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Random-walk model of cotransport
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We present a statistical mechanical model to describe the dynamics of an arbitrary cotransport system. Our
starting point was the alternating access mechanism, which suggests the existence of six states for the cotransport
cycle. Then we determined the 14 transition probabilities between these states, including a leak pathway, and
used them to write a set of Master Equations for describing the time evolution of the system. The agreement
between the asymptotic behavior of this set of equations and the result obtained from thermodynamics is a
confirmation that leakage is compatible with the static head equilibrium condition and that our model has
captured the essential physics of cotransport. In addition, the model correctly reproduced the transport dynamics
found in the literature.
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I. INTRODUCTION

Cotransporters are transmembrane carrier proteins that
couple the facilitated diffusion of νA particles of species A
across a biological membrane to the active transport of νB

particles of species B. Under certain experimental conditions,
these proteins can also work in reverse, utilizing the free
energy stored in the electrochemical gradient �μ̃B to drive
the transport of particles A against the gradient �μ̃A [1].
Cotransporters are divided into symporters and antiporters.
In a symport mechanism, the transport direction is the same
for both particles A and B, such as in the case of the lactose
permease, LacY, which simultaneously transports an H+ and a
lactose across the cell membrane of Escherichia coli [2,3]. In
contrast, an antiport mechanism, such as the countertransport
of Na+ and Ca2+ via the sodium-calcium exchanger, NCX,
moves three Na+ ions into the cell in exchange for one Ca2+

transported out of the cell [4].
One of the currently accepted explanations for the cotrans-

port mechanism was proposed more than 50 years ago by
Jardetzky in the alternating access model [5]. This model
for a symporter with stoichiometry νB : νA is presented in
Fig. 1(a). The transport starts with the binding of νA particles
A from the periplasm to the protein in the outward-facing
conformation, COut (State 1 → State 2). Then the binding
of νB particles B from the the periplasm (2 → 3) induces
a conformational change to the inward-facing conformation,
CIn (3 → 4). After that, the νB particles B are released into
the cytoplasm (4 → 5), followed by the νA particles A (5 →
6), and a conformational change to the COut conformation (6
→ 1), ending the transport cycle. This symport mechanism
corresponds to the transport of particles B in the influx direc-
tion, clockwise. However, transport in the opposite direction,
counterclockwise, can also be explained by this mechanism,
since influx and efflux are functionally symmetric processes
[6]. The transport cycle of an antiporter is described in the
caption of Fig. 1(b).

The conventional alternating access model presented
above assumes that cotransport is a perfectly energy-efficient

process with a fixed stoichiometry. However, it was exper-
imentally observed that uncoupled transport can also oc-
cur during this conventional stoichiometric process [7]. This
uniport-like phenomenon is referred to as “leakage” and is
defined as any movement of the driven or driving species
down its electrochemical gradient without the intervention of
the cotransporter itself [8]. For instance, the symport of Na+

and glucose via the sodium-glucose cotransporter 1, SGLT1,
includes a Na+ leak current that represents 5%–10% of the
maximal cotransport current [9]. One possibility to explain
these experimental observations is to modify the conventional
Jardetzky model by allowing transitions between states 2 and
5, as shown in Fig. 1. Other possibilities have been studied in
Ref. [10].

Although this modified model can theoretically explain
both the coupled and uncoupled transport, it has been criti-
cized from a thermodynamic point of view because, according
to some authors, it does not converge to the static head
equilibrium state [11–14], and thus a full understanding of co-
transport is still lacking. In this work, we propose a statistical
mechanical model based on the modified alternating access
mechanism that we show to be compatible with static head,
offering a semianalytical approach to describe the dynamics
of any cotransport system.

II. RANDOM-WALK MODEL

We consider a closed system consisting of a cytoplasm
and a periplasm with volumes Vc and Vp, respectively, sep-
arated by a biological membrane with a constant mem-
brane potential �� across it. Embedded in this membrane,
there are n identical and independent cotransporters that
can be either symporters or antiporters, but not both. At
a given time t , NS

c (t ) and NS
p (t ) particles of species S ∈

{A, B} are in the cytoplasm and periplasm, respectively. In
addition, we assume that there are nk (t ) cotransporters in
state k ∈ {1, 2, . . . , 6}, such that

∑
k nk = n. As our sys-

tem is closed, the total number of particles A, NA, and
the total number of particles B, NB, must be conserved,
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FIG. 1. The alternating access model modified with a leakage
pathway between states 2 and 5. (a) The transport cycle of the
symport is described in the text. (b) The transport cycle of the antiport
starts with the release of νB particles B from the protein in the COut

conformation to the periplasm (1 → 2). Then, the binding of νA

particles A (2 → 3) induces a conformational change to the CIn

conformation (3 → 4). After that, the νA particles A are released
into the cytoplasm (4 → 5), followed by the binding of νB particles
B (5 → 6), and a conformational change to the COut conformation (6
→ 1), ending the transport cycle.

