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History-dependent nonequilibrium conformations of a highly confined polymer globule in a sphere
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Chromatin undergoes condensation-decondensation processes repeatedly during its cell lifetime. The spatial
organization of chromatin in nucleus resembles the fractal globule, of which structure significantly differs from
an equilibrium polymer globule. There have been efforts to develop a polymer globule model to describe the
fractal globulelike structure of tightly packed chromatin in nucleus. However, the transition pathway of a polymer
toward a globular state has been often ignored. Because biological systems are intrinsically in nonequilibrium
states, the transition pathway that the chromatin would take before reaching the densely packaged globule should
be of importance. In this study, by employing a simple polymer model and Langevin dynamics simulations, we
investigate the conformational transition of a single polymer from a swollen coil to a compact globule. We
aim to elucidate the effect of transition pathways on the final globular structure. We show that a fast collapse
induces a nonequilibrium structure even without a specific intramolecular interaction and that its relaxation
toward an equilibrium globule is extremely slow. Due to a strong confinement, the fractal globule never relaxes
into an equilibrium state during our simulations such that the globular structure becomes dependent on the
transition pathway.
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I. INTRODUCTION

The condensation-decondensation process of chromatin
inside cell nucleus leads to various chromatin structures,
which relates closely to its functions such as gene regula-
tion [1,2]. Understanding the chromatin structures inside a
nucleus should be, therefore, a topic of interest. The spatial
organization of chromatin in cell nucleus differs significantly
from what is expected for an equilibrium polymer globule [3].
There have been great efforts to develop a polymer model and
describe the out-of-equilibrium chromatin structure [4–11].
Most studies, however, focused on the globular state, while
the pathway for the condensation of a chromatin fiber has
been often ignored. Because biological systems may stay
in nonequilibrium states and the chromatin conformation in
nonequilibrium states may fluctuate significantly, the transi-
tion pathway might affect the conformation of densely packed
globule, especially when the conformational relaxation of the
chromatin slows inside a confined space. The purpose of this
study is to elucidate the effect of a transition pathway on
the conformation of a polymer globule, which could provide
physical insight on the nonequilibrium conformations of chro-
matin beyond biological details.

Recent advances in single-cell imaging and chromosome
capture methods [12,13] revealed that the chromatin confor-
mation inside nucleus was totally different from equilibrium
conformations. Genome-wide 3C (Hi-C) experiments [3] pro-
vided information on chromatin conformations by measuring
the probability of a contact P(s) between two loci separated
by a genomic distance s. If the chromatin were to behave like
an equilibrium polymer globule [14], it would have highly
entangled conformations with many knots and would behave
like a random walk chain. P(s) should scale as P(s) ∼ s−3/2,

which can be obtained from the ideal chain statistics with the
flory exponent ν = 1

2 . However, Lieberman-Aiden et al. [3]
reported that the contact probability [P(s)] of human chro-
mosomes exhibited P(s) ∼ s−1.08 at a megabase scale. The
scaling exponent of −1 is consistent with that of a crumpled
globule, which is a metastable polymer globule that forms
through the collapse of polymer local segments. It is also
known as the fractal globule and its scaling relation, i.e.,
P(s) ∼ s−1, was estimated by a space-filling Peano curve [15].
This indicates that the human chromosomes at megabase
scales have fractal globulelike structures without knots. In
addition, the structure of chromosomes is different in different
organisms and cell types [3,8,13,16,17]. Such different struc-
tures far away from equilibrium polymer globules may relate
to the presence of chromosome territories [18,19], of which
physical origin remains unclear.

