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Kelvin-Helmholtz-like instability of phospholipid bilayers under shear flow: System-size dependence
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We performed a series of molecular dynamics (MD) simulations of phospholipid bilayers under shear flow to
estimate the effect of the system size on Kelvin-Helmholtz (KH)-like instability of the bilayer at the molecular
scale. To extend the estimation by the MD simulations to the microscale, we introduced linear stability analysis
for the fluid–fluid interface consisting of a thin membrane. For both the MD simulations and theoretical model,
the critical velocity difference across the bilayer, where instability occurs, decreased with increasing wavelength
of the bilayer undulation λ, which corresponds to the system size. When λ was more than about ten times
larger than the bilayer thickness, the critical velocity difference in the MD simulations was in quantitative
agreement with that obtained by the theoretical model. This means that the theoretical model is applicable for
the shear-induced KH-like instability of the bilayer for large λ. The theoretical model showed that the critical
velocity difference for the KH-like instability was proportional to λ−3/2. Based on these results, we discuss the
implications of the shear-induced bilayer instability in the shear-induced cell damage observed in experiments.

DOI: 10.1103/PhysRevE.102.022408

I. INTRODUCTION

Biological cells are known to respond to surrounding flow
fields and change their activities in the physiological envi-
ronment [1–3]. In contrast, the nonphysiological high shear
flow generated by medical devices or treatment techniques,
such as ventricular-assisted devices [4], jet injectors [5], and
sonoporation treatment [6,7], can induce rupture of the cell
membrane and subsequent cell death. For the development
of such devices, it is essential to understand the mechanism
of membrane rupture and control it under shear flow. How-
ever, because the details of membrane rupture are elusive in
experiments, the mechanism of membrane rupture is not fully
understood.

Many experiments and numerical simulations of biological
cells or the vesicles of phospholipid bilayers, which are the
fundamental structure of the cell membrane and used as a
model cell membrane, under shear flow have been performed
[8–10]. These studies showed that the cells (e.g., red blood
cells) were elongated under shear flow and the membrane
tension increased with increasing shear rate. When the tension
exceeded the limit of the membrane, membrane rupture may
occur. This cell-elongation-induced rupture was believed to be
a common mechanism of membrane rupture under shear flow.
Hanasaki and co-workers [11] performed molecular dynamics
(MD) simulations of the phospholipid bilayer under shear
flow. They found that buckling-like and/or Kelvin-Helmholtz
(KH)-like instabilities of the bilayer occurred and resulted
in bilayer rupture when the applied shear rate exceeded a
critical value. They also found that the instability pattern
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and the critical shear rate varied depending on the size and
the aspect ratio of the bilayer system at the molecular scale.
Although the buckling-like instability has been investigated
especially for a lamellar phase of bilayer membranes, i.e.,
onion formation [12–15], little is known about the KH-like
instability and especially its critical value at the larger scale
(microscale). Estimating the effect of the system size on
the KH-like instability beyond the molecular scale will facil-
itate discussion whether the KH-like instability is observable
in the microscopic experiments.

Although molecular-scale imaging techniques have ad-
vanced year by year, molecular-scale dynamical phenom-
ena are still elusive. MD simulation is a powerful tool to
numerically observe molecular-scale dynamical phenomena.
Many researchers investigated the dynamical phenomena of
the phospholipid bilayer under mechanical stresses, including
the shear-induced instability [11], formation of transmem-
brane pores [16], and phase transition [17]. They found that
the critical stress level (i.e., the shear rate, tension, or strain)
for inducing such dynamical phenomena varies depending on
the system size. However, in MD simulations, the wavelengths
of the phenomena are limited within the simulation box (<
100 nm) and far from those in experiments. Therefore, it is
challenging to quantitatively estimate the critical values in
experiments based only on MD simulation results.

