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Active droplet driven by a collective motion of enclosed microswimmers
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Active fluids containing self-propelled particles are relevant for applications such as self-mixing, micropump-
ing, and targeted drug delivery. With a confined boundary, active fluids can generate bulk flow inside the system,
which has the potential to create self-propelled active matter. In this study, we propose that an active droplet
is driven by a collective motion of enclosed microswimmers. We show that the droplet migrates via the flow
field generated by the enclosed microswimmers; moreover, the locomotion direction depends on the swimming
mode of these internal particles. The locomotion mechanism of the droplet can be well explained by interfacial
velocity, and the locomotion velocity shows good agreement with the Lighthill-Blake theory. These findings are
essential to understand the interplay between the motion of self-propelled particles and the bulk motion response
of active matter.
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I. INTRODUCTION

Active matter is capable of converting free energy into
mechanical work and is relevant for many applications,
such as self-mixing, micropumping, targeted drug delivery,
biomimetic crawling, and self-healing [1–5]. In an active
fluid containing self-propelled particles, active stress due to
microswimmers is effectively exerted, resulting in interesting
phenomena such as superfluidity, multiple mechanical equi-
libria, and hydrodynamic instability [6,7]. To take advantage
of the anomalous properties of active fluids, we must first
understand the interplay between the motions of individual
self-propelled particles and the bulk motion of the active
fluid. With a confined boundary, active suspensions, such as
motile bacteria within circular boundaries [8], can generate
stable flow patterns and coherent structures inside the bound-
ary [9]. These swimmer-driven flows have the potential to
create self-propelled active matter. For example, a solitary
microswimmer confined within a droplet could break the
symmetry and generate the net motion of the droplet. Reigh
et al. [10] designed an active droplet with a confined single
microswimmer. Force dipole on the swimmer’s body gener-
ated bulk flow within the droplet, and the droplet migrated
in a specific direction depending on the sign of the force
dipole. To design active matter powered by enclosed mi-
croswimmers, a collective motion of self-propelled particles
should be utilized. However, many questions remain regarding
the interplay between the collective motion of self-propelled
particles and the bulk motion of the active fluid.

Swimming microorganisms are typical self-propelled par-
ticles, which have been well-studied in terms of fluid me-
chanics. One of the simplest mathematical models of a
swimming microorganism is the Lighthill-Blake theory, in
which a squirmer [11,12] propels itself by generating surface
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squirming velocities. A squirmer can be classified as a
“pusher-type,” a “puller-type,” or a “neutral-type” swimmer,
based on the force dipole exerted on the body. The swimming
modes govern the particle dynamics; for example, a pusher
tends to escape from a free surface, whereas a puller may
become entrapped at the interface [cf. Ref. [13] and Figs. 1(b)
and 1(c)]. Motions of the squirmer near a free-surface or a
solid wall are organized in Ref. [14]; if one is interested,
please refer to it. Because different particle dynamics pro-
duce different flow structures, the bulk motion of active fluid
is affected by the swimming mode. Additionally, the flow
generated by a number of squirmers is sufficiently strong to
advect and direct other swimmers [15], which leads to the
bulk motion of an active fluid, such as that of self-organized
coherent structures [16–18].

In this study, we propose an active droplet containing a
number of squirmers. We show that the droplet can migrate
via the flow generated by the collective motion of squirmers.
The direction of locomotion is determined by the swimming
mode of the internal particles. The locomotion mechanism
of the droplet is well explained by the interfacial velocity,
and the locomotion velocity shows good agreement with the
Lighthill-Blake theory.

II. GOVERNING EQUATIONS
AND NUMERICAL METHODS

A. Problem setting

Consider N microswimmers confined within a droplet
placed in an unbounded fluid with constant density ρout and
viscosity μ, as shown in Fig. 1(a). Gravity acts in the negative
z direction. The fluid inside the droplet has a smaller density
ρin, but the same viscosity as its surrounding fluid μ (these
conditions may be realized by a water droplet in a Fluorinert,
for example). We assume that the droplet as a whole is
neutrally buoyant. Thus, the relationship among the three
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FIG. 1. Problem setting and squirmer types. (a) N microswimmers are confined within a droplet. The droplet as a whole is neutrally
buoyant, and densities of microswimmers ρs, inside fluid ρin, and outside fluid ρout satisfy ρs > ρout > ρin. (b), (c) Flow created by a pusher-type
squirmer and a puller-type squirmer with the swimmer’s frame of reference. Due to hydrodynamic torque, the pusher tends to escape from a
free surface, whereas the puller is entrapped at the interface [13].

