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Special function methods for bursty models of transcription
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We explore a Markov model used in the analysis of gene expression, involving the bursty production of
pre-mRNA, its conversion to mature mRNA, and its consequent degradation. We demonstrate that the integration
used to compute the solution of the stochastic system can be approximated by the evaluation of special functions.
Furthermore, the form of the special function solution generalizes to a broader class of burst distributions. In
light of the broader goal of biophysical parameter inference from transcriptomics data, we apply the method to
simulated data, demonstrating effective control of precision and runtime. Finally, we propose and validate a non-
Bayesian approach for parameter estimation based on the characteristic function of the target joint distribution

of pre-mRNA and mRNA.
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I. BACKGROUND

Recent improvements in transcriptomics and fluorescence
microscopy methods have enabled the rapid and accurate
quantification of mRNA on a transcriptome-wide scale with
single-molecule precision [1-6]. Simultaneous advances in
biophysical and statistical modeling have enabled the effective
discrimination of gene expression models and the determina-
tion of physical parameters from these data. The estimation
of underlying parameters relies on the ability to compute
the distribution of molecules for a proposed set of param-
eters. The chemical master equation (CME) is the standard
modeling framework for low-copy single-molecule kinetics,
treating such systems with Markov chains traversing state
spaces of integer molecule counts [7-9]. However, solutions
are available only for a relatively small set of models [8,10].
Furthermore, the existence of a closed-form solution does not
guarantee its computational tractability.

Currently popular approaches to solving the CME can
be roughly divided into three categories: simulation, matrix,
and analytical methods. Simulation methods, such as the
Gillespie stochastic simulation algorithm [11,12], are eas-
ily implemented and parallelized; the sample statistics of
numerous realizations asymptotically approach the statistics
of the underlying process, although the speed of approach
varies. Matrix methods, such as finite state projection [13]
or multifinite buffers [14], rely on matrix exponentiation
or eigenvalue calculation to directly solve a truncation of
the infinite-dimensional CME system; however, barring con-
venient symmetries, these methods require a characteristic
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running time of roughly O(n?), where n is the state space
size. Finally, analytical methods directly solve the underlying
system of ordinary differential equations (ODEs), e.g. using
a generating function representation [8] or a convenient basis
[15] and can be run in O(n) time.

Due to lower computational complexity, these analytical
methods are highly relevant to the determination of biophysi-
cal parameters from high-dimensional, multimodal data, such
as those available by modern transcriptomics and proteomics
methods. Recent findings suggest that the use of joint data
can provide substantial improvements to model and parameter
estimation [16], motivating the development of more efficient
solvers for the CME. Current chemistries can quantify spliced
and unspliced mRNA molecules [3,17], as well as surface
proteins [18,19]. The following multimodal models have an-
alytical CME solutions, as well as drawbacks limiting their
direct application to biological data:

(1) Combination of Poissonian solutions [15,20]: cannot
be applied to proteomics, and does not explicitly model mul-
tistate genes.

(2) Constitutive mRNA and protein production [21]: exact
solution, but applies poorly to eukaryotic systems due to
prevalence of multistate genes.

(3) Telegraph mRNA and protein production [22,23]: per-
turbative solution that relies on timescale separation between
mRNA and protein lifetimes, and inapplicable to a large
fraction of eukaryotic genes.

(4) Multistate gene solutions with a single product
[24-26]: exact solution, but does not provide information
regarding downstream gene products. Current sequencing
methods cannot be easily integrated with DNA accessibility
testing.

(5) Bursty mRNA production and isomerization [27]: ex-
act solution, but relies on numerical integration and uses a
fairly simple burst model.

A recent method, RNA velocity [17], uses joint distribu-
tions of spliced and unspliced mRNA to perform short-time
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extrapolation on the cell landscape and has been extended to
a more detailed treatment using stochastic biophysics [28].
However, the foundation of these methods rests on a Pois-
sonian description of monomolecular systems [15] under a
deterministic modulation of transcriptional initiation. This
description is underdispersed with respect to the conventional
approach, which models the transcriptional states as discrete
and subject to stochastic switching [29]. In its current state,
the theoretical foundation of RNA velocity is not feasible to
reconcile with a model of transcriptional initiation consisting
of discrete binding events.

A common simplification of the conventional approach
describes transcription as a rare event with a Poisson process
yielding stochastic “bursts” of mRNA. The bursty model
describes a large fraction of mammalian genes [30-34] and
serves as the implicit foundation of the negative binomial
model for scRNA-seq counts [34]. Due to the low abundance
of biomolecules [35] and the effectiveness of the discrete gene
state model [36], we suggest that unique molecular identifier
(UMI)-based scRNA-seq data [37] is most naturally modeled
using the CME [10].

A publication by Singh and Bokes [27] describes a model
for the bursty production of nascent mRNA and its conversion
to mature transcripts; in effect, this system corresponds to a
cell population with a single deterministic set of parameters.
The computation of probability densities for this model relies
on numerical integration. An analytical result is desired for
the rapid evaluation of likelihoods, as well as for qualitative
insights into the mathematical structure of the solution. To
approach this problem, we propose a semianalytical method
for the evaluation of joint distributions under this model. Fur-
thermore, we apply this method to parameter estimation, and
discuss its applications to a set of burst size distributions that
have not been previously solved to the best of our knowledge.