In order to prepare and investigate the fractal globules
as a model for chromatin conformations, polymer models
were developed by incorporating specific interactions into the
Hamiltonian of the polymer. Binder-mediated interactions [9]
or randomly formed dynamic loops [6,20] could make poly-
mers to have a fractal globule structures as free-energy mini-
mum (i.e., equilibrium) conformations. However, such models
with specific interactions do not allow one to investigate the
effect of the transition pathway along nonequilibrium states on
the globule structure. Previous experiments (including Hi-C
and fluorescent in situ hybridization experiments) showed
unexpected cell-to-cell variability in isogenic samples, which
indicates that the chromatin would be in nonequilibrium states
instead of the free-energy minimum state. Moreover, recent
simulations [21] showed that a highly confined polymer, as
a model for chromosome in cell nucleus, exhibited glassy
dynamics as the polymer packing fraction increased.
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In this study, we aim to elucidate the nonequilibrium nature
of the transition pathway and its effect on the conformational
transition. There have been extensive evidences that biolog-
ical and polymeric systems would stay in nonequilibrium
states [22–33]. Equilibrium thermodynamics presumes that
a transition from one to another state would follow a re-
versible pathway, along which every single state should be in
local equilibrium. In many biological systems, however, such
presumption may not hold, as reported for enzymatic kinet-
ics [24,26], protein folding [27], transport in membranes [25],
and viral DNA packaging [28,34].

We perform molecular simulations and investigate the
conformational transition of a single polymer chain from a
coil to a globule. A spatial confinement forces the polymer
to have a globular conformation. Chromatin is confined in
a cell nucleus, of which size varies depending on the cell
types, the stage of development, and protein contents [35,36].
Significant changes in available space for chromatin could
induce chromatin folding. If a densely packed polymer ex-
hibits nonequilibrium dynamics and the polymer conforma-
tion hardly relaxes into its equilibrium conformation, the
polymer conformation would be determined by the transition
pathway it takes rather than equilibrium thermodynamics.
We employ a flexible bead-spring polymer chain with no
specific interactions between monomers in order to focus
on the nonequilibrium nature beyond biological details. By
using a flexible coarse-grained polymer model and a spherical
confinement, we find that confining and forcing the polymer
chain to collapse along the nonequilibrium pathway makes
the polymer to have less knotted conformations, of which
relaxation toward an equilibrium globule is extremely slow.

II. MODEL AND METHOD

A. Simulation model and methods

We investigate the conformational transition of a single
polymer chain immersed in an implicit solvent. The polymer
is modeled as a bead-spring chain comprised of N = 1024
monomers of diameter σ , which is the unit length of this study.
The nonbonding interaction between monomers is described
by Week-Chandler-Andersen (WCA) potential [37]:

UWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] − εrc , r < rc

0, r � rc

where ε = kBT is the unit of energy. kB and T denote the
Boltzmann constant and temperature, respectively. The po-
tential is truncated and shifted at a cutoff radius of rc =
1.122σ such that the potential is purely repulsive, where εrc =
4ε[( σ

rc
)12 − ( σ

rc
)6]. The chemical bond between monomers is

described by a harmonic potential, i.e., Ub(r) = K (r − r0)2

with K = 1000kBT σ−2 and r0 = σ . The spatial confinement
for the polymer chain is modeled as a sphere of radius Rsph.
The wall of the sphere interacts with monomers via the same
WCA potential but with r being the shortest distance between
the monomer and the wall surface. In the condensation pro-
cess of chromatin, the local charged interaction between DNA
segments should play a critical role in generating a higher
order chromatin structure in nature. The aim of this study
is, however, not to mimic the condensation-decondensation

process of chromatin but to understand how the nonequilib-
rium nature of the transition pathway may affect the collapsed
polymer conformation. As shall be discussed in Sec. III, with-
out any specific interaction for the polymer chain, the polymer
may form a fractal globule even under simple compression
scheme.

We perform Langevin dynamics (LD) simulations via
LAMMPS simulator [38] by solving the following equation of
motion:

m
d2ri

dt2
= −∇riU − ζ

dri

dt
+ Fi(t ), (1)

where ri is the position vector of ith monomer. Fi(t ) denotes
a random force exerted on the ith monomer at time t and
satisfies the fluctuation-dissipation theorem, i.e., 〈Fi(t )〉 = 0
and 〈Fi(t )Fi(t ′)〉 = 2ζkBT δ(t − t ′). The friction coefficient ζ

is set to be 1. m is the mass of the monomers and is the unit
of mass in this study. We use velocity-Verlet integrator and
the integration time step is δt = 0.005τ . τ is the reduced time
unit, i.e., τ ≡

√
mσ 2/kBT .