densities is defined as ρs > ρout > ρin, where ρs is the density
of the microswimmer. Due to its neutral buoyancy, the droplet
will not move if the swimmers are inert. We also assume that
the droplet is sufficiently small to describe the surrounding
flow as viscous dominant, and the flow field is governed by
the Stokes equation. The capillary number, defined as the ratio
of viscous force to surface force Ca = μU d/γ , is assumed to
be appropriately small, where U d is the locomotion velocity
of the droplet and γ is the interfacial tension of the droplet
surface. Hence, we neglect the deformation of the droplet. For
the boundary condition, we assume continuous shear stress
across the surface of the droplet: q · t = 0, where q = [σout −
σin] · n is the stress jump across the surface; σ is the stress
tensor; the subscripts out and in indicate the outer surface and
the inner surface, respectively; n is the unit outward normal
vector; and t is the unit surface tangential vector. Furthermore,
to satisfy the mass conservation and nondeformation of the
droplet, we assume that surface flow in the normal direction is
zero: usurf · n = 0, where usurf is the surface velocity relative
to the center of the droplet.

B. Swimmer model: Squirmer

The microswimmer is modeled by a squirmer [11,12]. A
squirmer is a spherical envelope model of ciliated microorgan-
isms, and the velocity us generated by the squirming velocity
is expressed as an infinite series of eigensolutions of the
Stokes equation:
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where (r, θ ) are spherical polar coordinates (cf. Fig. 1), a is
the radius of the squirmer, An and Bn are coefficients of the
series, U is the swimming speed of the squirmer, Pn(cos θ )
are Legendre polynomials, and

Vn = 2 sin θ

n(n + 1)
P′

n. (3)

Using a force-free condition so that the Stokeslet term must
be zero, the swimming speed U corresponds to

U = 1
3 (2B1 − A1), (4)

and the velocity at r = a is given by

us
r (a, θ ) =

∞∑
n=0

AnPn(cos θ ), us
θ (a, θ ) =

∞∑
n=1

BnVn(cos θ ).

(5)

Assuming that the surface velocity is tangential, i.e., An is
equal to zero for all n, the swimming velocity U is given
by U = 2B1/3, and the swimming mode β is given by the
second mode: β = B2/B1. A squirmer with β < 0 is a pusher
[Fig. 1(b)], a squirmer with β > 0 is a puller [Fig. 1(c)], and
a squirmer with β = 0 is a neutral swimmer.

022603-2



ACTIVE DROPLET DRIVEN BY A COLLECTIVE MOTION … PHYSICAL REVIEW E 102, 022603 (2020)

C. Motion of a microswimmer

We assume that the droplet as a whole is neutrally buoyant,
and the relationship among the three densities is described by
ρs > ρout > ρin. Then, the sedimentation force exerted on a
microswimmer can be expressed as

Fg = − 4
3π (ρin − ρs)a3g, (6)

and the flow field generated by sedimentation ug is given by

ug
r (r, φ) = −U g

(
1 − 3a

2r
+ a3

2r3

)
cos φ, (7)

ug
φ (r, φ) = U g

(
1 − 3a

4r
+ a3

4r3

)
sin φ, (8)

where g is the gravity, φ is the elevation angle relative to the
gravity, and U g = |Fg|/6πμa.

In addition to sedimentation, we consider the bottom
heaviness of the squirmer [19]. In some microorganisms,
like Volvox, the centroid and center of mass are at different
positions. Thus, an external torque is exerted on the body and
propels the microorganism vertically upwards:

Tbh = − 4
3πρsa

3hg ∧ e, (9)

where e is the swimming direction of the squirmer and h is the
distance between the centroid and the center of mass.