To bridge the gap between MD simulations and ex-
periments, various theoretical models have been proposed.
For example, Tolepkina and co-workers [16] proposed a
free energy model of the stretched bilayer to explain the
order of magnitude difference between the critical val-
ues of pore formation. Shigematsu and co-workers [17]
proposed a free energy model to explain the stretch-
induced phase transition of a bilayer. However, for the
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FIG. 1. (a) Schematic of the theoretical situation in which a
water bath is divided by a thin phospholipid bilayer. (b) Represen-
tative velocity profile of the S6x1 system overlaid on its snapshot.
The definition of the velocity difference �uMD is also shown. The
choline, phosphate, glycerol, and hydrocarbon particles of the DPPC
molecules are shown in blue, tan, pink, and cyan, respectively. The
water and wall particles are shown in light blue and red, respectively.

shear-induced KH-like instability of the bilayer, such a theo-
retical approach has, to our knowledge, not been performed
and the existence of the instability in experiments is still
under discussion.

The objective of this study is to estimate the effect of the
system size on the shear-induced KH-like instability of the
phospholipid bilayer not only at the molecular scale, but also
at the microscale. To achieve this objective, we performed
MD simulations of phospholipid bilayers under shear flow.
Additionally, we modeled the bilayer as a thin membrane
at a fluid–fluid interface and evaluated its stability under
the framework of linear stability analysis [18]. By using
this framework, estimation of the system size dependence at
the molecular scale in the MD simulation can be extended
to the microscale. Based on these results, we discuss the
implications of the shear-induced bilayer instability in the
shear-induced cell damage observed in experiments.

The remainder of the paper is organized as follows. In
Sec. II, we describe the details of the theoretical model
used in the linear stability analysis and obtain the stability
criterion of the bilayer under shear flow. In Sec. III, we
describe the MD simulation methods used for the bilayer
under shear flow. In Sec. IV, we present the MD simulation
results of the threshold of the shear-induced KH-like instabil-
ity and discuss the consistency of the instability between the
model and simulation. Finally, the conclusions are provided
in Sec. V.

II. THEORY

Let us consider a water bath divided by a phospholipid
bilayer on the x-y plane [see Fig. 1(a)]. The bilayer is
symmetric between the upper and lower layers, and it is
sufficiently thin so that its thickness can be ignored. We
assume uniform displacement along the y direction and also
assume water as the incompressible inviscid fluid. The ve-
locity and density of water are assumed to discontinuously
change across the bilayer. This indicates the complete slip
condition at the bilayer, although slipping of water on the

bilayer did not completely occur in the MD simulations
[see Fig. 1(b)].

For the deformation energy of the bilayer, we use the
Helfrich Hamiltonian F [19]. The Hamiltonian is a curvature
elastic energy model of fluid membranes with negligibly small
thickness

F =
∫ {

σ + 1

2
kc(c1 + c2 − c0)2

}
dA, (1)

where σ and kc are the tension and bending modulus of the
bilayer, respectively. c1 and c2 are the principal curvatures
and c0 is the spontaneous curvature. Owing to the symmetric
bilayer, c0 can be considered to be 0. dA is the surface
element. To properly apply this Hamiltonian to a bilayer, the
bilayer size should be more than about ten times larger than
the thickness of the hydrophobic part of the bilayer so that
the assumption of the negligibly small thickness is valid [20].
Through conventional linear stability analysis of the small
undulation of the bilayer with F , we can obtain the stability
criterion [21]

|�u| <

√√√√ρu + ρl

ρuρl

{
kc

(
2π

λ

)3

+ σ
2π

λ
− ρu − ρl

g

(
λ

2π

)}
,

(2)
where λ is the wavelength of bilayer undulation, g is grav-
itational acceleration, ρu and ρl are the water densities in
the upper and lower regions, respectively, and �u is the
velocity difference across the bilayer. We assume that there
is no density difference (ρ = ρu = ρl ) and that the surface
tension is zero even under shear flow. It is noted that there is
a possibility that shear flow generates a force suppressing the
bilayer undulation and induces an effective tension of the bi-
layer [14,15]. Although these shear-induced force and tension
were ignored in this paper, considering them may improve the
model prediction. Under these assumptions, Eq. (2) can be
rearranged as

|�u| <

√
16π3kc

ρλ3
. (3)

This equation provides the limit of the stable bilayer depend-
ing on the undulation wavelength λ. After the water density
ρ and bending modulus of the bilayer kc are obtained, we can
estimate the critical velocity difference |�uc|, which induces
instability of the bilayer, with respect to the wavelength of
bilayer undulation λ.