that is,

NA − NA
c − NA

p = νA[n3 + n4 + (n2 + n5) f ], (1)

and

NB − NB
c − NB

p = νB[(n3 + n4) f + (1 − f )(n1 + n6)], (2)

where f is a function whose value is 1 if the proteins are
symporters, and 0 if they are antiporters. Note that NS − NS

c −
NS

p is the number of S-type particles bound to the cotrans-
porters. The total energy available to do work in this system
is given by the change in the Gibbs free energy across the
membrane as

�G = νA�μ̃A + (2 f − 1)νB�μ̃B, (3)

where the electrochemical gradient of species S is given
by [15]

�μ̃S = kBT ln

(
NS

c /Vc

NS
p /Vp

)
+ QS��, (4)

kB is the Boltzmann constant, T is temperature, and QS is the
charge of a particle S. A �G < 0 favors the influx of particles
A, whereas a �G > 0 favors the efflux of these particles.
Thermodynamic equilibrium is reached when �G = 0.

Our objective is to write a set of equations to describe the
time evolution of this system. To do that, we need to obtain
the 14 transition probabilities Wkk′ , where the transition from
k to k′ is an allowed transition in the alternating access model
(see Fig. 1). Each of these transition probabilities is a product
of three components. The first component is 1/2 for k ∈
{1, 3, 4, 6}; ξ/3 for W25 and W52; and 1

2 (1 − ξ/3) for Wkk+1

and Wkk−1 with k ∈ {2, 5}, where ξ ∈ [0, 1]. When ξ = 0, the
conventional model is recovered, whereas ξ = 1 corresponds
to the situation of maximum leakage. As one can see, we
have assumed that, at each time step �t , a cotransporter in
state k can move forward to k + 1 or backward to k − 1
with equal probability amplitudes, as in the random-walk
problem [16,17]. However, unlike this classic problem, the
state transitions in a cotransport mechanism can be frustrated
either by the concentration limitation, or by the Boltzmann
factor, as described below.

The concentration limitation is associated with the second
component of Wkk′ , which is the probability of finding at least
νS particles S close enough to be captured by a cotransporter
in the CIn conformation, πS

c , or in the COut conformation,
πS

p . Therefore, transitions that do not involve the binding of
particles do not have this component. These probabilities can
be calculated from statistical mechanics as [18,19]

πS
� =

(
1

C0

NS
�

V�

)νS

, (5)

where � ∈ {c, p}, and C0 is a constant concentration whose
value is of the order of D−1(rA + rB)−2, D being the largest
dimension of the carrier protein along the membrane, and rS

the molecular radius of a S-type particle. In our model, for
simplicity, we assume that the cotransporter will not capture
particles one by one, but all at once. This assumption is
reasonable when NS

� � νS , since under this condition, the
time to capture all the particles is much smaller than the time
to complete a whole cycle, which for LacY is approximately
56 ms [20]. Moreover this assumption significantly reduces
the mathematical complexity of our model, since without
it, the six-state cycle would become a 2(νA + νB + 1)-state
cycle.

The third component of Wkk′ is associated with the Boltz-
mann factor through the Metropolis acceptance probability,
which is given by [21]

αkk′ =
{

exp (−βEa ), Ea > 0
1, Ea � 0 , (6)

where Ea is the activation energy of the transition, and β =
1/kBT . Intuitively, one can think of this component as an
effective state transition probability once the events associated
with the first two components of Wkk′ have occurred. In our
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model it will be necessary to assume that Ea is equal to
the free-energy variation �Ekk′ = Ek′ − Ek , since it is usually
not possible to obtain the activation energies for a given
cotransporter, whereas a method to estimate its free-energy
curve has already been established in the literature [2].

Next, we have to consider the contribution of �� to the
free-energy landscape of the transport cycle. To do this, we
use the fact that, in both the CIn and COut conformations, the
solvent-filled cavity of a cotransporter does not bear a signif-
icant part of the membrane electrostatic field [22], and hence
the membrane potential can contribute only to transitions that
involve a conformational change. Specifically, the terms

f νAQA��, (νAQA + f νBQB)��,

and ( f − 1)νBQB��
(7)

have to be added, respectively, to the free-energy variations
�E25, �E34, and �E61. Furthermore, these terms have to be
subtracted, respectively, from �E52, �E43, and �E16. Thus,
using Eqs. (6) and (7), the following relation between the
Metropolis acceptance probabilities can be demonstrated:

∏
k

αkk+1

αk+1k
= exp {−β[νAQA + (2 f − 1)νBQB]��}. (8)

We are now ready to write the state transition probabilities
based on the three components defined earlier and the alternat-
ing access model shown in Fig. 1. For instance, the transition
probability W12 for a symporter is πA

p α12/2, whereas that for
an antiporter is α12/2. Therefore, it is straightforward to write
the transition probability matrix