II. METHODS

We follow previous literature [27] in implementing a
Markov model for production, isomerization, and degradation
of mRNA [Fig. 1(a)]. A single gene locus undergoes tran-
scriptional bursting at a rate of k;, producing B nascent mRNA
transcripts (pre-mRNA) per burst, with P(B = p) = «,,. The
nascent transcripts are isomerized to mature mRNA. B is a
random variable; if the underlying gene expression follows
a two-state telegraph model with short bursts of finite size,
B is drawn from a geometric distribution [29]. The reactions
are modeled as a Poisson processes with constant rates, which
enables their representation using a homogeneous continuous-
time Markov chain (CTMC). P(n, m, t), the law of this CTMC
model, yields the probability of finding n nascent and m
mature molecules at time ¢.

The full set of CME ODE:s is as follows:

dP(n,m,t)

7 =k; ZotpP(n—,o,m,t)—P(n, m,t)

p=0
+B((n+1DPn+1,m—1,t) —nP(n,m,t))
+y((m+ 1P, m+1,t) — mP(n,m,t)).
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FIG. 1. (a) Schema of modeled physiology (k;: burst frequency;
B: burst size drawn from discrete distribution on N; : pre-mRNA
splicing rate; y: mRNA degradation rate). (b) Outline of the solution
procedure. (c) Taylor and Laurent approximation criterion (orange:
approximations common region of convergence; purple: threshold
value of |U|). (d) Sample shapes of |U| and their partitions (black
curve: |U|; purple: threshold value of |U|; gray: Laurent approxima-
tion regions).

Using the probability-generating functions (PGF)

Gx,y, 1) =Y 020 > o X"y"P(n, m, 1) and F(x)=
Z;ozo a,x?, the CME recurrence relation may be cast
into the form of a single partial differential equation (PDE),

G G G
— =k(F@x)-DG+BOY—x)—+yL—y)—, (2)
dt dx ay
subject to the initial condition G(x,y,0)=
Y o Y X"y P(n, m, 0) and the normalization condition
G(1,1,¢t) = 1. Introducing the transformations x =1+ u,
y =1+ v, and G = e results in the following PDE:

a d a

B kM - D+ -2 402 )

ot ou v
such that M (u) = F (1 + u). The solution of the PDE at time
t is expressed by the following integral:

$lu,v.1) =k /0 MU () — 11ds + U @), V@), 0). (4)

Per the method of characteristics, V(s) = ve™*, U(s) =
vfe " 4+ (u — vf)e P whenever y # B and e 7 (u + yvs)
otherwise, where f = ﬁﬂTy Finally, the PGF G is recov-
ered by exponentiating ¢. We follow the approach of Bokes
[21,27] in evaluating the PGF for x,y around the complex
unit circle, interpreting these values as the two-dimensional
discrete Fourier transform, or characteristic function values,
of the original probability distribution, and converting them
to the discrete domain by application of the inverse discrete
Fourier transform (IDFT). This method has time complexity
ON'log N), where N is the state space size, such that
N = maxn x max m of interest [Fig. 1(b)]. For systems with
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TABLE L. Integrals of U’ for various approximations and levels of degeneration.
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relatively low copy numbers up to ~100, where CME mod-
eling is necessary, N ~ 100 x 100, requiring on the order of
10 000 evaluations of the integral fot MU (s)) — 1]ds.

The model with a geometric burst size distribution of mean
b requires the evaluation of fot % ds. This integral does
not have a closed-form solution and must be treated using
repeated numerical quadrature. However, an approximation to
the integral can be computed by decomposing the integrand
into an integrable power series. Any expression in the form
of % is amenable to an expansion in powers of X = bU.
In the region |X| > 1, the Laurent expansion — Y ~o X ' is
available. The intuitive choice of the complementary Taylor
expansion Y -, X', which is valid for |X| < 1, is inappro-
priate for integration across the boundary |X| = 1: the ap-
proximation diverges and the integral of the expansion ceases
to be identical to the original integral. Instead, we leverage
the form of U and note that Re(U) < O for all nontrivial
choices of u, v. Therefore, we utilize the Taylor expansion
about —1, which is valid for |[X + 1| < 2; the form of the
series is — Y 00 27" 1(1 4+ X)" — 1/2. As shown in the illus-
tration of their shared domain of convergence [Fig. 1(c)], it is
possible to select the appropriate approximation based solely
on a threshold for the real-valued |U|, which simplifies the
computation.

Thus, X is decomposed into multiple approximation do-
mains {S;}, such that [X| evaluated at the boundary 9S; is
o, the threshold choice, and successive domains alternate
in having |X| strictly greater or less than o [Fig. 1(d)]. As
discussed in the Supplemental Material [38], the form of
U guarantees that |{S;}| < 4; at most two Laurent and two
Taylor approximations are necessary.

Examination of the expansions shows that both can be
expressed as ), Qj,iUi. If |[U(s)| > aVs € §;, the Laurent
approximation is appropriate, and ;; = —b™'. For a Laurent
order of approximation N, i € {0, —1, -2, ..., —N.}. Con-
versely, if |U(s)| < aVs € §;, the Taylor approximation is
appropriate. For a Taylor order of approximation Ny, binomial
expansion of (1 +X)' yields Q;; = Y}, bi2’k’1(1§). The
resulting approximation >, 2;;U’ has i € {1,2, ..., Nr}.

Finally, the full integrand % is approximately
> 2. S2;U". Therefore, the sought integral Jo 2 ds
can be computed using the truncated power series

>R fs_,- U'ds, where each expansion is integrated
only over its appropriate domain of convergence S;. The

details of computation are provided in the Supplemental
Material, and the integrals [U’ds are given in Table I.
Numerical routines to evaluate the exponential integral and
the Gaussian hypergeometric function are readily available;
however, they are not necessarily optimized for speed.
We discuss the approximation schema used to make them
practical for large-scale computation in the Supplemental
Material.