III. METHOD

A. System

We used four dipalmitoylphosphatidylcholine (DPPC)
bilayer systems containing different numbers of DPPC
molecules. To model the molecules, we used the MARTINI

force field [22], which is a coarse-grained model suitable
for semi-quantitative evaluation of lipid dynamics. The base
bilayer system was constructed using the Martini Bilayer
Maker of CHARMM-GUI [23]. The base system was composed
of 128 DPPC molecules and 7000 water beads in a rectangular
simulation box with periodic boundary conditions, in which
the bilayer was placed on the x-y plane and each of the
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leaflets of the bilayer was composed of the same number of
DPPC molecules. The base system was equilibrated by a MD
simulation under constant temperature (323 K) and pressure
(0.1 MPa). After equilibration, the system box size (lx, ly, lz)
was 6.3 × 6.3 × 25.2 nm3 and the thickness of the hydropho-
bic part of the bilayer was about 3 nm. The base bilayer system
was replicated 2, 6, 8, and 12 times in the x direction, and the
replicated bilayer systems are called S2x1, S6x1, S8x1, and
S12x1, respectively. As the systems with small ly suppress
the buckling-like instability along the y direction, we can
focus on the KH-like instability [11]. These systems were
equilibrated by MD simulations under constant temperature
(323 K), constant pressure in the x and z directions (0.1 MPa),
and constant length of the simulation box in the y direction for
at least 1.2 μs.

The parameter settings of the MD simulations were taken
from a previous study about the MARTINI force field [24].
The van der Waals and Coulomb interactions were smoothly
shifted to 0 between 0.9 and 1.2 nm and between 0.0 and
1.2 nm, respectively, by using the GROMACS shift function.
The neighbor list with a cutoff of 1.2 nm was updated every
ten steps. The temperature and pressure were maintained by
the Berendsen weak coupling method [25] with 2.0 and 4.0 ps
time constants, respectively. To numerically solve the equa-
tions of motion, we used the leap-frog algorithm with a time
step 40 fs. All of the MD calculations were performed with
GROMACS 5.1 [26,27], and all of the snapshots of the bilayer
system were produced with VISUAL MOLECULAR DYNAMICS

[28].

B. Shear-flow simulation

The bilayer under shear flow was expressed by a similar
method to that proposed by Hanasaki and co-workers [11]. In
the shear-flow simulation, the systems were divided into bins
in the z direction. The z width of each bin was about 1.0 nm.
At the beginning of the shear-flow simulation, the water beads
in both the top and bottom bins were defined as wall particles
[see the red part of Fig. 1(b)]. During the shear-flow simula-
tion, their velocities were set to constant values of (Vx, 0, 0)
and (−Vx, 0, 0) for the top and bottom bins, respectively,
regardless of the forces from other particles. The parallel walls
moving with different constant velocities generated shear flow
in between the walls. The force field parameters of the wall
particles were the same as those of the water beads, but the
interactions between the wall particles were ignored to avoid
friction between the top and bottom walls across the periodic
boundary in the z direction. To maintain the temperature of the
system under shear flow, the temperatures of the molecules in
the bins were separately kept at 323 K by the Berendsen weak
coupling method [25] with a 2.0-ps time constant. During the
shear-flow simulation, the system box size was constant. The
shear rate γ̇ is defined as γ̇ = 2Vx/lm, where lm is the distance
between the top and bottom walls in the z direction. To locally
apply the Berendsen weak coupling method, we modified the
original source code of GROMACS 5.1 [26,27]. Verification of
this modification and effects of the local temperature control
on the local structure of water are given in Appendixes A and
B, respectively.