The volume fraction (φ) of the polymer chain inside a
sphere is defined by φ = Nvmon

V , where V = 4
3πR3

sph is the
volume of the sphere and vmon is the volume of a single
monomer. We generate an initial configuration by adding
monomers sequentially and growing a chain until it reaches
a desired volume fraction. Then, we perform LD simulations
for the initial configuration and equilibrate the system during
at least the rotational relaxation time (τrot) of the end-to-end
vector of the polymer, which is the longest relaxation mode
of the chain. At a high volume fraction, the polymer chain of
a large N would relax its conformation via reptation motions,
which makes its conformational relaxation significantly slow.
In order to accelerate the equilibration in chain conformations,
we allow the polymer to undergo bond crossing temporarily
by reducing a force constant K of the harmonic bonding
potential (Ub) down to K = 100kBT σ−1 during equilibration
runs. We confirm that a change in K from 1000 to 100 does
not alter the overall chain conformations.

To investigate the polymer conformations, we calculate a
segmental mean-squared distance [R2(s) ≡ 〈(ri − r j )2〉] and
a contact probability [P(s)] between two monomers i and j
separated by s = |i − j|. When the distance r = |ri − r j | is
less than a = 1.5σ , two monomers are considered to make a
contact. The contact probability is calculated by using P(s) ≡

1
Ni j

∑
i, j〈θ (a − |ri − r j |)〉. Here, Ni j is the total possible num-

ber of pairs of monomers separated by |i − j|. In order to
investigate the conformational relaxation, we calculate a bond
relaxation time (τb) and a rotational relaxation time (τrot). The
time correlation functions of the bond vector are defined by
Cb(t ) = 〈 1

2 [3( rb(t )rb(0)
|rb(t )||rb(0)| )

2 − 1]〉, where rb is a bond vector of
the polymer. The time correlation functions of an end-to-end
vector are defined by Cete(t ) = 〈 rete(t )rete(0)

|rete(t )||rete(0)| 〉 where rete is the
polymer end-to-end vector. τb and τrot are estimated using the
relations Cb(t = τb) = e−1 and Cete(t = τrot ) = e−1.

B. Polymer collapse and knot formation

We investigate the confinement-induced polymer collapse,
i.e., the conformational transition of the polymer chain from a
coil to a globule, by changing the radius (Rsph) of the spherical
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(a)

(b)

FIG. 1. (a) A simulation scheme for a collapse stage and a
relaxation stage. (b) A pulling process where the two ends of the
polymer is pulled to opposite directions with a constant force 25kBT .
In the middle of the chain, a knotted region appears.

confinement. We change Rsph in a way that φ increases lin-
early with time from φ = 0.01 to 0.55. The collapse scheme
consists of two stages as depicted in Fig. 1(a). In the first
stage (collapse stage), we increase φ with a given rate of
dφ/dt = 0.01 by decreasing Rsph such that the polymer is
forced to collapse. In order to tune the rate of the collapse,
we insert a stalling step (of which duration is τstall) every time
φ increases by 0.05. Then, the polymer chain is allowed to
relax its conformations during τstall. In case of τstall = 0, the
total time (τcollapse) taken for the polymer chain to collapse
is order of 101, which is much smaller than τrot ≈ O(103).
Therefore, the longer τstall is, the polymer collapse is more
likely to follow its reversible pathway as the polymer chain
may retain its equilibrium conformations on the way to a
globule. In this study, τstall ranges from 0 to 10τrot, where
τrot varies depending on the current value of φ. In the second
stage (relaxation stage), we let the polymer chain relax its
conformation [Fig. 1(a)]. When the first collapse stage is
completed, the last configuration of the chain is taken as a new
initial configuration for the second relaxation stage. Then,
we perform LD simulations with a fixed volume fraction of
φ = φfinal = 0.55.