Furthermore, the same approach can be used for other burst
distributions. We consider a degenerate distribution (a gene
locus that produces b transcripts per burst), a uniform distribu-
tion (a gene locus equally probably to produce any number of
transcripts between a and b) [47,48], and a shifted geometric
distribution (a gene locus guaranteed to produce at least one
transcript per burst, e.g., due to the inhibitor being removed by
an advancing RNA polymerase). We find that the approximate
solutions to these systems can also be expressed in the form
> ; > i fs, U'ds, as shown in Table II. Equivalently, as

long as numerical routines are available to compute [ U’ds
for i € Z, a broad array of burst distributions can be com-
puted simply by determining the appropriate integration limits
(domains where the expansions converge) and computing the
coefficients £2; ;.

III. RESULTS AND DISCUSSION

We have presented an approximation for the CME solution
of bursty pre-mRNA production and its conversion to mature
mRNA. We explored several burst distributions discussed in
previous studies and explored an extension to a polymerase-
inhibitor interaction model. The CME solutions can be found
via the computation of Y, Q; [ U'ds for the finite-support
distributions and 3, 2;, /. 5, U" ds for the infinite-support

distributions. The analytical solutions of [ U’ds are given in
Table I, whereas the combinatorial weights for specific burst
distributions are given in Table II.

The series form of the solution enables the modulation
of approximation order for computational facility [Fig. 2(a)].
The control of method precision and runtime motivates the
development of adaptive methods that determine a broad
parameter domain using a low-fidelity approximation, then
refine it using higher-order or quadrature-based methods.

The purpose of the current investigation is the development
of a unified framework for the computation of CME solutions
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TABLE II. Integrands, expansion coefficients, summation indices, and expansion domain thresholds associated with approximating the

CME solutions for four burst distributions.

Burst distribution

b step Uniform Geometric Shifted geometric
1 9¢ 1 b i bU bU
ki os a- U)b -1 n Zi:a(l +U)y -1 1—bU 1+(1-b)U
b b+1 ; N k i— N k
)i (;) %[(zil) - (:il)] b kii ﬁ(z) b(b—1) : kii 21‘%(1)
—bi —b(b—1)7"!
i l,...,b 1,...,b l,...,Nr l,...,Nr
0,—1,...,—N, 0,—1,..., =N,
U C C U| < &8 U| < 25
Ul > 155 Ul > 325

for a variety of burst models, as well as the determination
of analytical solutions for the approximations. To maintain
generality, we do not emphasize a particular implementation
of the underlying special functions, but presuppose the avail-
ability of efficient implementations of the incomplete gamma
and Gaussian hypergeometric function. Nevertheless, as a
proof of concept, we develop a case study to benchmark the
performance of the degenerate case 8 = y. Although this case
is limited, it has direct applications to the modeling of multi-
step splicing: a wide variety of introns are spliced at similar
rates, which suggests that modeling the first two splice events
as occurring at the same rate is physiologically reasonable
[49]. This interpretation corresponds to treating degradation
as simply another splice event and considering the distribution
of only the first two gene products in a sequential splicing
process. Furthermore, we discuss several considerations for
implementation and evaluation of the special functions (see
the Supplemental Material [38]).

In light of the motivating broader goal of parameter estima-
tion, we use the algorithm to compute likelihood (Kullback-
Leibler divergence) landscapes for joint simulated data [11]
with a geometric burst size distribution and b = 19, k; = 2.5,
B =y =1 [Fig. 2(b)]. The landscapes produced by the ap-
proximation method (shown for Ny = Ny = 7) closely follow
those produced via numerical integration, and we posit that
the approximation does not degrade the ability to construct
parameter estimates. We validate this result for 24 synthetic
data sets with parameters in the shown two-dimensional space
and Ny = 7, Np = 1, achieving similar landscapes and best-fit
parameter sets defined by the fifth percentile of the Kullback-
Leibler divergence (Supplemental Material: Concordance be-
tween quadrature and special function solutions [38]). Repeat-
ing this analysis for a range of approximation orders allows
benchmarking the method.

Over the entire domain shown in Fig. 2(b), the quality
of approximation can be easily controlled by modulating
the Taylor approximation order [Fig. 2(c)]. Surprisingly, the
order of the Laurent approximation appears to be of minimal
relevance to the overall precision. We hypothesize that low-
order Laurent approximations are primarily responsible for
tail oscillations [Fig. 2(a)], which provide a small contribution
to overall divergence due to the low number of data points
in that region. Furthermore, the effective reproduction of

likelihood landscapes using a first-order Laurent expansion
suggests that the result generalizes throughout the parameter
space (Supplemental Material: Concordance between quadra-
ture and special function solutions [38]).

The runtime is largely a function of the Laurent approx-
imation order [Fig. 2(d)], due to its explicit reliance on the
computation of special functions. We particularly note that the
commercial adaptive quadrature method used for benchmark-
ing [50] provides poor control of runtime. We characterize
the timing and error behavior in further detail for a particular
order of approximation using the parameter estimation pro-
cedure with Ny = 7, N, = 1. The validation procedure yields
a mean runtime decrease of 39%. This result is potentially
valuable for computationally intensive, large-scale inference
over the transcriptome, and suggests that further investigation
and optimization can lower the computational costs further
without substantial degradation of inference capabilities.