An initial configuration was taken from the final 800 ns
of the trajectory of the equilibration simulation of each bi-
layer system. To suppress the disturbance after switching the
simulation conditions of the equilibration simulation to those
of the shear-flow simulation, a pre-shear-flow simulation was
performed with γ̇ = 0 for 600 ns. Ten different configurations
were then taken from the final 500 ns of the trajectory of
the pre-shear-flow simulation. Using these ten configurations,
ten main shear-flow simulations were performed with various
shear rates for 200 ns. The ranges of the shear rate are 0.0–
30.0, 0.0–15.0, 0.0–12.0, and 0.0–6.0 ns−1 for the S2x1, S6x1,
S8x1, and S12x1 systems, respectively.

C. Velocity difference

The velocity difference between the bilayer is a measure of
the intensity of the shear flow, and it is required for discussion
of the bilayer stability [see Eq. (3)]. The representative x-
velocity profile u(z) during the final 100 ns of the 200 ns
shear-flow simulation is shown in Fig. 1(b). Inside the bilayer,
the x velocity was almost 0 and slightly increased with z.
Outside the bilayer, the absolute value of the x velocity
increased with increasing distance from the bilayer. Here, the
velocity difference �uMD is defined as

�uMD = max
t

{u[zmax(t )] − u[zmin(t )]}, (4)

where zmax(t ) and zmin(t ) are the maximum and minimum z
coordinate of the phosphate bead of the DPPC molecules at
simulation time t , respectively. The range of t is the final
100 ns of the 200 ns shear-flow simulation. �uMD represents
the maximum velocity difference acting on the bilayer during
the period. The velocity profile u(z) in the water with the rup-
tured bilayers was unsteady. Thus, �uMD, where the bilayer
ruptured, was not calculated from Eq. (4). It was estimated
under the assumption of a linear relationship between γ̇ and
|�u| where the bilayer was not ruptured (Appendix C).

D. Bending modulus

In the MD simulation, the bending modulus of the bilayer
was estimated by undulation analysis [29]. Here, lys of the
bilayer systems was sufficiently small to suppress undulation
along the y direction. Thus, as with the assumption in the
linear stability analysis, we assumed uniform displacement
of the bilayer along the y direction. Under the assumption
of small qx, the bending modulus kc can be estimated by the
following relationship:

S(qx ) = kBT

a
(
kcq4

x + σq2
x

) , (5)

where S(qx ) is the undulation spectrum of the bilayer, qx is the
wave vector in the x direction, kB is the Boltzmann constant, T
is the temperature, and a is the area per lipid. qx is defined as
qx = 2πn/lx with n = ±1,±2, . . .. During the equilibration
simulations, the contribution of the second term (surface
tension term) in the denominator of Eq. (5) was ignored
as the effects were minor and did not alter the discussions
and conclusions of this paper (Appendix D). Additionally,
as with the assumption in the linear stability analysis, the
shear-induced force and tension [14,15], which is practically
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FIG. 2. Representative snapshots of the bilayer deformation pro-
cess in the S12x1 system under γ̇ = 2.0 ns−1. The bilayer deformed
as an “S” shape.

difficult to evaluate in the MD simulations under shear flow,
were also ignored in this paper. We fitted Eq. (5) with σ = 0
to the undulation spectra in the range qx < 0.7 nm−1. The
average kc for the S6x1, S8x1, and S12x1 systems was (1.62
± 0.27) × 10−19 J (mean ± standard deviation), which is
in good agreement with the values reported from previous
simulation and experimental studies [29–31]. For this analy-
sis, equilibration simulations were additionally performed for
2 μs.

