we
have found that the length scale of each presented pattern
inversely depends on �/v̂0 meaning that the microscopic parti-
cle velocity alone is not enough to characterize the dynamics.
Moreover, the presence of both � and v̂0 allows us to build
a connection between the KM for the stationary phase oscil-
lators and the time continuous variations of the VM known
so far. By keeping interactions normalized by a neighborhood
cardinality, we reach a conclusion that the particle behavior
qualitatively differs from the one where interactions are not
normalized. Namely, the presence of normalization makes
dynamics more robust against spatial perturbations.

We have reached the point where we have discovered a
wide range of spatially nonhomogeneous patterns, many of
which not described for chiral active matter systems yet.
Thereupon, the detailed analysis of each of them is needed,
as well as the study of related phase transitions. As we
have mentioned, some of those patterns bear resemblance
to solutions of other models, which needs to be thoroughly
investigated. Another interesting question is how the pre-
sented analysis compares to the previous approaches where
the continuum limit is taken under hydrodynamic scaling, and
to investigate which of the reported patterns would survive
such a transition. However, the answers to these questions go
beyond the scope of this paper and would be subject to future
research. The present work does not claim to give a universal
model of collective chiral behavior in the large N limit but
invites further studies to characterize various kinds of related
continuum dynamics.
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APPENDIX A: SPATIALLY NONHOMOGENEOUS
PARTICLE DYNAMICS

In this Appendix, we provide the snapshots of exemplary
particle dynamics mentioned in the main text and briefly

describe the differences in collective behavior for pairs of
solutions having qualitatively similar macroscopic structure
by looking at their coarse-grained hydrodynamic description
in terms of ρ(r, t ) and w(r, t ).

First, we find two types of solutions where particles accu-
mulate into clouds of high density [DC1 and DC2 in Figs. 6(a)
and 6(c), respectively]. Inside both such clouds, particles are
distributed quite uniformly with respect to r, but the momen-
tum fields structurally differ [cf., Figs. 7(a) and 7(c), respec-
tively]. For DC1, the mean direction arg(w(r, t )) is also quite
uniform. Therefore, on average, particles inside the cloud are
oriented similarly but due to the small microscopic velocity v0

they stay in the cloud for a long time. For DC2, the momentum
field clearly possesses a radial structure. During such motion,
central particles first define the orientation which later (in
time) is assumed by particles farther away from the center.

Second, we observe three types of traveling bands [TB1,
TB2, and TB3 in Figs. 6(b), 6(d), and 6(e), respectively]. TB1
and TB2 are characterized by the formation of bands of high
density, which align horizontally or vertically depending on
initial conditions. The hydrodynamic structure inside these
bands follows the description of DC1 and DC2 with the
hydrodynamic field illustrated in Figs. 7(b) and 7(d), respec-
tively. We also observe TB3 where particles, which become
synchronized, form a band that does not comprise most of
the population. However, the other particles not inside this
band do not become completely disordered. Due to the large
interaction radius � = 0.4, they are significantly influenced by
the synchronized group and follow their orientation with some
lag in time [cf., Fig. 7(e)].

Third, we find two vortical structures [SV and DV in
Figs. 6(g) and 6(h), respectively]. For SV, when particles are
entrained into one of the vortices, they begin to rotate on
average around a common center and do not deviate from it
much. For DV, particles periodically approach the center of
a vortex but then rotate away from it. Thus, these vortices
remind a “breathing” shape.

Last, we would like to comment on localized (self-
propelled) chimera structures, introduced in Ref. [33], and
generalized here to multiple “heads” [cf., Fig. 6(f)]. A lo-
calized chimera state is a solution of Eq. (1) in which a
particle system splits into two distinct populations. Particles
in the first population synchronize and additionally gather
into a compact rotating cloud (sometimes called a “head”).
The rest of the particles remain disordered and are uniformly
distributed across the domain. In Ref. [33] we reported the
existence of a localized chimera state with one “head.” In
Fig. 6(f), one can observe a four-headed localized chimera
state. Moreover, by changing �̃, one can obtain such chimera
states with a different number of compact clouds.

The integration of the SDEs (1) was performed using the
strong order 1.5 Taylor scheme [52]. The movies representing
these exemplary particle dynamics can be found in the Sup-
plemental Material [50] as well as in Ref. [51].

APPENDIX B: CONTINUUM LIMIT DERIVATION

In this section, we present how to obtain the equations
that describe the dynamics of an ensemble of particles
in the continuum limit N → ∞ within the framework of
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Fokker-Planck equations. The continuum limit is understood
in such a way that for each fixed N , a two-dimensional system
domain is divided into

√
N units [36]. The approach we follow

here is different from the one discussed in Ref. [33], and it
eventually provides us with a hierarchy of evolution equations
for density functions that incorporate interparticle interactions
of any order. In the main text, we nondimensionalized the
particle model by introducing dimensionless quantities such
as a particle velocity v̂0 and a phase diffusion intensity D̂ϕ . In
this Appendix, we use the same variables but omit theˆsymbol
hereafter for the sake of simplicity.

Let U := R/(LZ) and T := R/(2πZ) be one-
dimensional spaces with periodic boundaries extending
from [0, L] and [0, 2π ], respectively. In the main text,
the system size L is assumed to be equal to one, but
throughout this Appendix we keep it arbitrary but constant.
We will denote a three-dimensional state space of each
particle by � = U×U×T . We introduce variables to
keep notation more compact. We will denote a spatial
position of each particle with index i ∈ {1, . . . , N} by
ri = (xi, yi ) ∈ U2. We will also denote a state of each particle
by pi = (xi, yi, ϕi ) ∈ �. First, let us define a microscopic
density function as

f̂ (p, t ; p1, . . . , pN )

= 1

N

N∑
i=1

δ[pi(t ) − p]

= 1

N

N∑
i=1

δ[xi(t ) − x]δ[yi(t ) − y]δ[ϕi(t ) − ϕ]. (B1)

This function should be treated the following way. For a given
solution of the particle SDE (see the main text), we compute
the value of an integral of f̂ against some sufficiently smooth
test function φ. As the next step, we consider a probability of
finding particles with coordinates {pi}i=1,...,N at time t , and de-
note its probability density function by w = w(p1, . . . , pN , t ).
The time evolution of such a probability density function is
given by the Fokker-Planck equation [38], and it reads

∂tw = −
N∑

i=1

{
v0 cos ϕi∂xiw + v0 sin ϕi∂yiw

+ ∂ϕi

(
1∣∣Bi
�

∣∣ ∑
j∈Bi

�

sin(ϕ j − ϕi − α)w

]
− Dϕ∂ϕiϕiw

}
.

(B2)

This equation requires information about each particle, the
fact of which is prohibitive in practice. Therefore, we de-
fine an ensemble-averaged probability density function f =
f (p, t ) as the microscopic density f̂ averaged with respect to
the configuration probability w:

f (p, t ) =
∫

�N

f̂ (p, t ; p1, . . . , pN )

× w(p1, . . . , pN , t )d p1 . . . d pN ,

(B3)

where d pi = dxidyidϕi is a three-dimensional volume ele-
ment in �. Since the particles are considered to be identical,
the probability of the system configuration w is symmetric

with respect to permutations of particles. We can rewrite the
ensemble-averaged microscopic density as [39]

f (p, t ) =
∫

�N−1
w(p, p2, . . . , pN )d p2 . . . d pN . (B4)

We can now use the Fokker-Planck equation (B2) to ob-
tain the time evolution for the one-particle density function.
Namely, we integrate out N − 1 particles in Eq. (B2). The first
terms are transformed as follows:∫

�N−1
∂tw d p2 . . . d pN = ∂t f (p1, t ), (B5)

∫
�N−1

N∑
i=1

v0 cos ϕi∂xiw d p2 . . . d pN = v0 cos ϕ1∂x1 f (p1, t ),

(B6)

∫
�N−1

N∑
i=1

v0 sin ϕi∂yiw d p2 . . . d pN = v0 sin ϕ1∂y1 f (p1, t ).

(B7)

We have used the fact that surface terms, which appear in
integrals with partial derivatives, vanish due to the periodic
boundary conditions. For the interaction term, we have

∫
�N−1

N∑
i=1

∂ϕi

[
1∣∣Bi
�

∣∣ ∑
j∈Bi

�

sin(ϕ j − ϕi − α)w

]
d p2 . . . d pN

=
∫

�N−1

N∑
i=1

∂ϕi

⎡
⎢⎣ 1∑N

j = 1
j �= i

H (� − ‖r ji‖)

×
N∑

j = 1
j �= i

sin(ϕ j − ϕi − α)H (� − ‖r ji‖)w

⎤
⎥⎦d p2 . . . d pN ,

(B8)

where H is a Heaviside step function. We have rewritten the
summation term and the neighborhood cardinality using the
definition of particle’s neighborhood Bi

�, defined in the main
text. The interparticle distance is computed with respect to
L2(U2) norm. All the integrand terms except for the first
particle cancel out because of the periodic boundaries, and we
write Eq. (B8) as

∂ϕ1

∫
�N−1

1∑N
j=2 H (� − ‖r j1‖)

×
N∑

j=2

sin(ϕ j − ϕ1 − α)H (� − ‖r j1‖)w d p2 . . . d pN

= (N − 1)∂ϕ1

∫
�

sin(ϕ2 − ϕ1 − α)H (� − ‖r21‖)

×
[∫

�N−2

w d p3 . . . d pN∑N
j=2 H (� − ‖r j1‖)

]
d p2. (B9)

The denominator in the last expression does not allow to
integrate w out straightforwardly. However, we are interested
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in the continuum limit N → ∞. In this limit, by the law of
large numbers

lim
N→∞

1

N − 1

N∑
j=2

H (� − ‖r j1‖)

=
∫∫

U2
H (� − ‖r2 − r1‖) f̃ (x2, y2, t ) dx2 dy2

=
∫∫∫

�

H (� − ‖r2 − r1‖) f (x2, y2, ϕ2, t ) dx2 dy2 dϕ2,

(B10)

where in the intermediate step, f̃ denotes a marginal density
function of spatial variables. We use this fact to rewrite the
right-hand side of Eq. (B9) further as

∂ϕ1

∫
�

sin(ϕ2 − ϕ1 − α)H (� − ‖r2 − r1‖)

×
[

f (2)(p1, p2, t )∫
�

H (� − ‖r2 − r1‖) f (p2, t ) d p2

]
d p2, (B11)

where f (2)(p1, p2, t ) = lim
N→∞

∫
�N−2 w d p3 . . . d pN is a two-

particle density function. Similarly to how we expressed the
one-particle density function by averaging the microscopic
density function, we can obtain the two-particle density func-
tion in the limit of infinitely many particles [53] in the
following way:

lim
N→∞

∫
�N

f̂ (p, t ; p1, . . . , pN ) f̂ (p′, t ; p1, . . . , pN )

× w(p1, . . . , pN , t ) d p1 . . . d pN

= lim
N→∞

N − 1

N

∫
�N−2

w(p, p′, p3, . . . , pN )d p3 . . . d pN

+ 1

N
δ(p−p′) f (p, t ) = f (2)(p, p′, t ), (B12)

where the first transition has been performed using the defini-
tion (B1) and the symmetry of w under permutations.

Last, we integrate the diffusion term in the Fokker-Planck
equation (B2) and obtain∫

�N−1
Dϕ

N∑
i=1

∂ϕiϕiw d p2 . . . d pN = Dϕ∂ϕ1ϕ1 f (p1, t ). (B13)

As a result, the time evolution of the one-particle density
function f = f (p1, t ) = f (r1, ϕ1, t ) reads

∂t f = −v0e(ϕ1) · ∇r1 f − 1

|C(r1; �)|∂ϕ1

∫
C(r1;�)

sin(ϕ2−ϕ1−α)

× f (2)(p1, p2, t ) d p2 + Dϕ∂ϕ1ϕ1 f , (B14)

where e(ϕ1) = (cos ϕ1, sin ϕ1) ∈ S1 ⊂ R2 is a unit velocity
vector, ∇r1 = (∂x1 , ∂y1 ) is a spatial gradient, and

|C(r1; �)| =
∫

C(r1;�)
f (p2, t ) d p2

=
∫

�

f (r2, ϕ2, t )H (� − ‖r2 − r1‖) dr2 dϕ2

(B15)

is a neighborhood mass. The neighborhood domain C(r; �) is
itself defined as

C(r; �) = {(r′, ϕ′) ∈ U2 × T | ‖r′ − r‖ � �}. (B16)

We hereafter use C(r) instead of C(r; �) for shorter notation.
We see that for an interacting particle system, the time evolu-
tion of a one-particle density function is not a closed equation
since it depends on a two-particle density function. In order
to obtain a closure, one often admits the simplest mean-field
approximation known as a molecular chaos assumption [37].
It postulates that particle correlations are negligible and the
following factorization of the two-particle density function is
possible:

f (2)(p1, p2, t ) ≈ f (p1, t ) f (p2, t ). (B17)

Under that assumption, the time evolution of f is given by

∂t f = −v0e(ϕ1) · ∇r1 f + Dϕ∂ϕ1ϕ1 f

− ∂ϕ1

|C(r1)|
[

f
∫

C(r1 )
sin(ϕ2−ϕ1−α) f (p2, t ) d p2

]
.