Locomotion of the ith squirmer can be described by a
boundary integral equation using a velocity-additivity approx-
imation [20,21]. The translational velocity of each squirmer
is then described by summing self-swimming U , self-
sedimentation U g, squirmer-squirmer interactions according
to Eqs. (1), (2), (7), (8), and (9), and squirmer-droplet interac-
tions:

dxi

dt
= Uei + Ug +

N∑
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(
us

i j + ug
i j + 1

8πμr3
i j

Tbh
j ∧ ri j

)

+ 1

8πμ

∫
J(xi, y) · q(y) dSd (y), (10)

dei

dt
= ωi ∧ ei, (11)

where Sd indicates the surface of the droplet and q is the
traction. The last term on the right-hand side of Eq. (10)
indicates the flow generated by the viscous traction exerted on
the droplet surface [22]. In other words, the Green’s function
J = I/r + r ⊗ r/r3 can associate the interface traction with
the velocity. I is the identity matrix, r = |r|, and r = y − xi.
Quantities with the subscript i j indicate the relative distance
or flow between the ith and jth squirmers.

The angular velocity ωi is defined in a similar manner, as
follows:
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]
. (12)

The first term represents self-rotation due to bottom heaviness,
and the latter represents rotation due to the squirmer-squirmer
and the squirmer-droplet interactions.

III. MOTION OF A DROPLET

We assume that the droplet is sufficiently small to describe
the surrounding flow as viscous dominant, and the flow field
is governed by the Stokes equation. The flow field at arbitrary
positions x can be expressed by a boundary integral equation
[22,23] in a similar manner to Eq. (10):

u(x) = u∞(x) − 1

8πμ

∫
J(x, y) · qd (y)dSd (y)

+ 1

8πμ

∫
J(x, y) · (ρin − ρout )gdV ′

d (y), (13)

where qd is the viscous traction, V ′
d = Vd − N × 4πa3/3, and

Vd is the volume of the droplet. The second term on the right-
hand side of Eq. (13) indicates the flow due to the surface
traction of the droplet, and the last term is the flow driven by
the density gradient between the inner and outer fluids. u∞ is
the flow generated by squirmers:

u∞ =
N∑
i

(
us

i + ug
i + 1

8πμr3
Tbh

i ∧ r
)

. (14)

Assuming the droplet as a whole is neutrally buoyant, the
force-free condition can be expressed as∫

qd dSd = 0. (15)

According to rigid motions of the droplet, the velocity at the
surface of the droplet is given by

u|r=ad = Ud + �d ∧ r̂ + usurf , (16)

where ad is the droplet radius, usurf is the surface velocity
relative to the droplet center, �d is the angular velocity of
the droplet, r̂ = x − xc, and xc is the center of mass of the
droplet. For the boundary condition, we assume qd · t = 0
and usurf · n = 0 at x ∈ Sd , where t and n are tangential
and normal unit vectors of the droplet surface, respectively.
To meet the boundary conditions, the normal vector n is
multiplied by Eqs. (13), (15), and (16):

u(x) · n(x)

= u∞(x) · n(x) − 1

8πμ

∫
J(x, y) · qd (y) · n(x)dSd (y)

+ 1

8πμ

∫
J(x, y) · (ρin − ρout )g · n(x)dV ′

d (y), (17)∫
qd · ndSd = 0, (18)

and

u|r=ad · n = Ud · n. (19)

We then solve above system with respect to the unknowns qd

and Ud .

IV. NUMERICAL METHOD

To calculate the values of the unknowns qd (=qd n) and
Ud , we use a boundary element method [21]. The droplet
surface is discretized by N triangle meshes, and the system
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is discretized by a Gaussian numerical integration scheme:[
A B
C 0

][
qd

Ud

]
=

[
u∞ · n

0

]
. (20)

Matrix components A and B are given by Eqs. (17) and (19),
and C is from Eq. (18), whose sizes are N × N , N × 3, and
3 × N , respectively. This dense matrix system is solved by
a lower-upper factorization technique with a linear algebra
library (CUSOLVER; NVIDIA). Once the viscous traction qd is
obtained, the traction q = qd + qg is assigned to Eq. (10),
where qg(x) = (ρin − ρout )(g · x)n(x). The positions of the
squirmer and droplet are updated by a second-order Runge-
Kutta method. The mesh number and the time step are set
to N = 5 and 120 and 
tU/a = 5.0 × 10−3, respectively,
throughout this study (we confirmed mesh and time conver-
gence using finer meshes and smaller time steps).