The procedure for regenerating the discrete distributions
from generating functions presents certain problems for in-
ference. As shown in Fig. 2(a), the result of the IDFT is
not guaranteed to be a probability distribution; the IDFT
enforces ), 7, = 1 but does not enforce 7, > 0Vk. However,
the properties of the Markov chain ostensibly guarantee that
7, = 0, with the inequality becoming strict at equilibrium. For
the computation of divergence, we treat this problem in an ad
hoc manner, by setting 7; < 0 to a small float near machine
epsilon. A natural, and potentially valuable, extension of this
method is the development of transformations using non-
negative, non-Fourier basis functions.

An alternative approach is available and yields faster per-
formance at the expense of interpretability in the Bayesian
framework. Instead of computing Kullback-Leibler diver-
gence in the probability domain, it is possible to compute
a measure of distance between the characteristic functions
of proposed and observed distributions or even their corre-
sponding cumulants (logarithms). This approach provides two
advantages. First, the roundoff and computational expense
of repeated exponentiation and logarithm operations is elim-
inated. Second, the overall computational complexity of an
inference procedure that uses the Fourier transform method
and samples M candidate parameters is O(MN log ). Per-
forming the entire analysis in the Fourier domain requires
only a single Fourier transform to determine the empirical
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FIG. 2. (a) Comparison of marginal mature mRNA copy-number
distributions for a range of approximation orders (#,# tuple and
subplot location: Laurent and Taylor approximation order; gray:
histogram from 10° Gillespie simulations; red line: distribution
calculated from approximation). (b) Likelihood landscape for a set of
simulated steady-state data with y = B, calculated over 50 x 50 trial
parameter combinations (numerical: quadrature-based computation;
decomposition: expansion-based computation; red point: ground
truth). (c) Kolmogorov-Smirnov error between quadrature- and
expansion-based joint distributions for parameter sets in (b), calcu-
lated for combinations of Taylor and Laurent orders € {1, ..., 7} x
{1, ..., 7} (black point: single parameter set; uniform jitter added).
(d) Joint distribution calculation times, determined over the domain
in (b) and approximation orders in (c) (black point: single parameter
set computed using expansions; orange point: single parameter set
computed using numerical quadrature; uniform jitter added).

characteristic function, reducing the computational complex-
ity to ON'log N + MN), equivalent to O(MAN) in the
practical limit of large M. This approach has been explored
for use in goodness-of-fit testing and model selection [51,52],
but only rarely for parameter inference [53]. However, we an-
ticipate that the computational advantages may outweigh the
incompatibility with Bayesian inference, similarly to the re-
cent interest in using nonparametric Kolmogorov and Wasser-
stein distances for parameter inference [54-56]. Further, we
note that optimization of the characteristic function uses infor-
mation about the entire distribution, potentially overcoming
identifiability issues observed using other computationally
inexpensive non-Bayesian approaches, such as the method
of moments [16]. Since characteristic function methods have
primarily been used for analysis of (continuous) stable dis-
tributions [53,57,58], their performance for inference from
discrete-valued random variable observations has not, to our

knowledge, been systematically explored, signifying a sub-
stantial lacuna. Thus, this approach is a natural next step for
optimizing inference from large data sets.

We implement this method and compare its performance to
the Bayesian approach (Supplemental Material: Concordance
between likelihood and chf distance landscapes [38]). As
expected, the landscapes are qualitatively different, but suffi-
cient to perform parameter estimation. In fact, the observed
monotonicity of characteristic function distance landscapes
is more amenable to the use of gradient-based global opti-
mization methods. Since the state space sizes considered here
are relatively small, the observed improvement in runtime is
marginal. However, the performance of the approach does
suggest that it may be a useful alternative to Bayesian methods
for more general inference problems. In particular, Bayesian
estimation does not rigorously apply to situations where the
support of the proposed probability distribution does not con-
tain the full support of the data, such as where proposals are
generated by simulation [59]. We believe further theoretical
characterization of this method is necessary to establish its
performance characteristics.

Our discussion of parameter estimation only touched upon
inference from steady-state data, which is relevant for fixed-
cell experiments that produce information about molecule
distributions without a natural time coordinate, such as those
available via scRNA-seq [60] and smFISH [61,62]. However,
experimental methods with temporal information are available
[29,63-66]. Given live-cell data, where cell identities are
tracked across time, it is straightforward to extend this method
to compute the probability of transitioning from an initial state
to any other state, and thus compute the full likelihood of a
time series (Supplemental Material: Addenda [38]). Repeat-
ing this process for all observed cells, assuming their trajecto-
ries are independent, and summing the log-likelihoods of their
time series yields a joint likelihood for the observations of the
entire experiment [67—69]. Furthermore, given fixed-cell data,
where only the population-level statistics are tracked across
time, it is likewise straightforward to compute the probability
of transitioning from one copy-number distribution to another,
and use it for likelihood computation [70] (Supplemental
Material: Addenda [38]). Conversely, even from a presumed
steady-state data set, inferred information about parameters
enables the extrapolation of a cell’s state to an arbitrary time
horizon simply by evaluating the solution with the observed
molecule counts as the initial condition, similarly to the RNA
velocity procedure [17].