(B18)

This is the main equation that we will work with below.

1. Two-particle density function

In the case that the closure at the first order is not sufficient,
we may proceed in the same manner and next define a
three-particle density function. In the limit of infinitely many
particles, we have

f (3)(p, p′, p′′, t )

= lim
N→∞

∫
�N−3

w
(
p, p′, p′′, p4, . . . , pN , t

)
d p4 . . . d pN .

(B19)

If we integrate out N − 2 particles from the Fokker-Planck
equation (B2), we derive the equation for the time evolution
of the two-particle density function f (2) = f (2)(p1, p2, t ) =
f (2)(r1, ϕ1, r2, ϕ2, t ). It reads

∂t f (2) =−v0e(ϕ1) · ∇r1 f (2) + Dϕ∂ϕ1ϕ1 f (2)

− ∂ϕ1

|C(r1)|
∫

C(r1 )
sin(ϕ3−ϕ1−α) f (3)(p1, p2, p3, t ) d p3

− v0e(ϕ2) · ∇r2 f (2) + Dϕ∂ϕ2ϕ2 f (2)

− ∂ϕ2

|C(r2)|
∫

C(r2 )
sin(ϕ3−ϕ2−α) f (3)

× (p1, p2, p3, t )d p3, (B20)

where the neighborhood domain C(r) is defined in Eq. (B16).
The time evolution of the two-particle density function f (2)

now depends on the three-particle density function f (3). If
we continue further, we can derive a corresponding equation
for an n-particle density function which will further depend
on an n + 1-particle density function. This infinite hierar-
chy of integro-differential equations is similar to the Born-
Bogolubov-Green-Kirkwood-Yvon (BBGKY) or Vlasov hi-
erarchies in statistical physics [54,55]. We could theoretically
close the hierarchy at any level provided that we have a
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required closure. Besides the molecular chaos assumption that
closes it at the first order, the so-called Kirkwood superpo-
sition approximation can be used to obtain the second-order
closure. It assumes that the three-particle density function
is factorized as a product of two-particle density functions

as

f (3)(p1, p2, p3, t )

≈ f (2)(p1, p2, t ) f (2)(p1, p3, t ) f (2)(p2, p3, t )

f (p1, t ) f (p2, t ) f (p3, t )
. (B21)

The time evolution of the two-particle density function under this approximation reads

∂t f (2) = −v0e(ϕ1) · ∇r1 f (2) − v0e(ϕ2) · ∇r2 f (2) + Dϕ∂ϕ1ϕ1 f (2) + Dϕ∂ϕ2ϕ2 f (2)

− 1

|C(r1)|∂ϕ1

[
f (2)(p1, p2, t )

f (p1, t ) f (p2, t )

∫
C(r1 )

sin(ϕ3 − ϕ1 − α)
f (2)(p1, p3, t ) f (2)(p2, p3, t )

f (p3, t )
d p3

]

− 1

|C(r2)|∂ϕ2

[
f (2)(p1, p2, t )

f (p1, t ) f (p2, t )

∫
C(r2 )

sin(ϕ3 − ϕ2 − α)
f (2)(p1, p3, t ) f (2)(p2, p3, t )

f (p3, t )
d p3

]
. (B22)

The approximation is usually required when the dynamics
due to a self-propelled particle system involves hard-core
repulsion interactions [56]. Since our model does not contain
such terms, we limit ourselves to subsequently work with the
one-particle density function, whose dynamics is described by
Eq. (B18).

APPENDIX C: SOLUTIONS FOR THE
CONTINUUM LIMIT PDE

From now on, we do not use p as particle’s state variable.
Instead, we split it up into position r = (x, y) ∈ U2 and phase
ϕ variables. The easiest solution to Eq. (B18) (and to all of its
variations) is the uniform probability density function,

f (r, ϕ, t ) = 1

2π
. (C1)

It corresponds to the chaotic behavior of the particle system,
for which the continuum limit has been derived. One also says
that this solution represents a globally disordered state.

The model (B18) admits a major simplification if we
assume that solutions are spatially homogeneous. Based on
the results from Ref. [33], we know that a subset of chimeric
solutions are of such a form. Under such an assumption of spa-
tial homogeneity, we obtain a 1+1-dimensional PDE, which
we can also consider as the continuum Kuramoto-Sakaguchi
model:

∂t f (ϕ, t ) = Dϕ∂ϕϕ f (ϕ, t )

− ∂ϕ

[
f (ϕ, t )

∫
T f (ϕ′, t ) sin(ϕ′ − ϕ − α) dϕ′∫

T f (ϕ′, t ) dϕ′

]
.

(C2)

Since we treat the function f (ϕ, t ) as a probability density
function, we have that

∫
T f (ϕ, t ) dϕ = 1. The time evolution

of the density function then becomes

∂t f (ϕ, t ) = Dϕ∂ϕϕ f (ϕ, t )

− ∂ϕ

[
f (ϕ, t )

∫
T

f (ϕ′, t ) sin(ϕ′ − ϕ − α) dϕ′
]
.

(C3)

This model has certain symmetries. Generally, we could
rescale f (ϕ, t ) �→ c f (ϕ, t ), c ∈ R but since we treat f as a
probability density function, this symmetry is of no impor-
tance to us. The equation is also invariant under the phase
translation f (ϕ, t ) �→ f (ϕ + ϕ0, t ) ∀ϕ0 ∈ T . This means
that we can shift the distribution by any ϕ0 and obtain another
solution. This is particularly important in the stability analysis
conducted later. The third symmetry is due to the invariance
under the reflection of phase f (ϕ, t ) �→ f (−ϕ, t ) if α �→ −α.
Thus, we see that we can obtain another solution by flipping
the signs of phases and the parameter α simultaneously. Given
that, we will subsequently consider α ∈ [0, π/2] only. We
also see that the solution will be symmetric with respect to
some ϕ0 only if α = 0. Thus, we will first look for solutions
of Eq. (C3) without a phase lag.

1. Stationary solutions

To find a nontrivial stationary solution to Eq. (C3), we put
∂t f (ϕ, t ) = 0. This gives us a second-order ordinary differen-
tial equation (ODE) of the following form:

Dϕ

d2 f (ϕ)

dϕ2
− d

dϕ

[
f (ϕ)

∫
T

f (ϕ′) sin(ϕ′ − ϕ − α) dϕ′
]

= 0.

(C4)
In terms of the order parameter, we can write it as

Dϕ

d2 f (ϕ)

dϕ2
− d

dϕ

[
f (ϕ)R sin(� − ϕ − α)

] = 0. (C5)

To solve this equation, we integrate it once and then look for
the solution of the form

f (ϕ) = c(ϕ)eγ cos(�−ϕ−α), (C6)

where the function c(ϕ) is to be determined from the ODE,
and γ = R/Dϕ . It can be shown that eventually the solution is
of the form

f (ϕ) = c1eγ cos(�−ϕ−α)

(
1 + c2

∫
e−γ cos(�−ϕ−α) dϕ

)
, (C7)

where c1, c2 are the constants to be determined. We are
interested in smooth solutions to Eq. (C3), so we require
that f ∈ C(T ). This implies that f (0) = f (2π ), which can
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be shown to hold if and only if c2 = 0. From the normaliza-
tion condition, we find that c1 = [2π I0(γ )]−1, where I0(γ ) =
1/(2π )

∫
T exp(γ cos ϕ) dϕ denotes the modified Bessel func-

tion of the first kind [57]. As a result, we have the nontrivial
stationary solution of the following form:

f (ϕ) = eγ cos(�−ϕ−α)

2π I0(γ )
. (C8)

Due to the translational invariance of Eq. (C3) with respect to
the phase ϕ, we can put � = 0 without loss of generality. This
simplifies the solution to

f (ϕ) = eγ cos(ϕ+α)

2π I0(γ )
. (C9)

In this form, the solution is not particularly useful since the
density function is recursively contained in the definition of
the order parameter. However, we are able to determine the
latter the other way. If we multiply Eq. (C9) by cos ϕ and
integrate over the domain T , we find that

R = 1

2π I0(γ )

∫
T

eγ cos(ϕ+α)eiϕ dϕ = e−iα I1(γ )

I0(γ )
. (C10)

From the equation for the imaginary part, we have that either
α = 0 or I1(γ ) = 0. The latter case is true for γ = R/Dϕ =
0. But if the order parameter magnitude is zero, the density
function (C9) becomes just a constant and the phase lag α

does not play any role. Therefore, we conclude that the system
(C3) is solved by Eq. (C9) only when α = 0:

f (ϕ) = eγ cos ϕ

2π I0(γ )
, (C11)

for which the order parameter magnitude is determined from

R =
I1

(
R

Dϕ

)
I0

(
R

Dϕ

) . (C12)

a. The onset of orientational order

Even though we do not have a closed form solution for
the density function f that solves Eq. (C3), we can extract the
information on what relation the model parameters should sat-
isfy in order to allow the existence of this nontrivial solution.
It was shown in Ref. [58] that for positive values of R, the
relation (C12) has a unique solution. That solution allows us
to find a condition where the nonconstant density function of
the form (C11) appears. We should search for parameters for
which the slope on the right-hand side of Eq. (C12) is greater
than the slope of the left-hand side at R = 0. Namely, we
consider d

dR [I1(γ )/I0(γ )] � 1, where we denote γ = R/Dϕ .
Using the properties [57] of the Bessel function d

dR I0(γ ) =
σ

Dϕ
I1(γ ) and d

dR I1(γ ) = σ
2Dϕ

[I0(γ ) + I2(γ )], we rewrite the
above inequality as

1

2Dϕ

+ 1

2Dϕ

I2(γ )

I0(γ )
− 1

Dϕ

I2
1 (γ )

I2
0 (γ )

� 1. (C13)

Using the property [59] I0(γ ) − I2(γ ) = 2
γ

I1(γ ), we obtain
the desired inequality for the order parameter magnitude

1

Dϕ

R2 − 1

Dϕ

+ 2 � 0. (C14)

Since we are interested in the value of the slope at R = 0,
we derive the following condition for the existence of the
nontrivial stationary solution to Eq. (C3):

Dϕ � 1

2
. (C15)

We also see from Eq. (C11) and Eq. (C12) that when Dϕ → 0,
the order parameter approaches 1 and we have the completely
synchronous stationary state, namely,

f (ϕ, t ) = δ(ϕ − ϕ0), (C16)

where the phase ϕ0 is determined from the initial condition.

2. Traveling wave solutions

Our next step is to investigate the solution to Eq. (C3)
in the presence of a nonzero phase lag α. We know when
α �= 0 the density f (ϕ, t ) is no longer a symmetric function.
It moves to the left if α > 0 and to the right if α < 0 with
some constant speed v. This fact allows us to look for a
solution in the form of a traveling wave. Thus, we introduce
an ansatz f (ϕ, t ) = g(ϕ − vt ) = g(ω), where v is the speed of
the traveling wave, which is also to be determined. After the
substitution, we obtain the following second-order ODE:

Dϕ

d2

dω2
g(ω) + d

dω
{[v − R sin(� − ω − α)]g(ω)} = 0,

(C17)

where R and � are now constants. We trivially integrate it with
respect to ω and get

Dϕ

d

dω
g(ω) + [v − R sin(� − ω − α)]g(ω) = c1, (C18)

where c1 ∈ R is some constant. The method to solve such an
equation is again to look for a solution of the form

g(ω) = c(ω) exp

{
−
∫ [

v

Dϕ

− R

Dϕ

sin(� − ω − α)

]
dω

}
,

(C19)

where the function c(ω) is to be determined. After we sub-
stitute the function of this form into the above differential
equation, we find the following solution:

g(ω) = E1(ω)

[
c1

∫
E−1

1 (ω′)dω′ + c2

]
, (C20)

where we have denoted E1(ω) =
exp [− v

Dϕ
ω + R

Dϕ
cos(� − ω − α)] and c2 ∈ R is some

constant. One of the constants can be found by recalling
that we are looking for a periodic and continuous solution,
g(0) = g(2π ). The other constant is determined from the
normalization condition of the probability density function.
Eventually, we arrive at the following solution (compare to
the form of the solution in the case of the Kuramoto model
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with frequency distribution and zero phase lag [60]):

g(ω) = c0E1(ω)

[
1 + c1

∫ ω

0 E−1
1 (ω′)dω′∫

T E−1
1 (ω′)dω′

]
, (C21)

where c0 ∈ R is a normalization constant and c1 =
(e2π v

Dϕ − 1) comes from a periodicity constraint.
One may notice that due to the translational invariance of

Eq. (C3), by the suitable shift of ω − � �→ ω, we have the
system where the order parameter phase can be put equal to
zero without loss of generality. In other words, we could ini-
tially have introduced an ansatz f (ϕ, t ) = g(ϕ − vt − �0) =
g(ω), with v to be determined and where �0 = �(0). The
density function, expressed in terms of ω, can be shown to
read

g(ω) = c0E2(ω)

[
1 + c1

∫ ω

0 E−1
2 (ω′)dω′∫

T E−1
2 (ω′)dω′

]
, (C22)

where the exponential function is redefined as E2(ω) =
exp [− v

Dϕ
ω + R

Dϕ
cos(ω + α)].