If the swimmers come too close to each other or the surface
of the droplet, the solution is less accurate and numerical
instabilities may arise. To avoid this, we added short-range
repulsive forces. The short-range repulsive forces are assumed
to act between two adjacent squirmers. The magnitudes of
the forces acting on particles 1 and 2 are the same, and their
directions are opposite. Such a pair of forces results in a
force dipole, which can be modeled as a stresslet acting at
the midpoint between two approaching squirmers. When two
squirmers i and j are closer than 3a, the repulsive stresslet is
induced at the midpoint of two swimmers:

S
(
xm

i j

) = r′
i j ⊗ r′

i j − 1
3 I, (21)

where xm
i j = (xi + x j )/2, r′

i j = ri j/|ri j |, and ri j = x j − xi.
We preliminarily confirmed that the distance 3a is sufficiently
large to accurately describe the pairwise interaction using the
velocity additivity method by comparing it to a boundary
element method [24]. Then, the velocity generated by the
stresslet is added to Eqs. (10) and (12):

urep = cK : S, (22)

where K = 3r ⊗ r ⊗ r/r5 − I/r3 is the propagator for the
stresslet. The constant c is set to 0.6π to prevent two swim-
mers having contact with each other.

When the squirmer approaches the surface of the droplet,
within a distance of 0.01a, lubrication torque is applied to the
squirmer under the assumption that the interface is flat. The
lubrication torque was calculated beforehand by a boundary
element method using the image system of a flat free surface
[13], and it acts to alter the swimming direction depending on
the swimming mode β.

Here, we introduce a nondimensional parameter Gr,
which represents the ratio between the gravitational and
viscous forces acting on the microswimmers; Gr = (ρs −
ρin )ga2/μU . The sedimentation velocity U g is then expressed
as U g/U = 2Gr/9. The total neutral buoyancy condition is
expressed as N × 4πa3

3 Gr = ∫
Gr′dV ′

d , where N is the num-
ber of squirmers, V ′

d is the effective volume of the droplet,
and Gr′ = (ρout − ρin )ga2/μU . The gravitational effects are
cross-linked with Gr and the volume fraction through ug

i j in
Eqs. (10) and (12). We then take Gr and the volume fraction
as parameters, in addition to studying a number of swimming
modes β.

V. LOCOMOTION OF A DROPLET

First, 400 pusher-type squirmers with β = −3.0 were im-
mersed in the droplet. In this section, the ratio of the droplet
radius ad to the squirmer radius a was set as ad/a = 20,
which leads to a volume fraction of 0.05, and Gr was set as
Gr = 1.0. We can observe the collective motion of squirmers
in the confined boundary (cf. Fig. 2 and Supplemental Movie
1 [25]). In this scenario, pushers near the droplet surface
tend to swim along the interface, whereas they swim up-
wards near the center of the droplet. To illustrate swimmer-
induced fluid flow, the time-averaged flow field, both inside
and outside of the droplet, are shown in Fig. 2(d). Strong
upward flow is generated around the center of the droplet,
and a stable convection ring is observed inside the droplet.
Swimmer-driven flow is transmitted to the outer fluid via
the droplet surface, causing the droplet to migrate upwards
(in the positive z direction), even without any external force.
The time change in the translational velocity of the droplet
in the z direction is shown in Fig. 2(a). We set five initial
conditions. The average migration speed approached U d

z /U =
0.263. This result clearly indicates that the collective swim-
ming of enclosed microswimmers propels the droplet. We also
investigated the effect of squirmer-squirmer interactions by
omitting corresponding terms in Eqs. (10) and (12). In this
case, we did not see the collective motion of squirmers and
the droplet did not move effectively (data not shown). Which
suggests interactions among squirmers play a major role in the
emergence of a collective motion of squirmers.