IV. RESULTS AND DISCUSSION

A. Bilayer deformation

When the applied shear rate was below a critical level,
the bilayer maintained its continuous structure with undula-
tion during the shear-flow simulations [i.e., the stable state,
Fig. 1(b)]. Conversely, above a critical level, bilayer undula-
tion along the x direction suddenly increased, and the bilayer
finally ruptured (i.e., the unstable state). As expected, remark-
able undulation and/or buckling-like bilayer deformation are
not observed along the y direction. We found that there were
three patterns of bilayer deformation along the x direction
during the rupture processes. The main deformation pattern
is shown in Fig. 2 (S12x1, γ̇ = 2.0 ns−1). Under shear flow,
the bilayer locally formed a reverse “S” shape [Figs. 2(b) to
2(f)] and ruptured at the reverse-“S”-shape part [Figs. 2(g)
and 2(h)]. In the S2x1, S6x1, and S8x1 systems, only this
“S”-shape deformation pattern was observed. However, in
the S12x1 system, different patterns appeared depending on

(a): t = 0 ns

(b): t = 5 ns

(c): t = 10 ns

(d): t = 16 ns

(e): t = 45 ns

(f): t = 80 ns

(g): t = 82 ns

(h): t = 84 ns

“S”

“S”

“X”

z

xy

flow

flow

FIG. 3. Representative snapshots of the bilayer deformation pro-
cess in the S12x1 system under γ̇ = 1.5 ns−1. The bilayer deformed
as an “S”, an “I”, and an “X” shape.

the shear rate. The second deformation pattern in the S12x1
system under γ̇ = 1.5 ns−1 is shown in Fig. 3. First, as
shown in Fig. 2, an “S” shape locally formed [Fig. 3(b)].
From the bending parts of the “S” shape, the bilayer then
gradually protruded and formed an “I” shape [Figs. 3(c) to
3(e)]. Furthermore, the “I” shape gradually changed into an
“X” shape [Figs. 3(f) and 3(g)]. During this deformation
process from an “S” shape through an “I” shape to an “X”
shape, an “S” shape sometimes temporally formed in the other
part of the bilayer [Figs. 3(c) and 3(d)]. The bilayer finally
ruptured at the intersection of the “X” shape [Fig. 3(h)]. For
the third pattern, the “I” shape formed via an “S” shape and
simultaneously an additional “S” shape formed in the other
part of the bilayer, as with the second pattern. The bilayer rup-
tured at the secondary formed “S”-shape part (see the snapshot
in Fig. 4, orange).

The relationship between the shear rate and deforma-
tion patterns during the rupture process is shown in Fig. 4.
The “I”- and “X”-shape deformation patterns were ob-
served under relatively low shear rate γ̇ � 2.0 ns−1. With
increasing shear rate, the “S”-shape deformation became
dominant.

The “S”-shape deformation of the bilayer under shear flow
is similar to that of fluid–fluid interfaces under shear flow,
which is known as the KH instability [18]. Conversely, to our
knowledge, “I”- and “X”-shape deformations under shear flow
have not been previously reported. Similar deformation pat-
terns of the bilayer were proposed as energetically reasonable
pathways for processes in which two lipid vesicles fuse
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into one (membrane fusion) or one vesicle divides into two
(membrane division) [32–34]. Because of the similarity in the
bilayer deformation pattern, the shear-induced “I”- and “X”-
shape deformations might become energetically favorable in
the lower range of the shear rate.

B. Critical shear rate and velocity difference

The bilayer became unstable (i.e., ruptured) depending on
the shear rate. To quantify the critical shear rate for instability,
we calculated the probability of instability-induced bilayer
rupture P as a function of γ̇ (Fig. 5). P is defined as P =
Ni/Nt , where Ni is the number of trials of bilayer rupture
during the shear-flow simulations and Nt is the total number of
trials (Nt = 10). P was fitted by {1 + erf[(γ̇ − ¯̇γc)/

√
2s]}/2,

where erf is the error function, ¯̇γc and s are the mean and
standard deviation of the critical shear rate γ̇c, respectively
(see Fig. 5). With increasing γ̇ , P monotonically increased
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FIG. 5. Relationship between the applied shear rate γ̇ and the
instability rate P.