The above solution (C22) is expressed in terms of the
traveling wave variable ω, and we now want to return to the
original variables ϕ and t . Inserting them back, we find the
solution of the traveling wave form to be

f (ϕ, t ) = c0E (ϕ, t )

[
1 + c1

∫ ϕ0+vt
vt E−1(ϕ′, t ) dϕ′∫ 2π+vt
vt E−1(ϕ′, t ) dϕ′

]
(C23)

with ϕ ∈ [vt, 2π + vt ), E (ϕ, t ) = exp[− v
Dϕ

ϕ + R
Dϕ

cos
(ϕ − vt + α)], and ϕ0 = ϕ|t=0 = ϕ − vt is the initial
reference frame. For the computational purposes, it is
better to perform the change of variables ϕ0 = ϕ − vt in the
integrals so that they are independent of time, giving

f (ϕ, t ) = c0E (ϕ, t )

[
1 + c1

∫ ϕ0

0 E−1(ϕ0, 0) dϕ0∫
T E−1(ϕ0, 0) dϕ0

]

with ϕ ∈ [vt, 2π + vt ). (C24)

a. The onset of orientational order

To learn the behavior of the order parameter, corresponding
to Eq. (C24), it is enough to study its profile g(ω). The global
order parameter is defined as

R =
∫
T

eiωg(ω) dω, (C25)

where the average direction is shifted to the origin so that � ≡
0 without loss of generality. Thus, the order parameter must
satisfy the following set of self-consistency equations:

R =
∫
T

g(ω) cos ω dω, (C26)

0 =
∫
T

g(ω) sin ω dω, (C27)

where g is given by Eq. (C22). This system does not have an
analytical solution but can be solved numerically for R and v,
assuming that � ≡ 0. The numerical results are presented in
the main text. Note that, in order to obtain them, one has to use
multiprecision arithmetic. For parameter values away from

the order-disorder transition line, the exponents in Eq. (C22)
assume values not valid for the double precision format.

As before, we can use the set of self-consistent equations
to determine conditions on the model parameters that lead
to the existence of the nontrivial solution g. If we substitute
Eq. (C22) into Eq. (C26), expand the right-hand side of
Eq. (C26) in powers of γ := R/Dϕ , and take the limit γ →
0 + 0 [60], we find the following equality:

R = −cos α

2

γ

v2

D2
ϕ

+ 1

v2

D2
ϕ

− sin α

2

γ

v2

D2
ϕ

+ 1

v

Dϕ

+ cos α

2
γ + O(γ 2). (C28)

If we divide both sides by the order parameter magnitude R,
we obtain the relation between the critical coupling strength,
the diffusion constant Dϕ , and the phase lag α expressed as

1 = 2
(
D2

ϕ + v2
)

Dϕ cos α − v sin α
. (C29)

The drawback is that it also involves the unknown parameter
v. But fortunately as we have mentioned, we must simulta-
neously satisfy Eq. (C27). Thus, we substitute Eq. (C22) into
Eq. (C27) and perform the expansion again. We find the con-
dition for the critical velocity as v = −Dϕ tan α. Combining
it with the last expression, we obtain the value for the critical
coupling strength in terms of the known system parameters as

1
2 cos α = Dϕ. (C30)

We thus deduce that the condition to completely desynchro-
nize the system is Dϕ � 1

2 cos α. Note that if we let α → 0,
we obtain the same condition as given by Eq. (C15) for the
case of zero phase lag.

APPENDIX D: STABILITY ANALYSIS VIA
KINETIC THEORY

Now that we have derived several spatially homogeneous
solutions for the original problem (B18), we want to know
parameter regions, where these solutions become unstable and
spatially nonhomogeneous structures appear. In order to do
that, we perform linear stability analysis of the solutions in
Fourier space from the point of view of the kinetic theory first.

1. Stationary solutions

First, let us provide the version of the nonhomogeneous
continuum limit PDE, we will build our further analysis upon.
We start with Eq. (B18) for a one-particle density function
f = f (p, t ) = f (r, ϕ, t ), which we state here one more time
for the easier reference:

∂t f = −v0e(ϕ) · ∇r f + Dϕ∂ϕϕ f

− ∂ϕ

[
f

∫
C(r) f (r′, ϕ′, t ) sin(ϕ′−ϕ−α) dr′ dϕ′∫

C(r) f (r′, ϕ′, t ) dr′ dϕ′

]
,

(D1)

where we have explicitly separated the combined variable
p into the position vector r and the phase ϕ. Note that the
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neighborhood domain C(r) implicitly depends on the radius
of interaction � according to Eq. (B16). We are interested in
the solutions that are periodic in spatial and phase variables.
We can generally represent it in a Fourier series as

f (r, ϕ, t ) =
∑
k∈Z2

∑
n∈Z

fn,k(t )e−inϕ−i 2π
L k·r. (D2)

Since spatial and phase scales have different periodicities, we
will perform the two corresponding transforms separately.

Our first step is to transform Eq. (D1) into the Fourier space
with respect to the phase variable ϕ. The density function can
be represented as

f (r, ϕ, t ) =
∑
n∈Z

fne−inϕ, (D3)

where each Fourier mode is defined as

fn(r, t ) = 1

2π

∫
T

f (r, ϕ, t )einϕ dϕ. (D4)

Using the above decomposition, each term of Eq. (D1) can be
rewritten as

∂t f (r, ϕ, t ) =
∑
n∈Z

∂t fn(r, t )e−inϕ, (D5)

v0e(ϕ) · ∇r f (r, ϕ, t )

= −v0∂x

2

∑
n∈Z

( fne−i(n−1)ϕ + fne−i(n+1)ϕ )

+ iv0∂y

2

∑
n∈Z

( fne−i(n−1)ϕ − fne−i(n+1)ϕ ), (D6)

∂ϕ

[
f (r, ϕ, t )

∫∫∫
C(r) f (r′, ϕ′, t ) sin(ϕ′ − ϕ − α) dr′ dϕ′∫∫∫

C(r) f (r′, ϕ′, t ) dr′ dϕ′

]

= 1

2

∑
n∈Z

fn

[
(n − 1)e−i(n−1)ϕ

∫∫
B(r) f−1(r′, t ) dr′∫∫
B(r) f0(r′, t ) dr′ eiα

−(n + 1)e−i(n+1)ϕ

∫∫
B(r) f1(r′, t ) dr′∫∫
B(r) f0(r′, t ) dr′ e

−iα

]
, (D7)

∂ϕϕ f (r, ϕ, t ) = −
∑
n∈Z

n2 fne−inϕ. (D8)

Gathering the terms corresponding to each Fourier mode
e−inϕ , the evolution equation for each mode fn = fn(r, t ), n ∈
Z becomes

∂t fn = −n2Dϕ fn

− v0

2
∂x( fn+1 + fn−1) + iv0

2
∂y( fn+1 − fn−1)

+ n

2

[
fn−1

∫∫
B(r) f1(r′, t ) dr′∫∫
B(r) f0(r′, t ) dr′ e

−iα

− fn+1

∫∫
B(r) f−1(r′, t ) dr′∫∫
B(r) f0(r′, t ) dr′ eiα

]
. (D9)

The integration over the cylinder C(r) = C(r; �) becomes the
integration over the disk B(r) = B(r; �), which is defined as

B(r; �) = {r′ ∈ U2 | ‖r′ − r‖ � �}. (D10)

As before, we usually suppress the explicit dependence of the
circular neighborhood B(r) on the parameter � for the sake of
brevity.

Next, we perform the Fourier transform of Eq. (D9) with
respect to spatial coordinates r. Each Fourier mode fn(r, t )
can be decomposed into a series as

fn(r, t ) =
∑
k∈Z2

gn(k, t )e−i 2π
L k·r, (D11)

where its coefficients are defined as

gn(k, t ) = F{ fn(r, t )}(k, t )

= 1

L2

∫∫
U2

fn(r, t )ei 2π
L k·rdr.

(D12)

Our next goal is to obtain the differential equations for each
mode gn(k, t ) in the Fourier space with respect to the spatial
variables, with the subsequent goal of deriving its linearized
dynamics. With that regard, all terms in Eq. (D9) except for
the nonlinear interaction one are easily transformed as

F{∂t fn(r, t )}(k, t ) = ∂t gn(k, t ), (D13)

F{∂x[ fn+1(r, t ) + fn−1(r, t )]}(k, t )

= −i
2π

L
kx[gn+1(k, t ) + gn−1(k, t )], (D14)

F{∂y[ fn+1(r, t ) − fn−1(r, t )]}(k, t )

= −i
2π

L
ky[gn+1(k, t ) − gn−1(k, t )]. (D15)

As to the interaction terms (the ones with the integrals), we
will consider the derivation only for the first one of them. In
order to find its transformation, we first represent it as

1

L2

∫∫
U2

fn−1(r, t )

∫∫
B(r) f1(r′, t ) dr′∫∫
B(r) f0(r′, t ) dr′ e

i 2π
L k·rdr

=
∑
q∈Z2

gn−1(q, t )
1

L2

∫∫
U2

∫∫
B(r) f1(r′, t ) dr′∫∫
B(r) f0(r′, t ) dr′ e

i 2π
L (k−q)·rdr

=
∑
q∈Z2

gn−1(q, t )K1(k − q, t ), (D16)

where K1 denotes the Fourier transform (D12) of one of
the interaction force terms. The other appears as K−1 and
inherently depends on f−1. To obtain the representation of the
interaction kernel K1 in the Fourier space solely, i.e., via the
wave vectors, we need to transform the integrals involving the
primed variables [47]. Generally, we consider∫∫

B(r)
fn(r′, t ) dr′ =

∑
k∈Z2

∫∫
B(r)

gn(k, t )e−i 2π
L k·r′

dr′

=
∑
k∈Z2

gn(k, t )e−i 2π
L k·r
∫∫

B(0)
e−i 2π

L k·zdz

=
∑
k∈Z2

gn(k, t )e−i 2π
L k·r

×
∫ �

0

∫
T

‖z‖e−i 2π
L ‖z‖‖k‖ cos(ζ−χ ) d‖z‖ dζ
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= 2π
∑
k∈Z2

gn(k, t )e−i 2π
L k·r

×
∫ �

0
‖z‖J0

(
2π

L
‖z‖‖k‖

)
d‖z‖

= L�
∑
k∈Z2

gn(k, t )e−i 2π
L k·r J1

(
2π
L �‖k‖)
‖k‖ .

(D17)

In the above derivation, we have made use of the
polar representation of z = ‖z‖(cos ζ , sin ζ )T and k =
‖k‖(cos χ, sin χ )T . The functions J0 and J1 denote the Bessel
functions of the first kind. The transition between these
functions was performed using the identity

∫ R
0 sJ0(s) ds =

RJ1(R), R ∈ R+. Note that the last transition of the above
chain is valid as long as k �= (0, 0)T . Otherwise, in the zero
wave number regime, one has

∫ �

0 ‖z‖J0(0) d‖z‖ = �2/2.
The last sum of the above chain of equations is the Fourier

series with the coefficients containing the Bessel function. To
simplify the further notation, we will denote

j�(k) = J1
(

2π
L �‖k‖)
‖k‖ . (D18)

Note that despite of the division by the norm of a wave vector,
it is possible to consider the dynamics in the hydrodynamic
limit, since lim

x→0+0

1
x J1(x) = 1

2 . With this notation, we can write

the interaction kernel as

K±1(k − q, t )

= F
{∑

p∈Z2 g±1(p, t ) j�(p)e−i 2π
L p·r∑

p∈Z2 g0(p, t ) j�(p)e−i 2π
L p·r

}
(k − q, t ). (D19)

The kernel in this representation still depends on the Fourier
coefficients in a nonlinear way but further decomposition of
the kernel in a linear combination requires the knowledge of
gn.

We see that after the Fourier transform with respect to
spatial variables, the coefficient 2π

L exclusively appears in
front of v0 and �. Thus, we introduce v∗

0 = 2π
L v0 and �∗ =

2π
L � to shorten the further notation. The auxiliary function

j�(k) becomes j�(k) = J1(�∗‖k‖)
‖k‖ .

With the current representation of the interaction kernels,
the time evolution of the Fourier coefficients gn = gn(k, t )
reads

∂t gn(k, t ) = −n2Dϕgn + iv∗
0

2
kx(gn+1 + gn−1) + v∗

0

2
ky(gn+1 − gn−1)

+ n

2

[
e−iα

∑
q∈Z2

gn−1(q, t )K1(k − q, t ) − eiα
∑
q∈Z2

gn+1(q, t )K−1(k − q, t )

]
, (D20)

where the Fourier transforms K±1 of the interaction kernels are defined in Eq. (D19). As an outline, we mention that since we
are going to test only the spatially homogeneous solutions on the matter of stability, their Fourier transforms with respect to x, y
will contain Kronecker δ functions. Upon the substitution of such transforms into the above expression, the sums over the wave
vectors q will be resolved.

For convenience, we denote

L[g0, g±1, gn∓1](q, k, t ) = gn∓1(q, t )K±1(k − q, t ), (D21)

where the dependence on g0 and g±1 comes through K±1. We will use this expression in the linearization procedure described
next.