A polymer chain can be knotted and self-entangled inside
a globule. In order to identify knots, we employ a pulling
scheme by following the previous studies [39,40] [Fig. 1(b)].
In this scheme, we remove the wall potential and then we
pull the polymer ends to opposite directions with a constant

force 25kBT/σ until the polymer is fully stretched. If there
were to be a knot in the polymer chain, the knotted region
would appear in the middle of the stretched chain. The size
of a knot (nknot) is defined as the number of monomers that
participate in the knot formation. We decide whether the ith
monomer would belong to the knot as follows. For the ith
monomer, we calculate a displacement vector (di) between
two monomers (i − 1) and (i + 1) along the pulling force
(y axis in our simulation), i.e., di = [ry(i + 1) − ry(i − 1)]/2.
Here, ry(i) is the y component of the position vector of the
ith monomer. When a monomer does not belong to the knot
and is located outside the knotted region, di ≈ 1σ because
the polymer is strongly stretched due to the pulling force.
Otherwise, inside the knotted region, di decreases down to
−0.5. Then, we decide the ith monomer to participate in
forming the knot when di � 0.7. We consider 1000 indepen-
dent configurations from different initial configurations and
calculate the probability (pknot) of the knot being formed by
dividing the number of configurations with any knots by the
number of total configurations. For example, if 100 chains out
of 1000 polymer chains would have knots, pknot = 0.1.

III. DATA AND RESULTS

A. Conformation and its relaxation dynamics in equilibrium

In this section, we investigate the relaxation dynamics and
the conformation of a polymer chain in a spherical confine-
ment in an equilibrium state. Information on the relaxation
dynamics and the conformation in equilibrium states allows us
to compare to those in nonequilibrium states and understand
how the (irreversible) transition pathway would affect the
polymer conformation. In order to ensure that we obtain
the equilibrium conformation inside a sphere, we generate
a single polymer chain inside the sphere by allowing bond
crossing and performing a random-walk generation process
(i.e., growing the chain by adding monomers sequentially to
the chain). Then, we perform additional LD simulations to
equilibrate the polymer chain.

The conformation of the single polymer chain obtained
from the above scheme is consistent with those expected for
equilibrium states. Figures 2(b) and 2(c) depict the mean-
squared spatial distance [R2(s)] and the contact probability
[(P(s)] between two monomers i and j separated by s =
|i − j| along the chain. Both R2(s) and P(s) are supposed to
show scaling behaviors at small s � N2/3 (before a monomer
encounters the sphere boundary on average) [41] such that
R2(s) ∼ sα and P(s) ∼ s−β . For polymer chains in equilib-
rium, α is nearly equivalent to the flory exponent ν such that
α = 2ν. ν = 3

5 , 1
2 , and 1

3 in good, theta, and poor solvent
conditions, respectively [14]. In case of the contact probability
P(s), P(s) ∼ s−β with β = 3

2 for equilibrium globules [42]
and β ≈ 2.18 for unconfined self-avoiding walk chain [21].
The investigation of the values of β allows us to determine
whether the transition to an equilibrium globule occurs or not.

R2(s)’s are depicted for different values of φ in Fig. 2(b).
Dotted lines are guides for the scaling relation with α = 6

5
and 1 for self-avoiding walk chains and globules, respectively.
When φ = 0.01, the single polymer chain is hardly perturbed
by the spherical confinement and follows R2(s) ∼ s6/5 like a
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FIG. 2. (a) A bond relaxation time (τb) is plotted as a function
of φ. The red solid line is a fitting line, τb ∼ (φc − φ)γ with φc =
0.566 ± 0.002 and γ = 2.51 ± 0.07. (Inset) A rotational relaxation
time (τrot) is plotted as a function of φ. (b) The mean-squared spatial
distance [R2(s)] between monomers i and j is plotted as a function
of a distance s = |i − j| for different φ. Dotted lines are guides for
R2(s) ∼ sα with α = 6

5 and 1. (c) The contact probability [P(s)]
as a function of s = |i − j| for different values of φ. Dotted lines
are guides for P(s) ∼ sβ with β = − 2

3 and −2.18. (d) The knot
probability (pknot) as a function of φ. (Inset) Probability distribution
function of nknot for φ = 0.01, 0.2, and 0.55.

self-avoiding walk chain. As φ increases, the value of s at
which R2(s) begins to level off shifts to a smaller value and
the slope becomes lower due to a stronger confinement effect.
When φ reaches 0.55, R2(s) ∼ s1 indicating that the polymer
conformation is similar to that of an ideal chain, which is
expected for an equilibrium polymer globule.