Interestingly, the migration direction of the droplet de-
pends on the swimming mode β. When neutral-type swim-
mers (β = 0) were inside, we observed stable convection
rings inside the droplet [Fig. 2(e)], and the droplet migrated
upwards with a speed of U d

z /U = 0.242 (see Fig. 2(b) and
Supplemental Movie 2 [25]). These tendencies are similar to
the pushers. However, when strong pullers (β = 3.0) were
inside the droplet, the droplet migrated downwards (in the
negative z direction) with a speed of U d

z /U = −0.189 (cf.
Fig. 2(c) and Supplemental Movie 3 [25]). In the case of
strong pullers, swimmer-driven convections were induced
only around the bottom half of the droplet, and the flow
direction reversed in the vicinity of the droplet surface
[Fig. 2(f)] . By increasing β, the puller-type swimmers tended
to become entrapped at the interface due to the hydrodynamic
torque [13]. The orientation of pullers was downwards, as
shown in Fig. 3(c), which is qualitatively different from that
of pushers and neutral-type swimmers [Figs. 3(a) and 3(b)].
The difference in orientation generates a different velocity
field external to the droplet, as shown in Fig. 3. In the case
of pullers, the external flow is upwards, whereas in the case of
pushers, the external flow is downwards. These results suggest
that the flow at the interface likely governs the droplet motion.
We next investigated the propulsion mechanism with respect
to the swimming mode β.

VI. LOCOMOTION MECHANISM

There are two possible locomotion mechanisms: pressure-
driven locomotion and surface velocity-driven locomotion.
Due to the boundary condition of q · t = 0, the traction
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FIG. 2. Migration of the droplet (Gr = 1.0, volume fraction = 0.05). (a)–(c) Time change of the vertical locomotion velocity of the droplet
containing pushers (β = 3), neutral (β = 0), or pullers (β = 3). We set five different initial conditions in each β. (d)–(e) Time-averaged fluid
flow inside and outside of the droplet containing pushers, neutral swimmers, or pullers (with the reference frame of the droplet).

exerted on the droplet surface q is equivalent to the pressure
jump across the interface. The integral of the traction over the
surface is zero, i.e.,

∫
qdS = 0, due to the force-free condition

of the droplet. Thus, the droplet is not driven by pressure,
but by the surface velocity. To confirm this hypothesis, we
compared our results with the Lighthill-Blake theory [11,12],
in which the locomotion velocity U is correlated with the
first-mode squirming velocity B1 as U = 2B1/3. We define
the spherical coordinate (r, θ, φ) with the origin at the center
of the droplet: r is the radial distance, θ is the elevation
angle relative to the swimming direction, and φ is the swirl

angle. Time-averaged surface velocities at r = a with pushers
(β = −3), pullers (β = 3), and neutral squirmers (β = 0) are
shown in Fig. 4 (each data point is taken from the computa-
tional node on the droplet surface). The squirming velocity of
the squirmer up to the second mode is given by

uθ = B1 sin θ + B2 sin θ cos θ, (23)

and then coefficients B1 and B2 are determined by the least-
squares fitting (green line in Fig. 4). The prediction using the
Lighthill-Blake theory shows excellent agreement with the
simulation results, regardless of the value of β, as shown in

FIG. 3. Fluid flow near the droplet surface created by (a) pushers (β = −3), (b) neutral swimmers (β = 0), and (c) pullers (β = 3) with
Gr = 1.0 and volume fraction = 0.05. The arrows in squirmers indicate time-averaged orientations of the squirmers near the interface.
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FIG. 4. Time-averaged surface velocity of the droplet with (a) pushers (β = −3), (b) pullers (β = 3), and (c) neutral squirmers (β = 0).
The green line indicates least-squares fitting by Lighthill-Blake theory [11]. Utheory and βdrop are calculated from the fitting results of β1 and β2.
Unumeric is the numerical result of Fig. 2.