Let the stationary spatially homogeneous solution of Eq. (D1), transformed to the Fourier space with respect to the spatial
variables, be g∗

n(k). We denote the components of a small perturbation to the solution as

δgn(k, t ) = gn(k, t ) − g∗
n(k). (D22)

To see how those perturbations behave over time, we need to derive differential equations for δgn. To do that, we linearize
Eq. (D20) around g∗

n(k). Since the right-hand side of Eq. (D20) depends on several δgn, by Taylor series expansion we find

∂tδgn(k, t ) = iv∗
0

2
kx[δgn+1(k, t ) + δgn−1(k, t )] + v∗

0

2
ky[δgn+1(k, t ) − δgn−1(k, t )] − n2Dϕδgn(k, t )

+ n

2
e−iα

∑
m∈{0,1,n−1}

∑
q∈Z2

∂L[g0, g1, gn−1]

∂gm
(q, k, t )

∣∣∣∣
g∗

0,g
∗
1,g

∗
n−1

δgm(q, t )

− n

2
eiα

∑
m∈{0,−1,n+1}

∑
q∈Z2

∂L[g0, g−1, gn+1]

∂gm
(q, k, t )

∣∣∣∣
g∗

0,g
∗
−1,g

∗
n+1

δgm(q, t ). (D23)
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One can show that the derivatives of the functional L are

∂L[g0, g1, gn−1]

∂g0
(q, k, t ) = − j�(q)

∑
p∈Z2

gn−1(p, t ) F
{ ∑

s∈Z2 g1(s, t ) j�(s)e−i 2π
L s·r[∑

s∈Z2 g0(s, t ) j�(s)e−i 2π
L s·r]2

}
(k − p − q), (D24)

∂L[g0, g1, gn−1]

∂g1
(q, k, t ) = j�(q)

∑
p∈Z2

gn−1(p, t ) F
{

1∑
s∈Z2 g0(s, t ) j�(s)e−i 2π

L s·r

}
(k − p − q), (D25)

∂L[g0, g1, gn−1]

∂gn−1
(q, k, t ) = K1(k − q, t ), (D26)

and the other three derivatives are determined similarly. In the derivation of the above derivatives, one needs to take particular
care so as to ensure that the perturbed variables depend on the same variables as the functions, with respect to which the
differentiation is performed.

As we have already mentioned, we are interested here in stationary spatially homogeneous solutions of Eq. (D1), f ∗(r, ϕ, t ) =
f ∗(ϕ). This property results in the fact that its Fourier coefficients f ∗

n in Fourier space with respect to the spatial variables are
factorized as g∗

n(k) = δk,0 f ∗
n with δk,0 = δkx,0δky,0 as a product of two Kronecker δ functions. Plugging the found expressions for

all the functional derivatives into Eq. (D23) and evaluating them at the fixed points by using the factorization property, we obtain

∂tδgn(k, t ) = −n2Dϕδgn(k, t ) + iv∗
0

2
kx[δgn+1(k, t ) + δgn−1(k, t )] + v∗

0

2
ky[δgn+1(k, t ) − δgn−1(k, t )]

− n

2 f ∗
0

[
f ∗
1 f ∗

n−1

f ∗
0

j1(k)δg0(k, t ) − f ∗
n−1 j1(k)δg1(k, t ) − f ∗

1 δgn−1(k, t )

]
e−iα

+ n

2 f ∗
0

[
f ∗
−1 f ∗

n+1

f ∗
0

j1(k)δg0(k, t ) − f ∗
n+1 j1(k)δg−1(k, t ) − f ∗

−1δgn+1(k, t )

]
eiα, (D27)

where we have denoted j1(k) = j�(k)/ j�(0) = 2J1(�∗‖k‖)/(�∗‖k‖).
Since n ∈ Z, we have obtained an infinite linear system of ODEs, which we can write more compactly as

∂tδgn(k, t ) =
∞∑

m=−∞
Mn,m(k)δgm(k, t ), (D28)

where the matrix coefficients are given by

Mn,m = −n2Dϕδn,m + v∗
0

2
(ikx − ky)δn−1,m + v∗

0

2
(ikx + ky)δn+1,m

− n

2 f ∗
0

[
f ∗
1 f ∗

n−1

f ∗
0

j1(k)δ0,m − f ∗
n−1 j1(k)δ1,m − f ∗

1 δn−1,m

]
e−iα

+ n

2 f ∗
0

[
f ∗
−1 f ∗

n+1

f ∗
0

j1(k)δ0,m − f ∗
n+1 j1(k)δ−1,m − f ∗

−1δn+1,m

]
eiα, (D29)

where δn,m is the Kronecker δ symbol for n, m ∈ Z. This
system is the linearization of Eq. (D20) around a stationary
spatially homogeneous solution as postulated by Eq. (D22).

The further stability analysis for the spatially homoge-
neous solutions proceeds as follows. One needs to calculate
the eigenvalues λ of the stability matrix M = (Mn,m)n,m∈Z,
each of which is a function of the wave vector k, from the
characteristic equation

det[M − λ(k)I] = 0, (D30)

where I is the identity matrix. The relationship λ = λ(k) is
known as a dispersion relation, and it defines the stability
of a solution with respect to a given wave vector k. If the
real part of all eigenvalues λn, n ∈ Z for all values of the
wave vector is negative, then the solution is stable. If there
exists an eigenvalue such that for a range of k its real part
becomes positive, the solution is unstable. Additionally, in the
latter case, if the imaginary part of the eigenvalue is zero, we

should expect another stationary pattern for that parameter set.
Otherwise, we expect a nonstationary behavior of the system.

In the following, we apply the developed stability analysis
framework to the known stationary spatially homogeneous
solutions, namely, a uniform density function and a von Misés
density function (C11).

a. The uniform solution

We are first interested in the stability analysis of the sim-
plest solution that satisfies Eq. (B18), i.e., a uniform density
function f ∗(r, ϕ, t ) = 1

2π
. Its Fourier transform with respect

to the phase variable is f ∗
n = 1

2π
δn,0. Subsequently, its Fourier

transform with respect to spatial r and angular ϕ variables is
gn(k, t ) = δn,0δk,0. We have constructed everything we need
for the linear stability analysis of this solution so far. We
substitute the Fourier modes of this fixed point into Eq. (D29)
and obtain the linearized system of ODEs described by the
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following matrix:

Mn,m = −n2Dϕδn,m

+ v∗
0

2
(ikx − ky)δn−1,m + v∗

0

2
(ikx + ky)δn+1,m

+ n

2
j1(k)(δn,1e−iα − δn,−1eiα )δn,m. (D31)

If we consider the spatially homogeneous system (C3), the
above matrix simplifies by setting k = (0, 0)T :

Mn,m = −n2Dϕδn,m

+ n

2
(δn,1e−iα − δn,−1eiα )δn,m. (D32)

Since this is a diagonal matrix, we find the eigenvalues
straightforwardly. They are

λ0 = 0,

λ±1 = 1

2
cos α − Dϕ ∓ i

2
sin α,

λn = −n2Dϕ, |n| � 2. (D33)

The zeroth eigenvalue is always neutrally stable and the
eigenvalues with |n| � 2 are always stable since Re(λn) < 0.
The only instability may arise for λ±1. The uniform solution
f (r, ϕ, t ) = 1

2π
is stable, if Re(λ±1) < 0, i.e., if Dϕ > 1

2 cos α.
As a result, the line

Dϕ = 1
2 cos α (D34)

is the transition line for the onset of polar order. This is in
accordance with the result that we had when we analyzed the
traveling wave solution (C22). The numerical investigations
of this solution against both the parallel and transversal per-
turbations does not reveal any new instability mechanisms for
Dϕ > 1

2 cos α.

b. The zero phase lag case

We have showed that the other stationary solution to the
spatially homogeneous system (C3) in the absence of phase
lag α is

f ∗(ϕ) = eγ cos ϕ

2π I0(γ )
, (D35)

where γ = R/Dϕ . The Fourier modes in the series expansion
of this solution with respect to the phase variable ϕ read

f ∗
n = In(γ )

2π I0(γ )
. (D36)

For completeness, we here provide the stability matrix (D29)
for the linearized dynamics of the perturbations to this solu-
tion:

Mn,m = −n2Dϕδn,m

+ v∗
0

2
(ikx − ky)δn−1,m + v∗

0

2
(ikx + ky)δn+1,m

− n

2

[
j1(k)

I1(γ )In−1(γ )

I2
0 (γ )

δ0,m

− j1(k)
In−1(γ )

I0(γ )
δ1,m − I1(γ )

I0(γ )
δn−1,m

]

+ n

2

[
j1(k)

I−1(γ )In+1(γ )

I2
0 (γ )

δ0,m

− j1(k)
In+1(γ )

I0(γ )
δ−1,m − I−1(γ )

I0(γ )
δn+1,m

]
. (D37)

Because of its form, we cannot solve an eigenvalue problem
for this stability matrix in the spatially nonhomogeneous case
analytically. Thus, we solve it numerically. As a result, it
appears that the von Misés density function is always stable
for Dϕ < 1

2 (see its further analysis in the next Appendix on
the hydrodynamic theory approach).

2. Traveling wave solutions

Inside the region of partial polar order, we have shown
that the solution to Eq. (C3) in the presence of the phase lag
is given by Eq. (C22). If we use the ansatz ω = ϕ − vt , we
find that Eq. (C24) solves Eq. (C3) as well as Eq. (D1). The
stability analysis framework, developed so far, is valid only
for the stationary solutions of Eq. (D1), which was stated in
Eq. (D22). In order to make the same framework be applicable
to Eq. (C24), we introduce the following ansatz being an
extension to the traveling wave ansatz used before:

ξ = cos(vt )x + sin(vt )y,

η = − sin(vt )x + cos(vt )y,

ω = ϕ − vt, h(ξ, η, ω, t ) = f (x, y, ϕ, t ). (D38)

Leaving alone the spatial variables for the moment, the pre-
vious substitution of the form f (ϕ, t ) = g(ω) transforms the
PDE of two variables into the ODE. Instead, if we consider
the substitution like f (ϕ, t ) = h(ω, t ), we transform the PDE
to the moving frame ϕ − vt , which has the solution Eq. (C22)
as its stationary solution. Now, in order to perform the stability
analysis of Eq. (D1) instead of Eq. (C3), one also needs to take
into account that with the substitution ω = ϕ − vt , the spatial
advection terms become dependent on time and the stability
analysis is again not applicable. In order to circumvent that,
we introduce the ansatz (D38). After its application, the PDE
becomes

∂t h = −(v0 cos ω+vη)∂ξ h − (v0 sin ω−vξ )∂ηh

+ Dϕ∂ωωh + v∂ωh

− ∂ω

[
h

∫
C(r) h(r′, ω′, t ) sin(ω′−ω−α) dr′ dω′∫

C(r) h(r′, ω′, t ) dr′ dω′

]
,

(D39)

where we now denote the spatial vector as r = (ξ, η) ∈ U2.
This equation admits the profile of the spatially homoge-

neous traveling wave solution (C22) as its stationary solution:

h(ω) = c0E (ω)

[
1 + c1

∫ ω

0 E−1(ω′) dω′∫
T E−1(ω′) dω′

]
, (D40)

where E (ω) = exp [− v
Dϕ

ω + R
Dϕ

cos(ω + α)], c0 is a normal-

ization constant, and c1 = (e2π v
Dϕ − 1) comes from a period-

icity constraint.
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Due to that fact, we can proceed in the same manner as we
did for the stationary solutions. First, we expand the density
function h into a Fourier series with respect to the phase ω and
substitute the expansion into Eq. (D39). If we gather the terms
of each Fourier mode together, we obtain

∂t hn(r, t ) = −n2Dϕhn + v(r × ∇)hn − invhn

− v0

2
∂ξ (hn+1 + hn−1) + iv0

2
∂η(hn+1 − hn−1)

+ n

2

[
hn−1

∫∫
B(r) h1(r′, t ) dr′∫∫
B(r) h0(r′, t ) dr′ e

−iα

− hn+1

∫∫
B(r) h−1(r′, t ) dr′∫∫
B(r) h0(r′, t ) dr′ eiα

]
, (D41)

where × denotes the third component of a cross product, i.e.,
r × ∇ = ξ∂η − η∂ξ .