Several mechanistic extensions are available with minimal
computational overhead. Technical challenges in single-cell
transcriptomics, such as sparsity of sampling in sequencing
[71] and noise in fluorescence microscopy [72], have resulted
in alternative competing explanations for qualitative features
of observed biomolecule distributions, such as heavy-tailed
laws [25,27] and apparent dropouts [73-76]. We anticipate
that intrinsic degeneracies, as well as aleatory effects, in
mapping from a model parameter space to an observable
space preclude the unambiguous identification of underlying
biophysical schema: the presence of parameter equivalence
classes, even in inference of simple models, is well char-
acterized [59,77-79]. Nevertheless, we also anticipate that
the development of analytical solutions, as well as numerical
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solvers, for a diversity of transcriptional mechanisms, sam-
pling behaviors, and multimodal observables will aid in mak-
ing inference sufficiently robust for design and extrapolation.
For example, as a natural extension, it is straightforward to
calculate the laws for observed pre-mRNA and mRNA copy
numbers by computing the distributions under an arbitrary
sampling schema. This approach enables the natural integra-
tion of experimental noise in the same framework as the un-
derlying transcriptional and molecular stochasticity, enabling
the simultaneous inference of experimental and physiological
parameters.

In summary, we have demonstrated an alternative approach
to the computation of semianalytical solutions to the CME
and developed a fully analytical form for the marginal dis-
tributions. The computation of solutions can be extended
to several burst distributions that have not been previously
treated in this context. The approximation method yields a
set of Taylor and Laurent expansions; validation demonstrates
that the computation cost of likelihood computation may be
decreased using a low-fidelity Laurent expansion, without
substantial distortion of the resulting likelihood landscapes.
To facilitate inference even further, we have implemented
and validated an inference procedure based directly on the
characteristic function. These results have direct applications

to improved parameter estimation for transcriptional models,
particularly the description of sequential splicing, and provide
a foundation for the theoretical study of special function-
based approaches to more complex systems that do not cur-
rently possess analytical solutions.

The algorithm for the B =y system is available at
https://github.com/pachterlab/GP_2020, along with
MATLAB codes to reproduce Fig. 2 and the supplemental
figures.

ACKNOWLEDGMENTS

The DNA, pre-mRNA, and mature mRNA used in Fig. 1(a)
are derivatives of the DNA Twemoji by Twitter, Inc., used
under CC-BY 4.0. The routine for computing the Taylor ap-
proximation coefficient 2;; uses a function by Ben Barrowes
[80], translated from the FORTRAN original by Zhang and Jin
[81]. The routine for computing the Taylor series approxima-
tion to the exponential integral E;(z) is a heavily modified
version of a function by Ben Barrowes [80], translated from
the FORTRAN original by Zhang and Jin [81]. The subplots in
supplemental Figs. 2—4 [38] were aligned using a function by
Pekka Kumpulainen [82]. G.G. and L.P. were partially funded
by NIH U19MH114830.

[1] H. Xu, S. O. Skinner, A. M. Sokac, and I. Golding, Stochastic
Kinetics of Nascent RNA, Phys. Rev. Lett. 117, 128101 (2016).

[2] S. Lee, A. Y. Zhang, S. Su, A. P. Ng, and A. Z. Holik, M.-L.
Asselin-Labat, M. E. Ritchie, and C. W. Law, Covering all
your bases: Incorporating intron signal from RNA-seq data
Bioinformatics (2018).

[3] S. Shah, Y. Takei, W. Zhou, E. Lubeck, J. Yun, C.-H. L. Eng,
N. Koulena, C. Cronin, C. Karp, E. J. Liaw et al., Dynamics
and spatial genomics of the nascent transcriptome by intron
seqFISH, Cell 174, 363 (2018).

[4] C.-H. L. Eng, M. Lawson, Q. Zhu, R. Dries, N. Koulena, Y.
Takei, J. Yun, C. Cronin, C. Karp, G.-C. Yuan, and L. Cai,
Transcriptome-scale super-resolved imaging in tissues by RNA
seqFISH+, Nature (London) 568, 235 (2019).

[5] E. Erhard, M. A. P. Baptista, T. Krammer, T. Hennig, M.
Lange, P. Arampatzi, C. S. Jiirges, F. J. Theis, A.-E. Saliba, and
L. Dolken, scSLAM-seq reveals core features of transcription
dynamics in single cells, Nature (London) 571, 419 (2019).

[6] E. M. Wissink, A. Vihervaara, N. D. Tippens, and J. T. Lis,
Nascent RNA analyses: Tracking transcription and its regula-
tion, Nat. Rev. Gen. 20, 705 (2019).

[7]1 R. Phillips, PhysicalBiology of the Cell, 2nd ed. (Garland
Science, New York, 2013).

[8] C. Gardiner, Handbook of Stochastic Methods for Physics,
Chemistry, and the Natural Sciences, 3rd ed. (Springer, Berlin,
2004).

[9] D. A. McQuarrie, Stochastic approach to chemical kinetics, J.
Appl. Prob. 4, 413 (1967).

[10] P. Erdi and G. Lente, Stochastic Chemical Kinetics: Theory and
(Mostly) Systems Biological Applications, Springer Series in
Synergetics 109 (Springer, New York, 2014).

[11] D. T. Gillespie, A general method for numerically simulating
the stochastic time evolution of coupled chemical reactions, J.
Comput. Phys. 22, 403 (1976).

[12] D.T. Gillespie, Exact stochastic simulation of coupled chemical
reactions, J. Phys. Chem. 81, 2340 (1977).

[13] B. Munsky and M. Khammash, The finite state projection
algorithm for the solution of the chemical master equation, J.
Chem. Phys. 124, 044104 (2006).

[14] Y. Cao, A. Terebus, and J. Liang, Accurate chemical master
equation solution using multi-finite buffers, Multiscale Model.
Sim. 14, 923 (2016).

[15] T. Jahnke and W. Huisinga, Solving the chemical master equa-
tion for monomolecular reaction systems analytically, J. Math.
Biol. 54, 1 (2006).