0 20 40 60 80 100
Wavelength  [nm]

0

20

40

60

80

100

Ve
lo

ci
ty

 d
iff

er
en

ce
 |

u|
 [m

/s
]

Equation (3)
Stable
Transition
Unstable

Stable Unstable

FIG. 6. Relationship between the wavelength of bilayer undula-
tion λ and the velocity difference across the bilayer �u. The symbols
are the results obtained in the MD simulations. Green circles, orange
triangles, and red crosses represent the stable, transition, and unstable
phases, respectively. The error bars represent the standard deviation.
The solid lines show the critical velocity difference �uc calculated
from Eq. (3) with the average kc. The region between �uc with
average kc plus and minus the standard deviation is shown in gray.
The lower left side and the upper right side of the solid line corre-
spond to the stable and the unstable regions predicted from Eq. (3),
respectively.

and reached 1.0. The curve shifted to lower shear rate with
increasing system size. The data were successfully fitted by
the above fitting function. ¯̇γc decreased with increasing system
size.

Equation (3) predicts the critical velocity difference �uc,
where the bilayer becomes unstable, as a function of the
wavelength λ. To adjust the explanatory variable for the
bilayer stability in the MD simulation to that in the model
(�u and λ), we defined that �uMD is calculated based on
Eq. (4) with applied γ̇ and λ is equal to the simulation box
length in the x direction lx. The relationship between �uMD

and λ for each γ̇ is shown in Fig. 6. In Fig. 6, the points
are plotted as three different symbols depending on the phase
of the bilayer stability: the stable phase when P(γ̇ ) = 0, the
unstable phase when P(γ̇ ) = 1, and the transition phase in
the other cases. In the transition phases, �uMD decreased with
increasing λ.

C. Bilayer stability

We compared the stabilities of the bilayer under shear
flow obtained from the MD simulations and predicted by
the theoretical model. �uc for the model is plotted on the
|�u|–λ diagram (Fig. 6). To obtain �uc, ρ was calculated to
be 986 kg/m3 from a MD simulation of the bulk water system.
�uc for the model decreased with increasing λ, as with �u
for the transition phases of the MD simulations. �uc was
in good agreement with �u for the transition phases, except
for the S2x1 system (λ = 12.8 nm). For the S2x1 system, the
theoretical prediction overestimated |�uc| compared with that
in the MD simulation.
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For larger λ (> about 30 nm), the simple macroscopic
stability model was applicable for the shear-induced KH-like
instability of the bilayer. The model showed that the critical
velocity difference across the bilayer was proportional to the
length of the simulation box along the flow direction to the
power of −3/2 [see Eq. (3)]. According to this scaling law,
the critical velocity difference at the cell scale (∼1–10 μm)
was estimated to be about 0.01–0.1 m/s. Dividing this by
the bilayer thickness, the shear rate across the bilayer was
estimated to be about 106–107 s−1. It is noted that considering
the ignored factors, e.g., the shear-induced tension, into the
theoretical model might improve the estimation of the critical
shear rate for larger λ.

Experimental researchers investigated various phases of bi-
layer membranes, including biological cells, under shear flow.
For a lamellar phase of bilayer membranes, a transition to a
multilamellar vesicle phase (an onion formation) occurs under
shear rate of 1–102 s−1 [13,35,36]. Structurally, the transition
from the lamellar phase to the multilamellar vesicle phase
must include the membrane rupture. For biological cells, cell
lysis, which is considered to be caused by membrane rupture,
occurs under shear rate of >103 s−1 [37–40]. It has also been
reported that lipid bilayer vesicles can withstand shear rate of
∼104 s−1 without leaking of their contents [41]. From these
results, we deduced that such membrane rupture under shear
flow is not usually caused by KH-like instability, but it is
caused by other mechanisms, such as buckling-like instability
[14,15] or cell elongation [42].