Table I. Thus, we can conclude that the droplet locomotion is
driven by the surface velocity, and the locomotion velocity is
two-thirds that of B1. We also found that, when pushers and
neutral squirmers are inside the droplet, the swimming mode
of the active droplet is categorized as a pusher [cf. βdrop is
negative in Figs. 4(a) and 4(c)], while in the case of pullers,
the droplet is also categorized as a puller [positive βdrop in
Fig. 4(b)]. In the study of Reigh et al. [10], a single squirmer
was immersed in a droplet, which led to the inverted flow field
on the surface of the droplet. For example a confined puller
created the flow field of a pusher outside the droplet. When a
single squirmer was immersed in a droplet, the droplet was
migrated by a force dipole exerted on the swimmer body.
When the force dipole is negative, i.e., a puller inside, the
squirmer pulls the inner fluid and the droplet pushes the outer
fluid through the surface flow (vice versa in pushers). In
this study, on the other hand, the swimmer-driven flow was
driven by the collective motion of squirmers, not by a single
force dipole, and the outside flow field corresponded to the
swimming mode of the inside swimmers.

VII. EFFECT OF SWIMMING MODE
AND VOLUME FRACTION

Next, we seek the optimal parameters for droplet loco-
motion. The effect of the swimming mode β is shown in
Fig. 5(a); the volume fraction was fixed at 0.05 for all cases,
and each translational velocity was averaged over five initial
conditions. Gr was also fixed to 1.0 in this section. When
β � 1, the velocity became positive, and the droplet migrated

TABLE I. Summary of the droplet velocity.

Swimming mode of
squirmers

Velocity of the
droplet obtained in

the simulation

Velocity of the
droplet predicted

by Ref. [11]
β U d

z /U U d ′
z /U

−3.0 0.263 0.268
0.0 0.242 0.243
3.0 −0.189 −0.191

upward. The peak value was obtained with weak pushers
(β = −1), and the velocity decreased with β. In the case
of strong pushers (β = −2 and −3), the orientations of the
squirmers were disturbed by the strong hydrodynamic inter-
actions among them, which weakened the stable convection
ring inside the droplet and eventually reduced the locomotion
velocity. However, strong pullers (β � 2) stuck to the surface
more strongly as β increased, which increased the surface
velocity and the locomotion velocity of the droplet. In the case
of weak pullers (e.g., β = 1), the hydrodynamic torque was
relatively weak, and squirmers tended to swim along with the
surface. Accordingly, two convection rings could be generated
within the droplet, and the droplet migrated upwards similarly
to the neutral type. When β is larger than 1, on the other hand,
a recirculation region appears in front of a solitary squirmer,
and the flow field is qualitatively changed. Moreover, as β

increases, the hydrodynamic torque becomes dominant, and
squirmers tend to be trapped more frequently at the surface.
These differences induced the dynamics change of the droplet
movement with β.

We also investigated the effect of volume fraction; the
results are shown in Fig. 5(b). When β � 0, the fastest
locomotion velocity appeared at the 2.5% volume fraction.
A further increase in the volume fraction disturbed the ori-
entations of squirmers, due to the strong hydrodynamic in-
teractions between them, which again weakened the stable
convection inside the droplet and eventually decreased the
locomotion velocity. In the case of strong pullers (β = 3), on
the other hand, the downward locomotion speed of the droplet
increased monotonically with the volume fraction. A droplet
containing pullers migrates via the surface velocity generated
by stuck particles, as opposed to internal convection. In high
volume fraction cases, a large number of pullers stick to the
surface, and the swimmer-driven flow and the locomotion
velocity increase with the volume fraction. Thus, the effects
of the volume fraction differ between pushers and pullers.

VIII. EFFECTS OF BOTTOM HEAVINESS
AND SEDIMENTATION

Next, we ask a simple question: does bottom heavi-
ness or sedimentation play the most crucial role in droplet
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FIG. 5. Effects of parameters on the vertical locomotion velocity. Each plot is averaged by five different initial conditions, and error bars
indicate the standard deviation. (a) Effect of swimming mode β (volume fraction = 0.05). (b) Effect of volume fraction of microswimmers.

locomotion? Here, we divided the effects of gravity into
sedimentation and bottom heaviness and investigated their
contributions to droplet locomotion. The results considering
sedimentation only, bottom heaviness only, and their com-
bination (full simulation) are shown in Fig. 6. The results
with sedimentation only agree qualitatively with those of the
full simulation. The flow field around the droplet is shown in
Fig. 6, illustrating that the flow field is also similar to that of
the full simulation. When only the effect of bottom heaviness
is considered, the droplet always migrates upwards, regardless
of β. In this case, almost all squirmers gather at the top of
the droplet; notably, the flow field differs considerably from
that of the full simulation. If the effect of gravity was turned
off, i.e., Gr was set as Gr = 0, the flow structure within the
droplet was isotropic, and we did not observe effective loco-
motion of the droplet (see the Appendix). The sedimentation
could break the symmetry of the configuration, thus we can

conclude that sedimentation plays the dominant role in droplet
locomotion.