[16] B. Munsky, G. Li, Zachary R. Fox, D. P. Shepherd, and G.
Neuert, Distribution shapes govern the discovery of predictive
models for gene regulation, Proc. Nat. Acad. Sci. USA 115,
7533 (2018).

[17] G. La Manno, R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner,
V. Petukhov, K. Lidschreiber, M. E. Kastriti, P. Lonnerberg, A.
Furlan et al., RNA velocity of single cells, Nature (London)
560, 494 (2018).

[18] M. Stoeckius, C. Hafemeister, W. Stephenson, B. Houck-
Loomis, P. K. Chattopadhyay, H. Swerdlow, R. Satija, and P.
Smibert, Simultaneous epitope and transcriptome measurement
in single cells, Nat. Methods 14, 865 (2017).

[19] V. M. Peterson, K. X. Zhang, N. Kumar, J. Wong, L. Li, D.
C. Wilson, R. Moore, T. K. McClanahan, S. Sadekova, and
J. A Klappenbach, Multiplexed quantification of proteins and
transcripts in single cells, Nat. Biotechnol. 35, 936 (2017).

[20] J. J. Vastola, Solving the chemical master equation for
monomolecular reaction systems analytically: A Doi-Peliti path
integral view, arXiv:1911.00978 [g-bio] (2019).

[21] P. Bokes, J. R. King, A. T. A. Wood, and M. Loose, Exact
and approximate distributions of protein and mRNA levels in
the low-copy regime of gene expression, J. Math. Biol. 64, 829
(2012).

022409-6


https://github.com/pachterlab/GP_2020
https://doi.org/10.1103/PhysRevLett.117.128101
https://doi.org/10.1016/j.cell.2018.05.035
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1369-y
https://doi.org/10.1038/s41576-019-0159-6
https://doi.org/10.2307/3212214
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.2145882
https://doi.org/10.1137/15M1034180
https://doi.org/10.1007/s00285-006-0034-x
https://doi.org/10.1073/pnas.1804060115
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nbt.3973
http://arxiv.org/abs/arXiv:1911.00978
https://doi.org/10.1007/s00285-011-0433-5

SPECIAL FUNCTION METHODS FOR BURSTY MODELS OF ...

PHYSICAL REVIEW E 102, 022409 (2020)

[22] V. Shahrezaei and P. S. Swain, Analytical distributions for
stochastic gene expression, Proc. Nat. Acad. Sci. USA 105,
17256 (2008).

[23] F. Veerman, C. Marr, and N. Popovi¢, Time-dependent propa-
gators for stochastic models of gene expression: An analytical
method, J. Math. Biol. 77, 261 (2018).

[24] T. Zhou and J. Zhang, Analytical results for a multistate gene
model, STAM J. Appl. Math. 72, 789 (2012).

[25] L. Ham, Rowan D. Brackston, and M. P. H. Stumpf, Extrinsic
noise and heavy-tailed laws in gene expression, Phys. Rev. Lett.
124, 108101 (2020).

[26] L. Ham, D. Schnoerr, R. D. Brackston, and M. P. H. Stumpf,
Exactly solvable models of stochastic gene expression, J. Chem.
Phys. 152, 144106 (2020).

[27] A. Singh and P. Bokes, Consequences of mRNA transport on
stochastic variability in protein levels, Biophys. J. 103, 1087
(2012).

[28] V. Bergen, M. Lange, S. Peidli, F. A. Wolf, and F. J. Theis,
Generalizing RNA velocity to transient cell states through
dynamical modeling, Nat. Biotechnology (2020).

[29] 1. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox, Real-
time kinetics of gene activity in individual bacteria, Cell 123,
1025 (2005).

[30] Keren B. Halpern, S. Tanami, S. Landen, M. Chapal, L. Szlak,
A. Hutzler, A. Nizhberg, and S. Itzkovitz, Bursty gene expres-
sion in the intact mammalian liver, Mol. Cell 58, 147 (2015).

[31] R. Golan-Lavi, C. Giacomelli, G. Fuks, A. Zeisel, J. Sonntag,
S. Sinha, W. Kostler, S. Wiemann, U. Korf, Y. Yarden, and E.
Domany, Coordinated pulses of mRNA and of protein transla-
tion or degradation produce EGF-induced protein bursts, Cell
Rep. 18, 3129 (2017).

[32] R. D. Dar, B. S. Razooky, A. Singh, T. V. Trimeloni, J. M.
McCollum, C. D. Cox, M. L. Simpson, and L. S. Weinberger,
Transcriptional burst frequency and burst size are equally mod-
ulated across the human genome, Proc. Nat. Acad. Sci. USA
109, 17454 (2012).

[33] D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler,
and F. Naef, Mammalian genes are transcribed with widely
different bursting kinetics, Science 332, 472 (2011).

[34] L. Amrhein, K. Harsha, and C. Fuchs, A mechanistic model for
the negative binomial distribution of single-cell mRNA counts,
Bioinformatics (2019).

[35] B. Munsky, G. Neuert, and A. van Oudenaarden, Using gene
expression noise to understand gene regulation, Science 336,
183 (2012).

[36] J. Peccoud and B. Ycard, Markovian modeling of gene product
synthesis, Theor. Pop. Biol. 48, 222 (1995).

[37] G. X. Y. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent,
R. Wilson, S. B. Ziraldo, T. D. Wheeler, G. P. McDermott, J.
Zhu et al., Massively parallel digital transcriptional profiling of
single cells, Nat. Commun. 8, 14049 (2017).