In the case of medical treatment, jet injection devices shoot
drug solutions into the tissues, where the initial jet velocity
is ∼102 m/s and the orifice diameter is ∼10−4 m [43,44].
Additionally, some types of rheometers can induce much
higher shear flow (γ̇ ∼ 107 s−1) [45] than the rheometers
used in studies of biological cells and lipid bilayer vesicles
(<105 s−1) [37–41]. In such drastic cases, the shear rate might
reach the theoretically predicted critical value, although it
is now difficult to predict the local shear rate near the cells
experimentally or numerically.

For smaller λ (< about 30 nm), the theoretical model over-
estimated the critical value of the bilayer instability in the MD
simulation (Fig. 6). This discrepancy might be because of the
limitations of the Helfrich Hamiltonian used in the model. As
mentioned in Sec. II, the Helfrich Hamiltonian assumes that
the bilayer is sufficiently thin compared with the lengthscale,
and it is less accurate when this assumption is not valid.
Kawamoto and co-workers [20] performed MD simulations
of the bilayer to estimate the bilayer bending modulus based
on the Helfrich Hamiltonian. They found that the estimated
bending modulus is smaller when the system size is smaller
than about ten times the thickness of the hydrophobic part
of the bilayer. This indicates that the simple Helfrich-based
model may overestimate the bilayer rigidity for the bending
in the smaller system (i.e., the S2x1 system). This might
be a reason for the higher critical velocity difference in the
model (Fig. 6). Formulating the bending energy in a small
system is usually difficult, but it has been addressed, such as
by introducing curvature-dependent elastic parameters [46].
Extending the model for the bilayer stability in combination
with such a method will improve our understanding of the
instability at smaller λ.
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FIG. 7. Representative local temperatures in the bins along the z
axis in the S2x1 system with γ̇ = 10.0 ns−1. The local temperatures
are shown by open circles and the target temperature of 323 K is
shown by the line.

V. CONCLUSION

In this study, we estimated the effect of the system size on
the shear-induced KH-like instability of phospholipid bilayers
by MD simulations and extended it by using the framework
of linear stability analysis. In the MD simulations, the critical
velocity difference across the bilayer, where instability occurs,
decreased with increasing system size. This tendency is in
quantitative agreement with the theoretical prediction, which
is valid when the wavelength of the bilayer is more than
about ten times larger than the bilayer thickness. By the
combination of MD simulation and the theoretical model, the
critical velocity difference was estimated to be proportional
to the system size along the flow direction to the power of
−3/2. Based on the model, we deduced that the shear-induced
cell damage observed in experiments is usually not caused
by KH-like instability. The model also predicted that the high
shear flow situation, in which the shear rate is ∼106 s−1, might
induce KH-like instability of the bilayer.
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APPENDIX A: VERIFICATION OF LOCAL
TEMPERATURE CONTROL

Representative local temperatures in the bins along the z
axis in the S2x1 system with γ̇ = 10.0 ns are shown in Fig. 7.
Except for the slab of the wall particles (z = 0 and 24–25 nm),
the local temperatures agreed with the target temperature
(323 K).
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FIG. 8. (Left) Representative local RDFs in 1.0-nm-bins along z
axis in the S2x1 system under γ̇ = 20.0 ns−1. RDF for bulk water
system under γ̇ = 0.0 ns−1 is also shown in the left panel (black
line). (Right) A representative snapshot of the S2x1 system under
γ̇ = 20.0 ns−1. 1.0-nm bins used for the calculation of the local
radical distribution functions are shown in gray.