Next, we need to transform this hierarchy of position-
dependent Fourier modes into the Fourier space with respect
to the spatial variables using Eq. (D12). Most of the terms are
transformed as described in the previous section, except for

F{v(r × ∇)hn}(k, t )

= iv
2π

L
F{(k × r)hn(r, t )}(k, t )

= ivπ (kx − ky)gn(kx, ky, t )

+
∑

qy ∈ Z
ky �= qy

vkx

ky − qy
gn(kx, qy, t )

−
∑

qx ∈ Z
kx �= qx

vky

kx − qx
gn(qx, ky, t ). (D42)

The appearance of the couplings between gn(k) and gn(k′)
with k �= k′, i.e., to the function values at the wave vectors
other than k, makes the subsequent linear stability analysis
convoluted and computationally unfeasible. We could map
three Fourier indices n, kx, and ky into one index and perform
the stability analysis of all the perturbations together but the
solution to the eigenvalue problem would lose the spatial
dependence, and we would not be able to obtain the dispersion
relations and draw necessary conclusions. But note that if we
rescale the spatial dimension in Eq. (D44) as k′ = v0k (see the
detailed example about the rescaling of the marginal density
function in Appendix E 4), we see that the above Fourier
transform is mainly determined by the first term in the limit
of small particle velocities v0 so that we may assume

F{v(r × ∇)hn}(k, t ) ≈ ivπ (kx − ky)gn(kx, ky, t ). (D43)

As a result, the PDE (D41) for the Fourier modes of the
traveling wave solution in the Fourier space with respect to
the spatial variables becomes

∂t gn(k, t ) = −(n2Dϕ + inv)gn

+ ivπ (kx − ky)gn(k, t )

+ iv∗
0

2
kx(gn+1 + gn−1) + v∗

0

2
ky(gn+1 − gn−1)

+ n

2

[
e−iα

∑
q∈Z2

gn−1(q, t )K1(k − q, t )

− eiα
∑
q∈Z2

gn+1(q, t )K−1(k − q, t )

]
, (D44)

where we have again denoted v∗
0 = 2π

L v0 and we will also use
�∗ = 2π

L �.
At this point, we postulate again that in order to proceed

further in the derivation of the linearized differential equations
for the perturbations, we use the fact that the solutions we
are interested in are stationary solutions of Eq. (D39); i.e.,
their Fourier transforms with respect to the spatial variables
are g∗

n(k) = δk,0h∗
n. Under such assumptions, the perturbations

have the form (D22), and we need to linearize Eq. (D44)
around g∗

n, n ∈ Z.
Following the same procedure as for the stationary solu-

tions, we find the time evolution of the linearized dynamics of
small spatially dependent perturbations to be

∂tδgn(k, t ) = −(n2Dϕ + inv)δgn

+ ivπ (kx − ky)δgn

+ iv∗
0

2
kx(δgn+1+δgn−1)+ v∗

0

2
ky(δgn+1−δgn−1)

− n

2h∗
0

[
h∗

1h∗
n−1

h∗
0

j1(k)δg0(k, t )

− h∗
n−1 j1(k)δg1(k, t ) − h∗

1δgn−1(k, t )

]
e−iα

+ n

2h∗
0

[
h∗

−1h∗
n+1

h∗
0

j1(k)δg0(k, t )

− h∗
n+1 j1(k)δg−1(k, t ) − h∗

−1δgn+1(k, t )

]
eiα.

(D45)

The corresponding stability matrix coefficients (D28) read

Mn,m = −(n2Dϕ + inv)δn,m

+ ivπ (kx − ky)δn,m

+ v∗
0

2
(ikx − ky)δn−1,m + v∗

0

2
(ikx + ky)δn+1,m

− n

2h∗
0

[
h∗

1h∗
n−1

h∗
0

j1(k)δ0,m

− h∗
n−1 j1(k)δ1,m − h∗

1δn−1,m

]
e−iα

+ n

2h∗
0

[
h∗

−1h∗
n+1

h∗
0

j1(k)δ0,m

− h∗
n+1 j1(k)δ−1,m − h∗

−1δn+1,m

]
eiα. (D46)

a. The nonzero phase lag case

In order to perform the stability analysis of the traveling
wave solution, we need to transform it first into the Fourier
space with respect to the phase variable ϕ. However, one

022604-17



KRUK, CARRILLO, AND KOEPPL PHYSICAL REVIEW E 102, 022604 (2020)

cannot straightforwardly integrate it using Eq. (D4) as re-
quired by the definition of Fourier modes. We first make use of
the following decomposition of an exponential function into
a series containing the modified Bessel functions of the first
kind,

eγ cos ϕ = I0(γ ) + 2
∞∑

ν=1

Iν (γ ) cos(νϕ), γ ∈ R, ϕ ∈ T ,

(D47)

in order to rewrite the corresponding terms in the density
function. Such a decomposition makes it possible to integrate
Eq. (D40) when applying Eq. (D4). Performing the lengthy
integration, one can show that the Fourier modes take the
following form:

fn(t ) = c0

{
c1(n)I0(γ )In(−γ )+

∞∑
ν=1

Iν (γ )
[
c1(n+ν)In+ν (−γ )

+ c1(n − ν)In−ν (−γ )
]}

e−inα, (D48)

where as previously γ = R/Dϕ and the normalization con-
stant can be shown to be

c0 = 1

2π

{
c1(0)I2

0 (γ ) +
∞∑

ν=1

Iν (γ )Iν (−γ )[c1(ν) + c̄1(ν)]

}−1

,

(D49)

where c̄1 denotes a complex conjugate. We have also denoted
for brevity

c1(ν) = v/Dϕ + iν

(v/Dϕ )2 + ν2
. (D50)

Given such a representation of the solution (D40) and
an even more complicated form of the stability matrix than
it was for the zero phase lag case, the only way to study
stability properties here is using the numerical methods. For
spatially homogeneous perturbations, we find that Eq. (D40)
is always stable for Dϕ < 1

2 cos α. However, we are interested
in the development of small spatially dependent perturbations
to the solution (D40). The dynamics of such perturbations is
governed by the linearized system (D45). It depends on the
Fourier modes fn, n ∈ Z of the solution, which are given by
Eq. (D48).

APPENDIX E: STABILITY ANALYSIS VIA
HYDRODYNAMIC THEORY

The stability analysis from the point of view of the kinetic
theory is effective when using the numerical methods, thus,
providing us with the quantitative information about the insta-
bility mechanisms that act on a solution. If we want to have
the qualitative description of the system behavior with respect
to the microscopic parameters of the model, we must restrict
the consideration of the infinite hierarchy of the Fourier
modes (D9) to the first several ones. The common strategy to
pursue is the following. The expansion of the density function
that solves the original spatially nonhomogeneous PDE (D1)
into a Fourier series transforms the problem of solving the
temporal dynamics of the 3 + 1-dimensional density function

into the problem of solving the temporal dynamics of the
infinite system of 2 + 1-dimensional density functions. The
first modes from that hierarchy can be given a reasonable
interpretation. Namely, the integration of f (r, ϕ, t ) over the
phase variable gives a marginal density function of spatial
coordinates r = (x, y) ∈ U2:

ρ(r, t ) =
∫
T

f (r, ϕ, t ) dϕ = 2π f0(r, t ). (E1)

This definition also establishes the connection of the marginal
density function to the zeroth Fourier mode defined in
Eq. (D3). Furthermore, we consider an arbitrary unit velocity
vector e(ϕ) = (cos ϕ, sin ϕ) ∈ S1 ⊂ R2 and find its expecta-
tion with respect to the one particle density function f (r, ϕ, t ).
The result of this operation is known to be a momentum
field w(r, t ) = (wx(r, t ),wy(r, t )) ∈ R2, which is defined in
the relation to the Fourier modes as

wx(r, t ) =
∫
T

cos ϕ f (r, ϕ, t ) dϕ = π [ f1(r, t ) + f−1(r, t )],

wy(r, t ) =
∫
T

sin ϕ f (r, ϕ, t ) dϕ

= −iπ [ f1(r, t ) − f−1(r, t )]. (E2)

The marginal density function and the momentum field con-
stitute a hydrodynamic description of a system of interacting
particles.

The momentum field, divided by the marginal density func-
tion, is isomorphic to the order parameter we introduced ear-
lier (C25), i.e., we could associate wx (r,t )

ρ(r,t ) = R(r, t ) cos �(r, t )

and wy (r,t )
ρ(r,t ) = R(r, t ) sin �(r, t ). Thus, the knowledge of the

hydrodynamic variables ρ(r, t ) and w(r, t ) automatically al-
lows us to evaluate the degree of polarization in the particle
flow. Examples of coarse-grained hydrodynamic variables can
be found in Fig. 7.

1. Stationary solutions

We are interested in the time evolution of the marginal
density function and the momenta. They are obtained directly
from the above definitions using the differential equations of
the respective Fourier coefficients. Since the temporal dynam-
ics of each Fourier mode is coupled to the neighboring modes,
we cannot derive the required equations immediately. Namely,
we see that the first Fourier mode couples to the second
one through the convective terms and through the nonlinear
alignment terms (D9). In order to obtain the closure, we
adopt the approach of Ref. [46]. We assume that the temporal
evolution of the nematic order field, which is related to the
second Fourier modes, is a small quantity, giving ∂t f±2 ≈
0. Furthermore, we assume that the higher order fields are
negligible fn ≈ 0, |n| � 3. This is appropriate for sufficiently
high diffusion levels since ∂t fn ∝ −n2Dϕ . As a result, the
second Fourier mode is approximated by

f2(r, t ) ≈ − v0

8Dϕ

[∂x f1(r, t ) + i∂y f1(r, t )]

+ f1(r, t )

4Dϕ

∫∫
B(r) f1(r′, t ) dr′∫∫
B(r) f0(r′, t ) dr′ e

−iα. (E3)
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Using the closure relation (E3), we find the following system
of differential equations for the marginal density ρ = ρ(r, t )
and the momentum field w = w(r, t ):

∂tρ = −v0∇ · w,

∂tw = −v0

2
∇ρ − Dϕw + v2

0

16Dϕ


w + ρ

2
Q−αW

+ 1

8Dϕ

{
v0

2
Qα[(W · ∇)w + (W ⊥ · ∇)w⊥]

−w‖W‖2 + v0Q−α[∇(w · W ) − (W · ∇)w

−(∇ · W )w − W (∇ · w) − (w · ∇)W ]

}
, (E4)

where w⊥ = (−wy,wx )T and W ⊥ = (−Wy,Wx )T . We
have denoted the spatially averaged momentum field
as W = W (r, t ) = ∫∫B(r) w(r′, t ) dr′/

∫∫
B(r) ρ(r′, t ) dr′ by

analogy with the interaction terms in Eq. (B18). Note that the
neighborhood domain B(r) implicitly depends on the radius
of interaction �, as defined previously by Eq. (D10). The

matrix Qα =
(

cos α − sin α

sin α cos α

)
represents anticlockwise

rotation by α radians.
We begin our analysis by looking for the solutions of

Eq. (E4). As usual for such models, Eq. (E4) has two station-
ary spatially homogeneous solutions. The first one (ρ,w) =
(1, 0, 0) represents a spatially uniform disordered state of the
system. The second one is best found using the polar represen-
tation for the momentum field. Note that due to the approach
we used to derive the continuum limit, the particle density
ρ0 ≡ 1 since we are bound to work only with probability DFs,
and as a result the marginal density function ρ = 1. Assuming
the temporal and spatial independence of the solutions, we
have W = (π�2wx, π�2wy)T . We find the second solution,
which represents the partially synchronized flocking, to be
(ρ,w) = (1, ‖w∗‖ cos ϕ0, ‖w∗‖ sin ϕ0), where the degree of
polarization is

‖w∗‖ = 2
√

Dϕ (cos α − 2Dϕ ) (E5)

and ϕ0 ∈ T is an arbitrary direction subject to initial condi-
tions. One of the assumptions that we have used to obtain
the closure relation (E3) is that the diffusion level is high
enough to justify the negligence of the higher order Fourier
modes. We can now see from Eq. (E5) the limitations of
those assumptions. Namely, it shows that the polarization
level goes to zero with the diffusion value going to zero which
is definitely not correct. From our previous study we know
that the polarization level goes up to one with the decrease
of Dϕ . But at the onset of the flocking Dϕ = 1/2, the answer
is correct. By analyzing Eq. (E5), we find that the maximum
polarization level could be

√
2

2 cos α and it is attained at Dϕ =
1
4 cos α. Thus, the hydrodynamic equations (E4) are correct
for the range 1

4 cos α � Dϕ � 1
2 cos α, the latter of which is

the order-disorder transition line as we already know, and it is
also the existence condition for Eq. (E5).

Now that we have the solutions of the model, we proceed
with the analysis of their stability. As previously, we first
transform the equations to the Fourier space with respect to

the spatial variables. Since we work in the space with periodic
boundaries, we may expand the marginal density function as

ρ(r, t ) =
∑
k∈Z2

ρ̂(k, t )e−i 2π
L k·r, (E6)

where the coefficients of each mode are defined as

ρ̂(k, t ) = F{ρ(r, t )}(k, t )

= 1

L2

∫∫
U2

ρ(r, t )ei 2π
L k·rdr. (E7)

The expansion for the momentum field is defined similarly.
The transformation of Eq. (E4) into the Fourier space with

respect to the spatial variables is then performed the same way
as we did it in the kinetic theory. Thus, we do not delve into
all the details here but mention several key points. Namely,
the transforms of all functionally different terms can be found
to be

F{∇ · w(r, t )}(k, t ) = −i
2π

L
[ŵ(k, t ) · k], (E8)

F{∇ρ(r, t )}(k, t ) = −i
2π

L
ρ̂(k, t )k, (E9)

F{
w(r, t )}(k, t ) = −
(

2π

L

)2

|k|2ŵ(k, t ), (E10)

F{ρ(r, t )W (r, t )}(k, t ) =
∑
q∈Z2

ρ̂(q, t )K1(k − q, t ), (E11)

F{∇[w(r, t ) · W (r, t )]}(k, t )

= −i
2π

L
k
∑
q∈Z2

[ŵ(q, t ) · K1(k − q, t )], (E12)

F{w(r, t )[∇ · W (r, t )]}(k, t )

= −i
2π

L

∑
q∈Z2

ŵ(q, t )[(k − q) · K1(k − q, t )], (E13)

F{[w(r, t ) · ∇]W (r, t )}(k, t )

= −i
2π

L

∑
q∈Z2

[(k − q) · ŵ(q, t )]K1(k − q, t ), (E14)

F{W (r, t )[∇ · w(r, t )]}(k, t )

= −i
2π

L

∑
q∈Z2

[q · ŵ(q, t )]K1(k − q, t ), (E15)

F{[W (r, t ) · ∇]w(r, t )}(k, t )

= −i
2π

L

∑
q∈Z2

ŵ(q, t )[q · K1(k − q, t )], (E16)

F{w(r, t )‖W (r, t )‖2}(k, t )

=
∑
q∈Z2

ŵ(q, t )K2(k − q, t ), (E17)

where we have introduced two kernel functions in comparison
with the ones from the previous chapter:

K1(k − q, t ) = 1

L2

∫∫
U2

W (r, t )ei 2π
L (k−q)·rdr,

K2(k − q, t ) = 1

L2

∫∫
U2

‖W (r, t )‖2ei 2π
L (k−q)·rdr. (E18)
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Note that the spatially averaged momentum field can be written in terms of the wave vectors as

W (r, t ) =
∑

p∈Z2 ŵ(p, t ) j�(p)e−i 2π
L p·r∑

p∈Z2 ρ̂(p) j�(p)e−i 2π
L p·r , (E19)

where j�(p) = J1( 2π
L �‖p‖)/‖p‖ as before.