Figure 2(c) depicts the contact probability [P(s)] of the
equilibrium polymer conformations for different values of φ.
The exponent (β) changes from 2.18 to 3

2 as φ increases from
0.01 to 0.55. Note that β = 2.18 and 3

2 correspond to those of
the equilibrium self-avoiding chain and equilibrium globules,
respectively. This indicates that we can obtain equilibrium
conformations for different values of φ from 0.01 to 0.55 in
this study.

Figure 2(a) depicts the bond relaxation time (τb) and the
rotational relaxational time (τrot) for an equilibrium polymer
chain under confinement. In general, τb and τrot represent the
shortest and the longest p-mode relaxations of the polymer
chain, i.e., the relaxation of polymer segments comprised of
N/p monomers. As shown in Fig. 2(a), τb increases mono-
tonically as φ is increased. A moderate increase in τb at low
φ would result from an increase in local density inside a
sphere. However, it begins to increase rapidly after φ ≈ 0.25.
Kang et al. reported that the polymer chain showed glassy
dynamics under strong confinement [21], which means that
the polymer conformation would be dynamically arrested. At
high φ, τb diverges and it is well fitted with a power-law

relation, i.e., τb ∼ (φc − φ)−γ as in supercooled liquids [43].
We extract from our simulations that φc ≈ 0.566 ± 0.002 and
γ = 2.51 ± 0.07.

τrot shows a nonmonotonous behavior with respect to φ. At
small φ � 0.2, τrot slightly decreases as φ increases, which
means the rotational relaxation is facilitated. In case of bulk
polymer solutions, if Rouse scaling relation were to hold,
τrot ∼ τbN2 ≈ 105 to 106. We find from simulations that for
a polymer chain in bulk solution, τrot ≈ 2 × 105. As shown
in the inset of Fig. 2(a), however, τrot is relatively small for
the polymer chain confined in the sphere. Even for the weakly
confined chain of φ = 0.01, the polymer chain certainly feels
the boundary of the sphere, especially while the longest re-
laxation mode of the end-to-end vector relaxes. The collision
of the polymer chain with the confinement wall may facilitate
the relaxation of the longest relaxational motion, thus leading
to a small value of τrot.

The polymer chain in the strong confinement is likely
to form a knot. After equilibration, we employ the pulling
scheme by removing the wall potential and pulling two ends
with opposite directions [as in Fig. 1(b)]. Figure 2(d) depicts
the knot probability (pknot) as a function of φ. As shown in
Fig. 2(d), the probability of forming a knot increases as φ

increases. Even in a dilute bulk polymer solution (φ = 0),
pknot ≈ 0.15. Not surprisingly, pknot depends on the degree
of polymerization (N). The polymer chain of N = 1024 in
our simulations is sufficiently long to form a knot without
any confinement. When φ � 0.2, pknot reaches almost unity
such that the polymer chain confined in a sphere with φ �
0.2 almost always forms a knot. The probability distribution
function (PDF) of nknot is shown in the inset of Fig. 2(d). The
size (nknot) of a knot increases with an increase in φ. More
interesting is that the complexity of knots (or the variation
in nknot) increases significantly with an increase in φ. For
φ = 0.55, the average knot size is about 100 ± 64. A large
standard deviation in nknot implies that the knot conformations
are diverse and heterogeneous.

B. Effects of the transition pathway on the chain conformation

We decrease the size (Rsphere) of the spherical confinement
and increase the extent of the confinement for the polymer
chain [Fig. 1(a)]. The polymer volume fraction (φ) inside the
sphere increases gradually from φ = 0.01 to 0.55. The initial
volume fraction of φ = 0.01 is close to the overlap volume
fraction of a bulk polymer, i.e., φ∗ = Nvmon/

4
3πR3

g ≈ 0.005
such that the confinement would not perturb the polymer con-
formation significantly at φ = 0.01. The stalling time (τstall)
ranges from 0 to 10τrot in this simulation. Note that the value
of τrot keeps changing depending on the current value of φ

during the collapse process. In the relaxation stage, time (t)
is reset and t denotes the elapsed time after the end of the
collapse stage. We express time t by employing the value of
τrot at φ = 0.55.