APPENDIX B: EFFECTS OF LOCAL TEMPERATURE
CONTROL ON THE LOCAL STRUCTURE OF WATER

Representative local radial distribution functions (RDFs)
in 1.0-nm bins along the z axis in the S2x1 system un-
der γ̇ = 20.0 ns−1 are shown in Fig. 8. The local RDFs
did not depend on the position of the bin and agreed with
the RDF for bulk water without shear flow. This indicated
that the local temperature control here did not artificially
alter the local radial distribution of water particles and re-
produced the characteristics of the bulk water even near
the wall.

APPENDIX C: RELATIONSHIP BETWEEN THE SHEAR
RATE AND THE VELOCITY DIFFERENCE

The relationships between the applied shear rate γ̇ and
velocity difference �uMD are shown in Fig. 9. For all of the
systems, �uMD almost linearly increased with increasing γ̇ .
Although the plots for the larger systems (S6x1, S8x1, and
S12x1) were almost on the same straight line (solid line), that
for the smallest system S2x1 was on a different line (dashed
line). The solid line in Fig. 9 was a fitting line for the S6x1,
S8x1, and S12x1 systems by the linear squares method, and
the dashed line was that for the S2x1 system. In the S2x1 sys-
tem, the undulation of the bilayer was strongly suppressed by
the small system size. This decreased the maximum amplitude
of undulation, resulting in smaller �u compared to those in
the other systems. Based on these two linear relations, �uMD

in the case where the bilayer ruptured was estimated from the
applied shear rate γ̇ .

APPENDIX D: EFFECTS OF SURFACE TENSION

In this study, we ignored the surface tension σ in Eq. (5).
However, when the wavelength of the undulation λ is larger
than a crossover wavelength λc(σ, kc) = 2π/|σ/kc|1/2, the
surface tension term becomes dominant and is not ignorable
in Eq. (5). To justify this, we calculated λc and a contribution
ratio Rs(σ, kc) = 4π2(σ/kc)l−2

x , representing the ratio of the
surface tension term to the bending rigidity term in Eq. (5). To
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|
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S12x1

FIG. 9. Relationship between the applied shear rate γ̇ and the
velocity difference across the bilayer �u. The error bars represent
the standard deviation.

calculate λc and Rs, we first computed the surface tension σ as
the surface tension in the equilibrium simulations, denoted as
σeq = (2Pzz − Pxx − Pyy)lz/2, where Pii is a component of the
pressure tensor (i = x, y, z). As with kc with the assumption
of the zero surface tension, kc with σ = σeq was estimated
by fitting Eq. (5) with σ = σeq to undulation spectrum in the
range of qx < 0.7 nm−1 and denoted as kσeq

c .
These values for all the systems are summarized in Table I.

λc(σeq, kc) and λc(σeq, kσeq
c ) were larger than the system size

lx. Additionally, Rs(σeq, kc) and Rs(σeq, kσeq
c ) were at most

17% (for the S6x1 system). These mean that the effects of the
bending rigidity were greater than those of the surface tension.
Such the differences between including and excluding the
surface tension did not alter the discussions and conclusions
of this paper.

TABLE I. Parameters related to the balance between the surface
tension and the bending rigidity

Label S2x1 S6x1 S8x1 S12x1

σeq [mN/m] −1.51 0.52 0.08 0.03

kc [×10−19 J] 2.24a 1.32 1.83 1.72

kσeq
c [×10−19 J] 2.30a 1.13 1.77 1.67

lx [nm] 12.8 37.9 50.7 75.7

λc(σeq, kc ) [nm] 76.4 100 300 464

λc(σeq, kσeq
c ) [nm] 77.5 92.7 295 457

Rs(σeq, kc ) [-] −0.03 0.14 0.03 0.03

Rs(σeq, kσeq
c ) [-] −0.03 0.17 0.03 0.03

aFitted in the range qx < 1.0 nm−1 because the usual range (qx <

0.7 nm−1) was too small for the fitting in the S2x1 system [qx (n =
1) = 0.49 nm−1 and qx (n = 2) = 0.99 nm−1].
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