[38] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.102.022409 for a detailed derivation of ex-
pansions and integrals, which includes Refs. [39-46].

[39] M. Abramowitz and 1. Stegun, editors, Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathematical
Tables, 9th ed. (United States National Bureau of Standards,
Washington, DC, 1970).

[40] Y. L. Luke, Mathematical Functions and Their Approximations
(Academic Press, New York, 1975).

[41] Y. L. Luke, The Special Functions and Their Approximations,
Vol. II (Academic Press, London, 1969).

[42] T. C. Scott and R. B. Mann, General relativity and quantum me-
chanics: Towards a generalization of the Lambert W function,
arXiv:math-ph/0607011 (2006).

[43] A. Maignan and T. C. Scott, Fleshing out the generalized
Lambert W function, ACM Commun. Comput. Algebra 50, 45
(2016).

[44] T. C. Scott, G. Fee, and J. Grotendorst, Asymptotic series
of generalized Lambert W function, ACM Commun. Comput.
Algebra 47, 75 (2014).

[45] P. Castle, Taylor series for generalized Lambert W functions,
arXiv:1801.09904 [math] (2018).

[46] M. Carrasco and R. Kotchoni, Efficient estimation using the
characteristic function, Econometric Theory 33, 479 (2017).

[47] S. Be’er, M. Heller-Algazi, and M. Assaf, Effect of reaction-
step-size noise on the switching dynamics of stochastic popula-
tions, Phys. Rev. E 93, 052117 (2016).

[48] H. Kuwahara, S. T. Arold, and X. Gao, Beyond initiation-
limited translational bursting: The effects of burst size distri-
butions on the stability of gene expression, Integr. Biol. 7, 1622
(2015).

[49] J. Singh and R. A. Padgett, Rates of in situ transcription and
splicing in large human genes, Nat. Struct. Mol. Biol. 16, 1128
(2009).

[50] MATLAB R2019b (2019), https://www.mathworks.com/
products/new_products/release2019b.html .

[51] S. Lee, Simos G. Meintanis, and M. Jo, Inferential procedures
based on the integrated empirical characteristic function, AStA
Adv. Stat. Analys. 103, 357 (2019).

[52] M. D. Jiménez-Gamero, A. Batsidis, and M. V. Alba-Fernandez,
Fourier methods for model selection, Ann. Inst. Stat. Math. 68,
105 (2016).

[53] M. Bee and L. Trapin, A characteristic function-based approach
to approximate maximum likelihood estimation, Commun. Stat.
Theory Meth. 47, 3138 (2018).

[54] M. Sommerfeld and A. Munk, Inference for empirical Wasser-
stein distances on finite spaces, J. R. Stat. Soc.: Series B 80, 219
(2018).

[55] E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert,
On parameter estimation with the Wasserstein distance,
arXiv:1701.05146 [math, stat] (2019).

[56] L. Gyorfi, I. Vajda, and E. van der Meulen, Minimum Kol-
mogorov distance estimates of parameters and parametrized
distributions, Metrika 43, 237 (1996).

[57] J. Yu, Empirical characteristic function estimation and its appli-
cations, Econometric Rev. 23, 93 (2004).

[58] A. Feuerverger and P. McDunnough, On the efficiency of em-
pirical characteristic function procedures, J. R. Stat. Soc.: Series
B 43,20 (1981).

[59] G. Gorin, M. Wang, I. Golding, and H. Xu, Stochastic sim-
ulation and statistical inference platform for visualization and
estimation of transcriptional kinetics, PLoS ONE 15, e0230736
(2020).

[60] A. A. Kolodziejczyk, J. K. Kim, V. Svensson, J. C. Marioni,
and S. A. Teichmann, The technology and biology of single-cell
RNA sequencing, Mol. Cell 58, 610 (2015).

[61] A. M. Femino, F. S. Fay, K. Fogarty, and R. H. Singer, Visu-
alization of single RNA transcripts in situ, Science 280, 585
(1998).

022409-7


https://doi.org/10.1073/pnas.0803850105
https://doi.org/10.1007/s00285-017-1196-4
https://doi.org/10.1137/110852887
https://doi.org/10.1103/PhysRevLett.124.108101
https://doi.org/10.1063/1.5143540
https://doi.org/10.1016/j.bpj.2012.07.015
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1016/j.cell.2005.09.031
https://doi.org/10.1016/j.molcel.2015.01.027
https://doi.org/10.1016/j.celrep.2017.03.014
https://doi.org/10.1073/pnas.1213530109
https://doi.org/10.1126/science.1198817
https://doi.org/10.1101/657619
https://doi.org/10.1126/science.1216379
https://doi.org/10.1006/tpbi.1995.1027
https://doi.org/10.1038/ncomms14049
http://link.aps.org/supplemental/10.1103/PhysRevE.102.022409
http://arxiv.org/abs/arXiv:math-ph/0607011
https://doi.org/10.1145/2992274.2992275
https://doi.org/10.1145/2576802.2576804
http://arxiv.org/abs/arXiv:1801.09904
https://doi.org/10.1017/S0266466616000025
https://doi.org/10.1103/PhysRevE.93.052117
https://doi.org/10.1039/c5ib00107b
https://doi.org/10.1038/nsmb.1666
https://www.mathworks.com/products/new_products/release2019b.html
https://doi.org/10.1007/s10182-018-00335-z
https://doi.org/10.1007/s10463-014-0491-8
https://doi.org/10.1080/03610926.2017.1348523
https://doi.org/10.1111/rssb.12236
http://arxiv.org/abs/arXiv:1701.05146
https://doi.org/10.1007/BF02613911
https://doi.org/10.1081/ETC-120039605
https://doi.org/10.1111/j.2517-6161.1981.tb01143.x
https://doi.org/10.1371/journal.pone.0230736
https://doi.org/10.1016/j.molcel.2015.04.005
https://doi.org/10.1126/science.280.5363.585

GENNADY GORIN AND LIOR PACHTER

PHYSICAL REVIEW E 102, 022409 (2020)

[62] A. Raj, P. van den Bogaard, S. A. Ritkin, A. van Oudenaarden,
and S. Tyagi, Imaging individual mRNA molecules us-
ing multiple singly labeled probes, Nat. Methods 5, 877
(2008).