The hydrodynamic equations in the Fourier space with respect to the spatial variables read

∂t ρ̂(k) = iv∗
0 [k · ŵ(k)],

∂t ŵ(k) = iv∗
0

2
kρ̂(k) − Dϕŵ(k) − (v∗

0 )2

16Dϕ

|k|2ŵ(k)

+
∑
q∈Z2

(
1

2
Q−αρ̂(q)K1(k−q) − 1

8Dϕ

ŵ(q)K2(k−q) − iv∗
0

16Dϕ

Qα{ŵ(q)[q·K1(k−q)] + ŵ⊥(q)[q·K1,⊥(k−q)]}

− iv∗
0

8Dϕ

Q−α{k[ŵ(q)·K1(k−q)] − ŵ(q)[k·K1(k−q)] − [k·ŵ(q)]K1(k−q)}
)

, (E20)

where K1,⊥ = (−K1,y, K1,x )T and we use v∗
0 = 2π

L v0 and �∗ = 2π
L � as before. Note that we suppressed the explicit time

dependence of ρ̂, ŵ, K1, and K2 for compactness.
Let a stationary spatially homogeneous solution to Eq. (E4) be ρ(r, t ) = 1 (since we are allowed to work only with probability

density functions) and w(r, t ) = w∗. Due to its spatial homogeneity, the Fourier transform of such a solution is ρ̂(k, t ) = ρ̂∗(k) =
δk,0, ŵ(k, t ) = ŵ∗(k) = w∗δk,0 with δk,0 = δkx,0δky,0. We consider the infinitesimal deviations from such a solution as

δρ̂(k, t ) = ρ̂(k, t ) − ρ̂∗(k), δŵ(k, t ) = ŵ(k, t ) − ŵ∗(k), (E21)

and we want to derive the linearized dynamics for these perturbations if they evolve according to Eq. (E20). Note that the kernels
K1 and K2 implicitly depend on the marginal density ρ̂ and the momentum field ŵ.

The complete procedure how the linearization is done is the same as it was previously for the kinetic equations. For that
reason, we do not go into the details here. One can show that the linearized dynamics of the perturbations around a stationary
solution follow

∂tδρ̂(k, t ) = iv∗
0 [k · δŵ(k, t )],

∂tδŵ(k, t ) =
{

iv∗
0

2
k + 1

2
[1 − j1(k)]Q−αw∗ + 1

4Dϕ

j1(k)‖w∗‖2w∗ + iv∗
0

8Dϕ

Q−α j1(k)[‖w∗‖2k − 2(k · w∗)w∗]

}
δρ̂(k, t )

+
{
−Dϕ − (v∗

0 )2

16Dϕ

|k|2 + 1

2
j1(k)Q−α − 1

8Dϕ

‖w∗‖2I − 1

4Dϕ

j1(k)(w∗ ⊗ w∗)

− iv∗
0

16Dϕ

Qα[(k · w∗)I + (k · w∗
⊥)Q π

2
] − iv∗

0

8Dϕ

[1 + j1(k)]Q−α[(k ⊗ w∗) − (w∗ ⊗ k) − (k · w∗)I]

}
δŵ(k, t ), (E22)

where ⊗ denotes the outer product. As before, we have denoted j1(k) = 2J1(�∗|k|)/(�∗|k|).
For the further analysis, it would be helpful to rewrite this linearized system in a matrix form as

∂t

⎛
⎝ δρ̂

δŵx

δŵy

⎞
⎠ = M

⎛
⎝ δρ̂

δŵx

δŵy

⎞
⎠, (E23)

where M = (Mn,m)n,m=1,2,3 is the stability matrix with the coefficients

M11 = 0, M12 = iv∗
0kx, M13 = iv∗

0ky, (E24)

M21 = iv∗
0

2
kx + 1

2
[1 − j1(k)](w∗ · nα ) + 1

4Dϕ

j1(k)‖w∗‖2w∗
x + iv∗

0

8Dϕ

j1(k)[‖w∗‖2(k · nα ) − 2(k · w∗)(w∗ · nα )], (E25)

M22 = iv∗
0

8Dϕ

{
[1+ j1(k)]

[(
w∗ ·nα

)
kx − w∗

x (k·nα )
]+

[
1

2
+ j1(k)

]
(k·w∗) cos α

+ 1

2

(
k·w∗

⊥
)

sin α

}
− Dϕ − (v∗

0 )2

16Dϕ

|k|2 + 1

2
j1(k)

[
cos α −

(
w∗

x

)2
2Dϕ

]
− ‖w∗‖2

8Dϕ

, (E26)
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M23 = iv∗
0

8Dϕ

{
[1 + j1(k)][(w∗ · nα )ky − w∗

y (k · nα )] +
[

3

2
+ j1(k)

]
(k · w∗) sin α + 1

2
(k · w∗

⊥) cos α

}

+ 1

2
j1(k)

(
sin α − w∗

x w
∗
y

2Dϕ

)
, (E27)

M31 = iv∗
0ky

2
− 1

2
[1 − j1(k)](nα · w∗

⊥) + 1

4Dϕ

j1(k)‖w∗‖2w∗
y

+ iv∗
0

8Dϕ

j1(k)[2(k · w∗)(nα · w∗
⊥) − ‖w∗‖2(nα · k⊥)], (E28)

M32 = iv∗
0

8Dϕ

{
[1 + j1(k)][w∗

x (k⊥ · nα ) − (w∗
⊥ · nα )kx] −

[
3

2
+ j1(k)

]
(k · w∗) sin α − 1

2
(k · w∗

⊥) cos α

}

− 1

2
j1(k)

(
sin α + w∗

x w
∗
y

2Dϕ

)
, (E29)

M33 = iv∗
0

8Dϕ

{
[1 + j1(k)][w∗

y (k⊥ · nα ) − (w∗
⊥ · nα )ky] +

[
1

2
+ j1(k)

]
(k · w∗) cos α + 1

2
(k · w∗

⊥) sin α

}
− Dϕ

− (v∗
0 )2

16Dϕ

|k|2 + 1

2
j1(k)

[
cos α − (w∗

y )2

2Dϕ

]
− ‖w∗‖2

8Dϕ

, (E30)

where nα = (cos α, sin α)T and k⊥ = (−ky, kx )T .
The general form of the linearized matrix is not particularly informative, and we need to instantiate the solutions to Eq. (E4)

as well as impose various assumptions on the parameters in order to simplify the above expressions and draw any conclusions.
Still, there are some useful observations from the form of the linearized dynamics. First, the phase lag α and the noise strength
Dϕ appear nontrivially in most of the matrix coefficients, so they are definitely the parameters that determine the linear stability
of the system. Second, the particle velocity v0 and the interaction range � both appear only as multipliers of the wave vector
k. Thus, they both influence the spatial scale of the perturbations. But they do so separately, i.e., � appears only inside j1(k).
As a result, by rescaling k̃ = v∗

0k, we have j1(k) = 2J1( �∗
v∗

0
|k̃|)/( �∗

v∗
0
|k̃|), which signifies that the third independent parameter that

is important for the stability of the solutions is �∗/v∗
0 ratio. For this reason, the length scale of the patterns that result from

the instability of the partially synchronized solution, scales proportionally to �∗/v∗
0 . However, since the radius of interaction is

restricted to be in [0, 1
2 ] range, we will keep these two parameters separately in the subsequent derivations. Note also that in the

view of the fact that the wave numbers are integers, v∗
0 and �∗ would determine whether the instabilities are detected at all.

2. The uniform solution

The uniform solution, which signifies the disordered motion of particles, is

(ρ,wx,wy) = (1, 0, 0). (E31)

The stability matrix M for this solution simplifies to⎛
⎜⎝

0 iv∗
0kx iv∗

0ky
iv∗

0
2 kx

1
2 j1(k) cos α − Dϕ − (v∗

0 )2

16Dϕ
|k|2 1

2 j1(k) sin α

iv∗
0

2 ky − 1
2 j1(k) sin α 1

2 j1(k) cos α − Dϕ − (v∗
0 )2

16Dϕ
|k|2

⎞
⎟⎠. (E32)

In the presence of a phase lag, the characteristic equation to the above matrix is a third degree polynomial and the explicit
solutions of it are not particularly informative. In order to gain insight whether the long-wavelength instability is possible for
this solution, we expand the eigenvalues up to the second order both in the wave number kx around kx = 0 and in the diffusion
constant around the order-disorder transition line Dϕ = 1

2 . The resulting expansions read

λ1(|k|, Dϕ ) ≈ − 4
√

3

9| sin α|
(

Dϕ − 1

2
cos α

)2

, λ2,3(|k|, Dϕ ) ≈ ± i

2
| sin α| − 4

3

(
Dϕ − 1

2
cos α

)

− 1

2

[
(v∗

0 )2

4 cos α
+ (�∗)2 cos α

8
∓ i(v∗

0 )2

| sin α|
]
|k|2 + 1

| sin α|

(
2
√

3

9
±6i

)(
Dϕ− 1

2
cos α

)2

. (E33)

The first eigenvalue is negative for all the parameters and wave
numbers. The other two eigenvalues are oscillating quantities

for α �= 0 and they are stable for Dϕ > 1
2 cos α which is the

order-disorder transition line we have encountered earlier. As
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a result, along a transition line that characterizes the onset of
the synchronized motion, there are no long-wavelength insta-
bility mechanisms leading to the formation of a new behavior.
The scanning of the regions farther from the transition line
with the help of numerical methods shows that there are no
other instabilities for this solution too.

3. The synchronized solution in the zero phase lag case

The solution that signifies the onset of collective motion
may point to an arbitrary direction. Thus, we write it as w∗ =
‖w∗‖e(ϕ), where as previously e(ϕ) = (cos ϕ, sin ϕ) ∈ S1 ⊂
R2 is a unit vector in the direction of ϕ ∈ T . Without loss of
generality, we put e(ϕ) = (1, 0) henceforth.

a. Longitudinal perturbations

We consider the longitudinal perturbations of the form k =
(kx, 0)T , δŵ = (δŵx, 0)T . The matrix coefficients thus read

M11 = 0, M12 = iv∗
0kx, M13 = 0, (E34)

M21 = ‖w∗‖
[

1

2
[1 + j1(k)] cos α − 2 j1(k)Dϕ

]

+ iv∗
0

2
kx[1 − j1(k)(cos α − 2Dϕ ) cos α],

(E35)

M22 = − (v∗
0 )2

16Dϕ

k2
x −

[
1

2
[1 + j1(k)] cos α − 2 j1(k)Dϕ

]

+ iv∗
0

8Dϕ

kx

[
1

2
+ j1(k)

]
‖w‖ cos α, (E36)

M23 = 1

2
j1(k) sin α + iv∗

0

8Dϕ

kx

[
3

2
+ j1(k)

]
‖w‖ sin α,

(E37)

M31 = −1

2
[1 − j1(k)]‖w∗‖ sin α

+ iv∗
0

2
kx j1(k)(cos α − 2Dϕ ) sin α,

(E38)

M32 = −M23, (E39)

M33 = − (v∗
0 )2

16Dϕ

k2
x + 1

2
[ j1(k) − 1] cos α

+ iv∗
0

8Dϕ

kx

[
1

2
+ j1(k)

]
‖w∗‖ cos α. (E40)

The general form of the dispersion relations given by solv-
ing the third-order polynomial of the characteristic equation
is a complex and uninformative expression. In order to get
the insights about the behavior of the perturbations near the
order-disorder transition, we consider some simplified cases
[5].