Figures 3(a) and 3(b) depict how the contact probabil-
ity [P(s; t )] and the mean-squared spatial distance [R2(s; t )]
change with t after the collapse stage. Black solid lines in
Figs. 3(a) and 3(b) correspond to the equilibrium values of
P(s) and R2(s) at φ = 0.55 [i.e., the same as in Figs. 2(b)
and 2(c)]. We plot P(s; t ) and R2(s; t ) for two extreme cases
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FIG. 3. (a) The contact probability P(s; t ) and (b) the mean-
squared spatial distance R2(s; t ) as a function of time t for τstall = 0
and 10τrot . The elapsed time (t) after the collapse stage ranges from
0 to 20τrot . Dotted lines are guides for P(s) ∼ sβ and R2(s) ∼ sα .

of τstall = 0 and τstall = 10τrot. Note that different symbols
represent the different values of τstall and the different colors
represent different times t .

In case of a fast collapse with τstall = 0 (circles), the poly-
mer chain is not allowed a sufficient amount of time to relax
its conformation. The contact probability [P(s; t = 0), red
circles] right after the collapse (t = 0) deviates significantly
from the equilibrium contact probability (black solid line).
As time progresses in the relaxation stage, P(s; t ) changes
slightly toward the equilibrium contact probability but is still
far away from the equilibrium contact probability even at
t = 20τrot. In equilibrium, a leveling off in P(s) occurs at s ≈
100 (black solid line), which corresponds to the theoretical
value of s ∼ 10242/3 where both P(s) and R2(s) level off.
This indicates that two monomers of s � 100 evenly contact
with each other. On the other hands, P(s; t )’s of τstall = 0 (red
circles) level off at a much larger value of s ≈ 300, which
resembles the structure of the fractal globule. A perfect fractal
globule would have a self-similar structure at all length scales
and would not show any leveling off. The exponent β is close
to −1 (for a fractal globule) rather than − 3

2 (for an equilibrium
globule) at medium s ranges. This indicates that the polymer
chain obtained from a fast collapse transition has a similar
structure with the fractal globule. More interesting is that
P(s; t ) never fully relaxes into equilibrium even after 20τrot.
After t � 10τrot, P(s; t ) hardly changes with time, which
means the polymer conformation is trapped in nonequilibrium
states.

After the collapse transition, we allow the single polymer
chain to relax its conformation for a long time until t = 20τrot.
We find, however, applying such a sufficiently long relaxation
time (in the relaxation stage) does not guarantee that the
polymer chain forms an equilibrium globule under the strong

confinement. In case of τstall = 10τrot [triangles in Fig. 3(a)],
where the rotational motion of the polymer would be fully
relaxed during the collapse stage, P(s; t ) hardly changes with
time. This indicates that the polymer conformation reaches a
steady state. However, there is still a non-negligible deviation
from the equilibrium P(s) (black solid line).

Similar trends are observed in R2(s; t ) as shown in
Fig. 3(b). In equilibrium simulations, R2(s) scales as R2(s) ∼
s1, which is consistent with what is expected for a random-
walk chain in polymer melts. In case of the polymer chain
after the collapse transition, R2(s; t ) deviates from its equi-
librium counterpart regardless of the magnitude of τstall. At
t = 0 after the collapse transition, R2(s; t ) ∼ s2/3, which is
expected for a polymer globule in poor solvent. Since the
fractal globule is constructed by iterative collapses of local
globules, the scaling relation of the size of polymer segments
of s monomers, R(s) ∼ s1/3, is consistent with the scaling
relation of the entire polymer chain of N monomers, i.e.,
R(N ) ∼ N1/3. Leveling off also appears at a later time for the
polymer chain after the collapse transition than in equilibrium
simulations.

Previous studies investigated the conformation of a con-
fined polymer as a model for chromatin organization. Kang
et al. [21] reported that the glassy dynamics of the polymer
chain under strong spherical confinement could be the reason
of a nonequilibrium chromatin organization. In order to obtain
the conformations of a confined polymer, they chose to reduce
the size of the spherical confinement with a finite compression
rate. On the other hands, Gürsoy et al. [7] suggested an
algorithm that could generate a large number of ensembles
of a model chromatin fiber in severe spatial confinements,
which was called a constrained self-avoiding chromatin (C-
SAC) model. They reported that the available free volume
would be a key determinant for chromosome folding and
its architecture. According to our simulations, the polymer
conformation [characterized by both P(s; t ) and R2(s; t )] may
differ depending on how the polymer chain conformation is
generated, especially whether the polymer chain is located
and equilibrated within a confinement or the polymer chain
is compressed with a various compression rate (or τstall).