[63] H. G. Garcia, M. Tikhonov, A. Lin, and T. Gregor, Quanti-
tative imaging of transcription in living Drosophila embryos
links polymerase activity to patterning, Curr. Biol. 23, 2140
(2013).

[64] E. A. Specht, E. Braselmann, and A. E. Palmer, A critical and
comparative review of fluorescent tools for live-cell imaging,
Ann. Rev. Phys. 79, 93 (2017).

[65] J. A. Schofield, E. E. Dufty, L. Kiefer, M. C. Sullivan, and M. D.
Simon, TimeLapse-seq: Adding a temporal dimension to RNA
sequencing through nucleoside recoding, Nat. Methods 15, 221
(2018).

[66] V. A. Herzog, B. Reichholf, T. Neumann, P. Rescheneder, P.
Bhat, T. R. Burkard, W. Wlotzka, A. von Haeseler, J. Zuber,
and S. L. Ameres, Thiol-linked alkylation of RNA to assess
expression dynamics, Nat. Methods 14, 1198 (2017).

[67] B. J. Daigle, M. K. Roh, L. R. Petzold, and J. Niemi, Accel-
erated maximum likelihood parameter estimation for stochastic
biochemical systems, BMC Bioinformatics 13, 68 (2012).

[68] A. M. Corrigan, E. Tunnacliffe, D. Cannon, and J. R. Chubb, A
continuum model of transcriptional bursting, eLife, 5, e13051
(2016).

[69] A. Golightly and D. J. Wilkinson, Bayesian parameter infer-
ence for stochastic biochemical network models using particle
Markov chain Monte Carlo, Interface Focus 1, 807 (2011).

[70] S. K. Poovathingal and R. Gunawan, Global parameter es-
timation methods for stochastic biochemical systems, BMC
Bioinformatics 11, 414 (2010).

[71] D. Griin, L. Kester, and A. van Oudenaarden, Validation of
noise models for single-cell transcriptomics, Nat. Methods 11,
637 (2014).

[72] 1. Sgouralis and S. Pressé, An introduction to infinite HMMs for
single-molecule data analysis, Biophys. J. 112, 2021 (2017).

[73] P. Qiu, Embracing the dropouts in single-cell RNA-seq data,
Bioinformatics (2018).

[74] V. Svensson, Droplet scRNA-seq is not zero-inflated, Nat.
Biotechnology 38, 147 (2020).

[75] T. Andrews and M. Hemberg, False signals induced by single-
cell imputation, F1000Research 7, 1740 (2019).

[76] W. V. Liand]J. J. Li, An accurate and robust imputation method
sclmpute for single-cell RNA-seq data, Nat. Commun. 9, 997
(2018).

[77] C. Weinreb, S. Wolock, B. K. Tusi, M. Socolovsky, and A. M.
Klein, Fundamental limits on dynamic inference from single-
cell snapshots, Proc. Nat. Acad. Sci. USA 115, E2467 (2018).

[78] L. Weber, W. Raymond, and B. Munsky, Identification of gene
regulation models from single-cell data, Phys. Biol. 15, 055001
(2018).

[79] E. Cinquemani, Identifiability and reconstruction of biochemi-
cal reaction networks from population snapshot data, Processes
6, 136 (2018).

[80] B. Barrowes, Computation of special functions,
https://www.mathworks.com/matlabcentral/fileexchange/6218-
computation-of-special-functions.

[81] S. Zhang and J. Jin, Computation of Special Functions (Wiley,
New York, 1996).

[82] P. Kumpulainen, tight_subplot (Nh, Nw, gap, marg_h, marg_w),
https://www.mathworks.com/matlabcentral/fileexchange/
27991-tight_subplot-nh-nw-gap-marg_h-marg_w.

022409-8


https://doi.org/10.1038/nmeth.1253
https://doi.org/10.1016/j.cub.2013.08.054
https://doi.org/10.1146/annurev-physiol-022516-034055
https://doi.org/10.1038/nmeth.4582
https://doi.org/10.1038/nmeth.4435
https://doi.org/10.1186/1471-2105-13-68
https://doi.org/10.1098/rsfs.2011.0047
https://doi.org/10.1186/1471-2105-11-414
https://doi.org/10.1038/nmeth.2930
https://doi.org/10.1016/j.bpj.2017.04.027
https://doi.org/10.1101/468025
https://doi.org/10.1038/s41587-019-0379-5
https://doi.org/10.12688/f1000research.16613.2
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1073/pnas.1714723115
https://doi.org/10.1088/1478-3975/aabc31
https://doi.org/10.3390/pr6090136
https://www.mathworks.com/matlabcentral/fileexchange/6218-computation-of-special-functions
https://www.mathworks.com/matlabcentral/fileexchange/27991-tight_subplot-nh-nw-gap-marg_h-marg_w