We first analyze the Vicsek model, which is obtained by
setting α = 0. We see that the dynamics of the perturbations
towards the marginal density function decouples from the one
towards the momenta, and we have

λ1(k) = M33,

λ2,3(k) = 1
2

(
M22 ±

√
M2

22 + 4M12M21
)
. (E41)

In the long-wavelength limit kx → 0 + 0, two of the above
dispersion relations tend to zero and the third one is always
negative. The first one up to the fourth order in kx reads

λ1(kx ) = 3iv∗
0

16Dϕ

‖w∗‖kx −
[

(v∗
0 )2

Dϕ

+ (�∗)2

]
k2

x

16

− iv∗
0 (�∗)2

64Dϕ

‖w∗‖k3
x + (�∗)4

384
k4

x + O
(
k5

x

)
. (E42)

The real part of the dispersion relation is negative for small
kx. One could find the condition for the instability as k2

x >
24

(�∗ )4 [ (v∗
0 )2

Dϕ
+ (�∗)2]. This condition is satisfied provided kx �

0, which is however out of the validity of the approximation.
The expansion of the other hydrodynamic mode reads

λ2(kx ) = iv∗
0‖w∗‖kx − (v∗

0 )2

2

[
9

128Dϕ

+ 1

1 − 2Dϕ

− 1 − Dϕ

2

(
4 − 3

8Dϕ

)2]
k2

x + O
(
k3

x

)
. (E43)

One can show that the real part of this dispersion relation is
always negative for Dϕ < 1/2. Thus, the second dispersion
relation is always stable. As a result, for the Vicsek model
with α = 0, the synchronized homogeneous solution is always
stable against long-wavelength perturbations.

This result appears as a contradiction to the one obtained
for the classical Vicsek model that was shown to exhibit
longitudinal long-wavelength instability leading to the emer-
gence of the traveling waves. The explanation for this is the
type of the continuum limit we derived and the subsequent
requirement to have a normalization in the alignment term.
In the limit N

L2 = const for N, L → ∞, they do not use the
normalization by the number of particles in time continuous
modifications for the Vicsek model. This is not required
during the derivation of the continuum limit because of the
assumption N

L2 = const, which allows to handle the alignment
term. In our case, we do not use such an assumption. There-
fore, in order to keep the alignment term finite in the transition
N → ∞, we introduce the normalization by the number of
particles.

b. Transversal perturbations

We consider the transversal perturbations of the form k =
(0, ky)T , δŵ = (0, δŵy), i.e., orthogonal to the direction of
collective motion. The matrix coefficients thus read

M11 = 0, M12 = 0, M13 = iv∗
0ky, (E44)

M21 = ‖w∗‖
{

1

2
[1 + j1(k)] cos α − 2 j1(k)Dϕ

}

+ iv∗
0

2
ky j1(k)(cos α − 2Dϕ ) sin α,

(E45)

M22 = − (v∗
0 )2

16Dϕ

k2
y −

{
1

2
[ j1(k) + 1] cos α − 2 j1(k)Dϕ

}

− iv∗
0

8Dϕ

ky

[
1

2
+ j1(k)

]
‖w∗‖ sin α,

(E46)
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M23 = 1

2
j1(k) sin α

+ iv∗
0

8Dϕ

ky

[
3

2
+ j1(k)

]
‖w∗‖ cos α,

(E47)

M31 = iv∗
0

2
ky − 1

2
[1 − j1(k)]‖w∗‖ sin α

+ iv∗
0

2
ky j1(k)(cos α − 2Dϕ ) cos α,

(E48)

M32 = −M23, (E49)

M33 = − (v∗
0 )2

16Dϕ

k2
y + 1

2
[ j1(k) − 1] cos α

− iv∗
0

8Dϕ

ky

[
1

2
+ j1(k)

]
‖w∗‖ sin α.

(E50)

First, we consider the simplified case of the zero phase lag
α = 0, which is again equivalent to the linear Vicsek regime.

The two dispersion relations are then given by

λ1,2(ky) = 1
2

(
M33 ±

√
M2

33 + 4M13M31
)
. (E51)

Expanding them to the second order in ky around ky = 0
reveals

λ1,2(ky) = ±iv∗
0

√
1 − Dϕky

−
[

(v∗
0 )2

Dϕ

+ (�∗)2

]
k2

y

32
+ O

(
k3

y

)
. (E52)

We see that their real part is always negative. Thus, the
solution is also stable against transversal perturbations in the
linear Vicsek regime α = 0.

4. The traveling wave solution

As it was the case for the kinetic theory, the stability
analysis of the traveling wave solutions cannot be carried
out using Eq. (E4) because it has been developed under the
assumption of the stationarity of the solutions. Therefore,
we need to rederive the corresponding hydrodynamic equa-
tions for the traveling wave solutions anew, starting from the
Fourier modes (D41). Since the most of the derivations are
straightforward generalizations of the ones from the previous
section, we provide only the key steps here.

The assumptions made to obtain the closure relation (E3)
are the same as for the stationary solutions, except that we
additionally assume that the spatial variation of the nematic
order field is negligible ∇h±2 ≈ 0. This is appropriate for
sufficiently high diffusion levels, which we have also as-
sumed previously in the context of the hydrodynamic theory.
The hydrodynamic equations describing the evolution of the
marginal density function ρ = ρ(r, t ) and the momentum
field w = w(r, t ) read

∂tρ = −v0∇ · w + v(r × ∇)ρ,

∂tw = −v0

2
∇ρ − C1w + v(r × ∇)w + v2

0

8
C2
w

+ ρ

2
Q−αW + 1

4
C2

{
v0

2
Qα[(W · ∇)w + (W ⊥ · ∇)w⊥]

− w‖W‖2 + v0Q−α[∇(w · W ) − (W · ∇)w

− (∇ · W )w − W (∇ · w) − (w · ∇)W ]

}
, (E53)

where the matrix Qα = (cos α − sin α

sin α cos α

)
represents anticlock-

wise rotation by α radians; the matrix C1 = (Dϕ −v

v Dϕ

)
arises

due to the coupling between the longitudinal and transversal
length scales; the matrix C2 = 1

4D2
ϕ+v2

(2Dϕ v

−v 2Dϕ

)
arises due to

the coupling between the first and second Fourier modes.
The system has two stationary spatially homogeneous so-

lutions. The first one (ρ,w) = (1, 0, 0) represents a spatially
homogeneous disordered state of the system. The second
one, which represents the partially synchronized flocking, is
(ρ,w) = (1, ‖w∗‖ cos ϕ0, ‖w∗‖ sin ϕ0), where the degree of
polarization is

‖w∗‖ =
√

1

Dϕ

(
4D2

ϕ + v2
)
(cos α − 2Dϕ ), (E54)

and ϕ0 ∈ T is an arbitrary direction subject to initial condi-
tions. The group velocity v is not a parameter of choice here
but implicitly depends on other microscopic parameters of the
Langevin dynamics (see the main text). Generally, it can be
estimated from the self-consistent system of equations (C26).
But we have shown that near the order-disorder transition line
the group velocity is equal v = − 1

2 sin α. Thus, the degree of
polarization (E54) next to that transition line is

‖w∗‖ =
√(

4Dϕ + sin2 α

4Dϕ

)
(cos α − 2Dϕ ), (E55)

which agrees well with the result shown in Fig. 2(a).
Next, we are going to test the solutions on the matter

of stability. We transform Eq. (E53) into the Fourier space
with respect to the spatial variables. Most of the terms are
transformed as it was described in the previous section, except
for the following term arising after the application of the
ansatz (D38):

F{v(r × ∇)ρ}(k, t ) = iv
2π

L
F{(k × r)ρ(r, t )}(k, t )

= ivπ (kx − ky)ρ̂(kx, ky, t )

+
∑

qy ∈ Z
ky �= qy

vkx

ky − qy
ρ̂(kx, qy, t )

−
∑

qx ∈ Z
kx �= qx

vky

kx − qx
ρ̂(qx, ky, t ). (E56)

The corresponding term of the momentum equation is treated
similarly.

The appearance of the couplings to the function values at
other wave vectors except for k hinders the subsequent linear
stability analysis we have been developing so far. We will not
be able to represent the linearized dynamics of the perturba-
tions using the stability matrix M = (Mn,m)n,m=1,2,3 because
the time dynamics of ρ̂(k) and ŵ(k) is not a closed system
anymore. Theoretically, we could map three Fourier indices
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n, kx, and ky into one index and write down the linearized
dynamics of all the perturbations with respect to n, kx, and ky

together. By doing so, first, we would end up with an infinite
hierarchy equations again, which we wanted to circumvent
on the first place by using the hydrodynamic theory. Second,
the solution of the eigenvalue problem would lose the spatial
dependence and we would not be able to obtain the results
in the form of the dispersion relations. The hydrodynamic
equation for the marginal density function would then become

∂t ρ̂(k) = iv0
2π

L
[k · ŵ(k)] + ivπ (kx − ky)ρ̂(kx, ky)

+
∑

qy ∈ Z
ky �= qy

vkx

ky − qy
ρ̂(kx, qy) −

∑
qx ∈ Z
kx �= qx

vky

kx − qx
ρ̂(qx, ky).

(E57)

We see that the spatial scale is influenced by v0. If
we introduce the change of variables k′ = v0k, ρ̂ ′(k′, t ) =
ρ̂(k, t ), ŵ′(k′, t ) = ŵ(k, t ), we rewrite the equation for the

marginal density function as

∂t ρ̂
′(k′) = i

2π

L
[k′ · ŵ′(k′)] + ivπ

v0
(k′

x − k′
y)ρ̂ ′(k′

x, k′
y)

+
∑

qy ∈ Z
k′

y �= v0qy

vk′
x

k′
y − v0qy

ρ̂ ′(k′
x, v0qy)

−
∑

qx ∈ Z
k′

x �= v0qx

vk′
y

k′
x − v0qx

ρ̂ ′(v0qx, k′
y). (E58)

If we restrict ourselves only to small values of the particle
velocity v0 � 1, we see that the first term of the Fourier trans-
form of v(r × ∇)ρ would make the major impact. Therefore,
we assume that in the limit of small v0, that Fourier transform
is approximated by

F{v(r × ∇)ρ}(k, t ) ≈ ivπ (kx − ky)ρ̂(kx, ky, t ), (E59)

and the respective Fourier transform for the momentum field
is approximated similarly. In the rest of the discussion, we
follow this assumption.

Finally, the hydrodynamic equations (E53) in the Fourier
space with respect to the spatial variables read

∂t ρ̂(k) = iv∗
0 [k · ŵ(k)] + ivπ (kx − ky)ρ̂(kx, ky),

∂t ŵ(k) = iv∗
0

2
kρ̂(k) − C1ŵ(k) − (v∗

0 )2

8
C2|k|2ŵ(k) + ivπ (kx − ky)ŵ(kx, ky)

+
∑
q∈Z2

[
ρ̂(q)

2
Q−αK1(k − q) − 1

4
C2

(
ŵ(q)K2(k − q) + iv∗

0

2
Qα{ŵ(q)[q · K1(k − q)] + ŵ⊥(q)[q · K1,⊥(k − q)]}

+ iv∗
0Q−α{k[ŵ(q) · K1(k − q)] − ŵ(q)[k · K1(k − q)] − [k · ŵ(q)]K1(k − q)}

)]
, (E60)

where K1,⊥ = (−K1,y, K1,x )T and we denote v∗
0 = 2π

L v0 and �∗ = 2π
L � as previously. Note that we suppressed the explicit time

dependence of ρ̂, ŵ, K1, and K2 for compactness.
If we consider the infinitesimal deviations from a stationary (here, in a moving reference frame) spatially homogeneous

solution as

δρ̂(k, t ) = ρ̂(k, t ) − ρ̂∗(k),

δŵ(k, t ) = ŵ(k, t ) − ŵ∗(k),
(E61)

their linearized dynamics read

∂tδρ̂(k) = ivπ (kx − ky)δρ̂(k) + iv∗
0 [k · δŵ(k)],

∂tδŵ(k) =
{

iv∗
0

2
k + 1

2
[1 − j1(k)]Q−αw∗ + 1

4
j1(k)C2[2‖w∗‖2w∗ + iv∗

0Q−α (‖w∗‖2k − 2(k · w∗)w∗)]

}
δρ̂(k)

+
(

−C1 − (v∗
0 )2

8
C2|k|2 + 1

2
j1(k)Q−α + ivπ (kx − ky)I − 1

4
C2

{
‖w∗‖2I + 2 j1(k)(w∗ ⊗ w∗)

+ iv∗
0

2
Qα[(k · w∗)I + (k · w∗

⊥)Q π
2
] + iv∗

0 [1 + j1(k)]Q−α[(k ⊗ w∗) − (w∗ ⊗ k) − (k · w∗)I]

})
δŵ(k),

(E62)

where ⊗ denotes the outer product, I is the identity matrix,
Q π

2
= (0 −1

1 0 ), and j1(k) = 2J1(�∗|k|)/(�∗|k|).
Since the direction of collective motion may be arbitrary,

we put ϕ0 = 0 without the loss of generality. To solve the
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FIG. 8. Instability regions given by the analysis of the hydro-
dynamic equations (E53). The gray line denotes the order-disorder
transition line Dϕ = 1

2 cos α. The colored lines are found analytically
by restricting the analysis to longitudinal perturbations solely. They
enclose a line, below which long-wavelength perturbations acting on
the traveling wave solution appear. The blue (yellow) line is defined
by Eq. (E76) with v = − sin α (v = − 1

2 sin α). The violet and yellow
regions are obtained by numerically solving an eigenvalue problem
for Eq. (E62). The violet region includes parameters for which at
most one Fourier mode becomes unstable for each wave vector. The
yellow region includes parameters for which there are at most two
Fourier modes that become unstable for each wave vector. Other
parameters are �̃ = 1, � = 0.01, v0 = 0.01.

eigenvalue problem for the linearized dynamics, we first need
to rewrite these equations in the matrix form:

∂t

⎛
⎝ δρ̂

δŵx

δŵy

⎞
⎠ = M

⎛
⎝ δρ̂

δŵx

δŵy

⎞
⎠. (E63)

The matrix coefficients are found to be

M11 = ivπ (kx − ky), M12 = iv∗
0kx, M13 = iv∗

0ky,

(E64)

M21 = iv∗
0

2
kx + 1

2
[1 − j1(k)]‖w∗‖ cos α

+ (cos α − 2Dϕ ) j1(k)‖w∗‖

+ iv∗
0

4Dϕ

j1(k)(cos α − 2Dϕ )[kx(2Dϕ cos α − v sin α)

+ ky(2Dϕ sin α + v cos α)]

− iv∗
0

2Dϕ

(cos α − 2Dϕ ) j1(k)kx(2Dϕ cos α − v sin α),

(E65)

M22 = −Dϕ − (v∗
0 )2

4
(
4D2

ϕ + v2
) |k|2Dϕ

+ 1

2
j1(k) cos α + ivπ (kx − ky)

− cos α − 2Dϕ

2
− j1(k)

2
(
4D2

ϕ + v2
)(2Dϕw2

x + vwxwy
)

− iv∗
0

8
(
4D2

ϕ + v2
) [(2Dϕ cos α + v sin α)(k · w∗)

+ (−2Dϕ sin α + v cos α)(k · w∗
⊥)]

+ iv∗
0 [1 + j1(k)]

4
(
4D2

ϕ + v2
) [(2Dϕ cos α − v sin α)(k · w∗)

− (2Dϕ sin α + v cos α)(k · w∗
⊥)], (E66)

M23 = v − (v∗
0 )2

8
(
4D2

ϕ + v2
) |k|2v + 1

2
j1(k) sin α

− cos α − 2Dϕ

4Dϕ

v − j1(k)

2
(
4D2

ϕ + v2
)(2Dϕwxwy + vw2

y

)

+ iv∗
0

8
(
4D2

ϕ + v2
) [(2Dϕ cos α + v sin α)(k · w∗

⊥)

− (−2Dϕ sin α + v cos α)(k · w∗)]

+ iv∗
0 [1 + j1(k)]

4
(
4D2

ϕ + v2
) [(2Dϕ cos α − v sin α)(k · w∗

⊥)

+ (2Dϕ sin α + v cos α)(k · w∗)], (E67)

M31 = iv∗
0

2
ky − 1

2
[1 − j1(k)]‖w∗‖ sin α

− cos α − 2Dϕ

2Dϕ

v j1(k)‖w∗‖

− iv∗
0

4Dϕ

j1(k)(cos α − 2Dϕ )
[
kx(v cos α + 2Dϕ sin α)

+ ky(v sin α − 2Dϕ cos α)
]

+ iv∗
0

2Dϕ

(cos α − 2Dϕ ) j1(k)kx(v cos α + 2Dϕ sin α),

(E68)

M32 = −v + (v∗
0 )2

8
(
4D2

ϕ + v2
) |k|2v − 1

2
j1(k) sin α

+ cos α − 2Dϕ

4Dϕ

v− j1(k)

2
(
4D2

ϕ + v2
)(− vw2

x +2Dϕwxwy
)

− iv∗
0

8
(
4D2

ϕ + v2
) [(−v cos α + 2Dϕ sin α)(k · w∗)

+ (v sin α + 2Dϕ cos α)(k · w∗
⊥)
]

− iv∗
0 [1 + j1(k)]

4
(
4D2

ϕ + v2
) [(v cos α + 2Dϕ sin α)(k · w∗)

+ (−v sin α + 2Dϕ cos α)(k · w∗
⊥)
]
, (E69)

M33 = −Dϕ − (v∗
0 )2

4
(
4D2

ϕ + v2
) |k|2Dϕ + 1

2
j1(k) cos α

+ ivπ (kx − ky) − cos α − 2Dϕ

2

− j1(k)

2
(
4D2

ϕ + v2
)(− vwxwy + 2Dϕw2

y

)

+ iv∗
0

8
(
4D2

ϕ + v2
) [(−v cos α + 2Dϕ sin α)(k · w∗

⊥)
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FIG. 9. Dispersion relations λ(kx, ky ) = max
n∈Z

λn(kx, ky ) obtained by solving an eigenvalue problem for Eq. (D46). Grey markers in-

dicate wave vectors, at which there is a Fourier mode with a positive real part. Parameters: N = 5 × 104, �̃ = 1, v0 = 0.01, (a) � =
0.01, α = 0.78, Dϕ = 0.2075, (b) � = 0.01, α = 0.9, Dϕ = 0.18, (c) � = 0.01, α = 1.3, Dϕ = 0.06, (d) � = 0.01, α = 1.45, Dϕ = 0.01, (e)
� = 0.4, α = 1.45, Dϕ = 0.005, (f) � = 0.2, α = 1.36, Dϕ = 0.005, (g) � = 0.01, α = 1.3, Dϕ = 0.02, (h) � = 0.01, α = 1.0, Dϕ = 0.0375,
(i) � = 0.01, α = 1.0, Dϕ = 0.0575, and (j) � = 0.01, α = 1.07, Dϕ = 0.145.

− (v sin α + 2Dϕ cos α)(k · w∗)]

− iv∗
0 [1 + j1(k)]

4
(
4D2

ϕ + v2
) [(v cos α + 2Dϕ sin α)(k · w∗

⊥)

− (−v sin α + 2Dϕ cos α)(k · w∗)]. (E70)

For the subsequent analysis, we consider two simplified
cases. Namely, we investigate the longitudinal and transversal
perturbations with respect to the direction of collective mo-
tion.

a. Longitudinal perturbations

We consider the longitudinal perturbations of the form k =
(kx, 0)T , δŵ = (δŵx, 0)T for the flow with the momentum
field w∗ = (w∗

x , 0). The eigenvalues of the resulting eigen-
value problem are

λ± = M11 + M22 ± √
D

2
, (E71)

where the discriminant is D = (M11 + M22)2 − 4(M11M22 −
M12M21) and the required coefficients of the stability matrix
read

M11 = ivπkx, M12 = iv∗
0kx, (E72)

M21 = iv∗
0

2
kx + 1

2
(1 − j1)‖w∗‖ cos α

+ cos α − 2Dϕ

4Dϕ

j1(k)[4Dϕ‖w∗‖

− iv∗
0kx(2Dϕ cos α − v sin α)], (E73)

M22 = −Dϕ − (v∗
0 )2k2

x Dϕ

4
(
4D2

ϕ + v2
) + 1

2
j1(k) cos α

−
[

1

2
+ j1(k)

]
(cos α − 2Dϕ ) + ivπkx

− iv∗
0kx‖w∗‖

4
(
4D2

ϕ + v2
)[1

2
(2Dϕ cos α + v sin α)

− [1 + j1(k)](2Dϕ cos α − v sin α)

]
. (E74)

One can show that the eigenvalue λ+ is a hydrodynamic
mode since it becomes zero in the limit of small wave
numbers, while the other eigenvalue λ− = −(cos α − 2Dϕ )
is always negative since the condition Dϕ < 1

2 cos α is the
existence condition for the given solution. The presence of
a hydrodynamic mode might lead to the long wave number
instability of the traveling wave solution. It is what we inves-
tigate in the following.

Expanding the eigenvalue of the hydrodynamic mode to
the second order in kx around kx = 0, we find

λ+(kx ) = i(vπ + v∗
0‖w∗‖)kx

+ (v∗
0 )2

2

[
1

4Dϕ

(
32D2

ϕ+Dϕ cos α+8v2+ 1

2
v sin α

)

− 1

cos α − 2Dϕ

]
k2

x + O
(
k3

x

)
. (E75)

If the long-wavelength perturbations act on the solution, it
is signified by Reλ+(kx ) > 0. Since the group velocity v

enters the expression, we cannot draw conclusions about
instabilities in the system as such because this parameter
is not independent but implicitly depends upon the system
parameters. However, we know from the analysis of self-
consistent equations (C26) and (C27) that next to the order-
disorder transition line the critical group velocity attained
along that line is v = − 1

2 sin α. Moreover, we know from the
analysis of the particle model (see the main text) that the lower
bound for the group velocity may be assumed v = − sin α,
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FIG. 10. Positive real parts of each dispersion relation from Fig. 9. Parameters are the same as in Fig. 9.

which is the rate of change of each particles’ direction of
motion in the case of complete phase synchronization when
Dϕ → 0. Knowing those two bounds, we could guess an
approximate boundary of the parameter region, where spatial
nonhomogeneities should occur (cf., Fig. 8, blue and yellow
lines).

The condition for the emergence of the long-wavelength
perturbations in the longitudinal direction (with respect to the
direction of collective motion) is given by

(cos α − 2Dϕ )

(
32 D2

ϕ + Dϕ cos α + 8v2 + v

2
sin α

)

− 4Dϕ > 0, (E76)

where the group velocity is bounded by − sin α < v <

− 1
2 sin α (cf., Fig. 8). Recall that the hydrodynamic equations,

we are working with, are valid for sufficiently high diffusion
levels, i.e., close to the order-disorder transition line. Thus,
we see from Fig. 8 that the long-wavelength perturbations
are expected to be observed only for high enough values of
α. Moreover, we conclude that the long-wavelength perturba-
tions do not arise at the order-disorder transition line.

The last result tells us that there might be the following
scenarios for the system behavior. First, at the order-disorder
transition line, the traveling wave solution might be stable.
Second, at that line, short-wavelength perturbations might
appear. Third, at that line, long-wavelength perturbations
transversal to the direction of collective motion might ap-
pear. We discard the first case because we know from the
kinetic theory that the traveling wave solution is unstable
for high enough α at the order-disorder transition line. The
analytic confirmation of the existence of short-wavelength
perturbations seems to be unfeasible since at Dϕ = 1

2 cos α,
the magnitude of the momentum field, given by Eq. (E54), is
proportional ‖w∗‖ ∝ D1/2

ϕ and we cannot perform the respec-
tive expansion. Thus, we next look whether we could gain
some insight about perturbations transversal to the direction
of collective motion.

b. Transversal perturbations

We consider the transversal perturbations of the form k =
(0, ky)T , δŵ = (0, δŵy), i.e., orthogonal to the direction of
collective motion. The coefficients of the matrix read

M11 = −ivπky, M13 = iv∗
0ky, (E77)

M31 = i

2
v∗

0ky − 1

2
[1 − j1(k)]‖w∗‖ sin α

+ cos α − 2Dϕ

4Dϕ

j1(k)[−2v‖w∗‖

+ iv∗
0ky(−v sin α + 2Dϕ cos α)],

(E78)

M33 = −Dϕ − (v∗
0 )2k2

y Dϕ

4
(
4D2

ϕ + v2
) + 1

2
j1(k) cos α

− 1

2
(cos α − 2Dϕ ) − ivπky

+ iv∗
0ky‖w∗‖

4
(
4D2

ϕ + v2
)[1

2
(−v cos α + 2Dϕ sin α)

− [1 + j1(k)](v cos α + 2Dϕ sin α)

]
. (E79)

The restriction to consider only the perturbations transver-
sal to the direction of collective motion reveals that the
dispersion relations are then proportional to the square root
of the wave number ∝ √ky in the limit ky → 0. This fact
does not allow us to consider the expansion of the dispersion
relations near small wave numbers.

APPENDIX F: SOLUTIONS OF EIGENVALUE PROBLEMS
FOR KINETIC EQUATIONS

As found previously, close to the order-disorder transition
line, we do not observe any instabilities if we restrict our-
selves to consider only longitudinal perturbations. However,
further away from that line, we have proved that longitudi-
nal perturbations do arise. Because the insight on instability
mechanisms of a traveling wave solution is quite limited
analytically using the hydrodynamic equations (E53), we need
to solve an eigenvalue problem for the complete system (E62)
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numerically. The results of previous analytical studies as well
as such a numerical integration can be found in Fig. 8. Ac-
cording to the approximation (E59), we must restrict ourselves
to consider small particle velocities. We thus fix v0 = 0.01
and assume �̃ = 1 for simplicity. By solving the eigenvalue
problem for Eq. (E62) numerically, we obtain dispersion
relations λn(kx, ky) ∈ C, n, kx, ky ∈ Z. We have considered
wave vectors as kx, ky ∈ [−30, 30] without restricting their
direction. As a result, in Fig. 8, we see that there are indeed
spatially nonhomogeneous perturbations acting on Eq. (E54)
close to the order-disorder transition line for α sufficiently
high. We also see that close to that line, there are two unstable
modes. Still, this is quite a limited insight on the structure of

the phase diagram. Therefore, at this point, we proceed to the
solution of an eigenvalue problem from the kinetic theory, to
have a clearer picture of the phase diagram.

We solve an eigenvalue problem for Eq. (D46) and the
resulting phase diagrams are presented in the main text. As
one might expect, the unstable wave vectors are not bound
to be either in the longitudinal or in transversal directions
with respect to the direction of collective motion. In fact,
most of unstable wave vectors lie away from those axes as
can be seen in Figs. 9 and 10, where we have gathered
the most exemplary dispersion relations out of an instability
region. The corresponding spatially nonhomogeneous particle
dynamics are presented in the main text and in Appendix A.
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