Regardless of the magnitude of τstall, P(s; t ) converges
into a steady state at long times, at least within our sim-
ulation times. Figures 4(a) and 4(b) depict P(s; t = 20τrot )
and R2(s; t = 20τrot ) at a long time t = 20τrot for different
values of τstall. The different values of τstall mean that the
polymer chain is allowed to relax its conformation for differ-
ent duration in the collapse transition. Both P(s; t = 20τrot )
and R2(s; t = 20τrot ) (which correspond to those of the steady
state) differ for different values of τstall. This indicates that the
polymer chain conformation [P(s; t ) and R2(s; t )] in the steady
state should depend on the transition rate (and pathway),
which is the signature of nonequilibrium nature.

P(s) was measured experimentally by chromosome capture
techniques such as genome-wide 3C (Hi-C). Conventional
Hi-C methods measured chromosomal contacts averaged over
a large ensemble of cells. However, it is still challenging to
interpret the ensemble-averaged Hi-C data and predict the
three-dimensional organization of chromatin by developing
a universal model [5,6,11,15,20,44,45], due to a significant
cell-to-cell variability even in isogenic cell lines, especially
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FIG. 4. (a) The contact probability P(s; t = 20τrot ) and (b) the
mean-squared spatial distance R2(s; t = 20τrot ) at t = 20τrot for dif-
ferent values of τstall. Dotted lines are guides for P(s) ∼ sβ and
R2(s) ∼ sα . Numbers indicate exponents α and β.

for long-range contacts [13,46]. Stochastic and heterogeneous
scalings of chromatin contacts could be understood in the
context of the nonequilibrium nature of biological systems.
The conformations of a confined or collapsed polymer chain
could not relax fully into a conformation at a free-energy
minimum, but might remain in nonequilibrium states with
diverse conformations. Our data also suggest that the contact
probability [P(s)] is highly sensitive to spatial confinement
and how the polymer collapse transition occurs, which could
be a reason for the heterogeneity of the exponent α observed
in experiments.

C. Effects of the transition pathway on the knot formation

Fractal globules are known to have knot-free conforma-
tions [41]. If a chromatin were to form a fractal globule, it
would enable densely packed chromatin to fold and unfold
any genomic loci easily without topological hindrance. How
and whether the confined chromatin has knot-free conforma-
tions are, therefore, of biological importance, but still remain
unclear. We find from our simulations that a fast collapse
transition of a polymer chain can induce less knotted confor-
mations. Figure 5(a) depicts the probability (pkont ) of finding
knots in a polymer chain. We calculate pknot at two different
moments: (1) at t = 0 right after the collapse transition is
completed and (2) at t = 20τrot long after the collapse tran-
sition. Note that when the polymer chain is equilibrated in
our equilibrium simulations for φ = 0.55, pknot ≈ 1. In other
words, a polymer chain in equilibrium almost always forms a
knot within a strong confinement.

FIG. 5. (a) The knot probability (pknot) for different stalling times
τstall = 0, 0.1τrot, τrot, 3τrot , and 10τrot . Solid bars represent pknot esti-
mated at t = 0 and hatched bars represent pknot at t = 20τrot . (b) The
unfolding time (τunfold) as a function of τstall. (Inset) The radius of
gyration (Rg) as a function of time t for τstall = 0 (red) and 10τrot

(blue). Rg is averaged over 1000 different initial configurations.

As shown in Fig. 5(a), pknot ranges from 0.5 to 0.93
and depends on the stalling time (τstall). pknot increases with
an increase in τstall. Compared to the equilibrium value of
pknot ≈ 1 at φ = 0.55, the formation of knots is inhibited
effectively by up to 50% depending on the collapse rate. Even
if we let the polymer chain to relax during 20τrot after the
collapse transition, pknot hardly changes, which means that
the knot probability is determined mostly during the collapse
transition. Once the collapse transition is complete, a new knot
hardly forms even at long times. However, if we allow the
polymer chain to relax its conformation for a longer duration
(τstall) along the collapse transition, the polymer chain is more
likely to form a knot inside the sphere.