IX. EFFECT OF Gr

Last, we investigated droplet locomotion with Gr as a
parameter. In Fig. 7, the locomotion velocity and the flow
field with various Gr and β are shown. We see the locomotion
velocity decreased in both high- and low-Gr regimes. In the
high-Gr regime, the sedimentation was dominant and the
squirmers accumulated at the bottom of the droplet regardless
of the swimming mode β (cf. Supplemental Movie 5 [25]).
Accordingly, the swimmer-driven convection was weakened
in the high-Gr regime. In the low-Gr regime, on the other
hand, pushers and neutral squirmers swam rather randomly
and we did not see effective locomotion of the droplet (cf.
Supplemental Movie 4 [25]). In the case of pullers with low

FIG. 6. Vertical locomotion velocity induced by sedimentation only, bottom heaviness only, and both of them (full simulation). The insets
show the time-averaged fluid flow generated only by the sedimentation effect or only by the bottom-heavy effect. The volume fraction is 0.05.
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FIG. 7. Effect of the gravity Gr. (a) Locomotion velocity of the droplet as a function of Gr. Each plot is averaged by five different initial
conditions, and error bars indicate the standard deviation. (b)–(e) Time-averaged fluid flow inside and outside of the droplets containing pushers
or pullers with Gr = 0.1 and Gr = 10.

Gr, squirmers were tended to be entrapped at the surface, and
they oriented toward the outward normal direction as shown

FIG. 8. Droplets containing pusher-, neutral-, or puller-type
swimmers with Gr = 0. (b), (c) Temporal profiles of the droplet
and time-averaged flow field with (a) pushers (β = −3), (b) neutral-
swimmers (β = 0), and (c) pullers (β = 3). (d) Locomotion velocity
of the droplet as a function of β. Each result is averaged by five initial
conditions and error bars indicate the standard deviation.

in Supplemental Movie 8 [25]. Swimmer-driven flow thus
became symmetric and we again concluded noneffective loco-
motion of the droplet with pullers in the low-Gr regime. When
the effect of gravity was turned off, i.e., Gr = 0, the particle
configuration became isotropic and we did not observe droplet
migration as shown in Fig. 8.

X. CONCLUSION

In this study, we proposed an active droplet driven by the
collective motion of squirmers under gravity. Our results in-
dicate that droplet locomotion can be controlled by changing
the swimming mode and the number of microorganisms. The
locomotion mechanism of the droplet can be well explained
by the interfacial velocity, and the locomotion velocity can
be predicted by the Lighthill-Blake theory. In all cases, the
locomotion speed of the droplet reaches a maximum when
the swimmers inside are weak pushers. These findings are
essential to understand the interplay between the motion of
suspended self-propelled particles and the bulk motion of
active matter, and they pave the way for applications such as
manipulation, self-mixing, micropumping, and targeted drug
delivery.
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APPENDIX: DROPLET LOCOMOTION UNDER
THE Gr = 0 CONDITION

In this Appendix, we show the results with Gr = 0. The
other parameters are the same as those in Fig. 2. In Fig. 8 and
Supplemental Movies 6–8 [25], the movement of the droplets
containing pushers (β = −3), neutral swimmers (β = 0), or
pullers (β = 3) is shown.

In the case of pushers and neutral swimmers, they swam
randomly within the droplet, and time-averaged flow was
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weakened as shown in Figs. 8(a) and 8(b). Accordingly, we
did not observe effective locomotion of the droplet with β =
−3 and 0 [Fig. 8(d)]. In the case of pullers, all squirmers
were entrapped at the surface and they oriented toward the

outward normal direction [Fig. 8(c)]. The swimmer-driven
flow thus became symmetric, and we again concluded that
there was noneffective locomotion of the droplet with pullers
(β = 3).
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