The extent of the knot formation also affects the unfolding
rate of the polymer chain. We estimate an unfolding time
(τunfold ) by measuring the time for a collapsed polymer to
swell when the spherical confinement is removed. We perform
LD simulations by using the conformation at t = 0 right
after the collapse transition as a new initial configuration
and removing the spherical wall potential. In the absence of
the confinement, the polymer chain unfolds spontaneously
due to a high pressure built during the collapse process.
By monitoring the radius of gyration [Rg(t )] of the polymer
as a function of time, we define τunfold by using the rela-
tion Rg(t = τunfold ) = 0.7Rg,bulk. Here, Rg,bulk = 29.6 is the
ensemble-averaged equilibrium value of the polymer chain
in bulk solutions. As depicted in Fig. 5(b), τunfold increases
with an increase in τstall. τunfold is almost doubled when
τstall = 10τrot compared to the fastest collapse transition. As
we allow the polymer chain to relax its conformation, the
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chain conformations become complex with more knots such
that it takes more time for the polymer chain to unfold and
recover its bulk conformations. We also estimate the position
of the end monomers and its distribution functions during the
unfolding process. We find that in case of the fastest collapse
of τstall = 0, the end monomers of the polymer chain are likely
to be placed at the boundary of the polymer globule. On the
other hand, for the slow collapse of τstall = 10τrot, the end
monomers are more likely to be placed inside the globule such
that the unfolding becomes slower.

IV. CONCLUSION

We perform two different sets of LD simulations for a
single polymer chain confined within a sphere. In the first
set of LD simulations, we place the polymer chain within
a fixed radius (Rsph) of the sphere (and hence the volume
fraction φ is fixed). But, we reduce the bonding potential
parameter (K) such that the polymer undergoes extensive
bond-crossing events and the polymer chain obtains equi-
librium conformations. Then, we increase the value of K
back to K = 1000kBT σ−2 and propagate the system via LD
simulations. In the second set of LD simulations, we place
a single polymer chain within a relatively large sphere (with
φ = φinitial = 0.01) and then reduce the value of Rsph grad-
ually, which we call the collapse stage. Within the collapse
stage, we sometimes stop collapsing the sphere and the chain,
and let the polymer chain to relax its conformation during
the time τstall. We change the value of τstall and investigate its
effect on the collapsed conformation. After φ reaches φfinal =
0.55, we complete the collapse transition, reset the time t ,
and perform LD simulations, which we call the relaxation
stage. We compare the conformations from both sets of LD
simulations in order to investigate the effect of the transition
pathway on the chain conformations.

The conformations obtained from the first set of LD
simulations are close to those of equilibrium globules. The
contact probability [P(s)] scales as P(s) ∼ s−3/2 for s < 102

for φ = 0.55, which is expected for the equilibrium globules.
Similarly, the mean-squared spatial distance [R2(s)] scales as

R2(s) ∼ s1, which indicates that the polymer chain behaves as
an ideal chain globule inside the confinement.

On the other hand, when the polymer chain is forced to
collapse along the irreversible pathway, the polymer confor-
mation [characterized by P(s) and R2(s)] stays away from
equilibrium conformations. And P(s) and R2(s) depend on
how fast the collapse of the chain occurs. More interestingly,
the polymer conformation becomes similar to the fractal
globule such that P(s) scales as P(s) ∼ s−1. This indicates
that the fast irreversible transition may lead to nonequilib-
rium polymer conformation inside the confinement. When a
polymer chain collapses quite fast with τstall = 0, the polymer
chain would not have a sufficient amount of time to relax its
conformation during the collapse. Once the collapse transition
is complete and φ reaches φfinal = 0.55, the relaxation of the
nonequilibrium conformations from the fast transition hardly
occurs due to slow dynamics.

The knot formation also depends on the collapse transition
pathway. Compared to equilibrium conformations with many
knots, the polymer globule generated by the collapse transi-
tion exhibits fractal globulelike and less knotted conforma-
tions. Without any specific interactions between monomers,
the knot formation is inhibited effectively in a fast col-
lapsed polymer globule. We also show that less knotted
polymer globule unfolds easily when the spatial confinement
disappears.
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