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

W11 γpα12 0 0 0 1
2α16

δpα21 W22 εpα23 0 ξ

3 α25 0
0 1

2α32 W33
1
2α34 0 0

0 0 1
2α43 W44

1
2α45 0

0 ξ

3 α52 0 εcα54 W55 δcα56
1
2α61 0 0 0 γcα65 W66

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(9)

where Wkk = 1 − ∑
k′ �=k Wkk′ is the probability that a cotrans-

porter in state k will not undergo any state transition, and we
defined the parameters

γ� = 1

2
(1 − f + f πA

� ),

δ� = 1

2

(
1 − ξ

3

)[
f + (1 − f )πB

�

]
,

and ε� = 1

2

(
1 − ξ

3

)[
f πB

� + (1 − f )πA
�

]
. (10)

It is important to note that, although our model involves n
cotransporters, the above matrix is the transition probability
matrix between the six states of a single cotransporter.

As one can see, the model we are proposing is a random
walk whose transition probabilities are time dependent and
nonhomogeneous, that is, they depend on t and the states
through πS

� and αkk′ , respectively. To solve the random-walk
problem, we will invoke the master equation (ME) approach
[23]. Thus, to describe the time evolution of our system, we

have six MEs for the variables nk (t ),

dnk

dt
= 1

�t

∑
k′ �=k

(Wk′knk′ − Wkk′nk ), (11)

and four MEs for the variables NS
� (t ),

1

νS

dNS
�

dt
= h

�t
(WK+1K nK+1 − WKK+1nK ), (12)

where h and K are, respectively, 1 and 2 − f for NA
p ; 2 f − 1

and 1 + f for NB
p ; 1 − 2 f and 5 − f for NB

c ; and −1 and
4 + f for NA

c . These MEs form a set of 10 coupled differential
equations that can be solved numerically using the finite dif-
ference method [24], where the derivative of a function ϕ(t ) is
approximated by ϕ̇ ≈ [ϕ(t + τ ) − ϕ(t )]/τ . Our PYTHON code
to solve this set of equations can be found in the Supplemental
Material [25].

III. RESULTS AND DISCUSSIONS

First, we consider a case where no leakage is allowed,
that is, ξ = 0. The objective is to validate our model by
calculating the asymptotic behavior of the system. For this
purpose, note that for t → ∞ the derivatives on the left-hand
side of Eqs. (11) and (12) vanish, leading to the following
equilibrium relations:

n1/n6 = α61/α16, n3/n4 = α43/α34,

and NS
�, ξ=0 = C0V�

(
αK+1K

αKK+1

nK+1

nK

)h/νS

. (13)

These relations can be used together with Eq. (8) to show that

NA
c /Vc

NA
p /Vp

=
(

NB
p /Vp

NB
c /Vc

)(2 f −1)νB/νA

× exp

{
− β

[
QA + (2 f − 1)

νB

νA
QB

]
��

}
, (14)

which is the static head equilibrium condition. The above
equation is a well-known result for the cotransport that can
also be obtained from thermodynamics by setting �G = 0 in
Eq. (3). Here we presented an independent derivation based
on microscopic principles by mapping the alternating access
model onto a random-walk model.

Now let us consider a system where ξ �= 0. In this case,
there is an additional equilibrium condition related to the
leakage pathway between states 2 and 5,

n2/n5 = α52/α25. (15)

Moreover, the asymptotic expression of NS
� (t ) in Eq. (13)

assumes the more general form

NS
� =

(
1 − ξ

3

)h̃/νS

NS
�,ξ=0, (16)

where h̃ is 2 f − 1 for NA
� and −1 for NB

� . Thus, using the
result that summing the free-energy variations along a cycle
in Fig. 1 is zero, it can be demonstrated that

NS
c /Vc

NS
p /Vp

= exp (−βQS��), (17)
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which are two constraints valid for ξ �= 0. Note that these
constraints also lead to the static head equilibrium condition
expressed in Eq. (14). In contrast, as we mentioned in the
Introduction, some authors believe that any leakage is in-
compatible with the static head. Surprisingly, however, the
above results demonstrate that our system converges to this
equilibrium condition. Thus, one can conclude that the result
in Eq. (14) is independent of the existence of a leak pathway
across the cell membrane, although the final equilibrium
configuration depends on the constraints in Eq. (17) when
ξ �= 0. Put more simply, the static head condition holds for any
value of ξ , but for ξ �= 0, these constraints reduce the number
of degrees of freedom of the static head.

The above results appear to be in partial disagreement with
the conclusion that, when leaks of either ligand are factored
into the cotransport model, the only equilibrium that can exist
is when the solutions on both sides of the transporter have
equal ligand concentrations [11]. According to Eq. (17), we
see that this conclusion is true only when the membrane
potential �� is zero and/or both species are electroneutral.
Otherwise, the NS particles S will tend to a distribution where
the diffusion force due to the concentration gradient, �μS ,
compensates the electrical interaction of these particles with
the cell membrane, and this distribution does not necessar-
ily correspond to equal concentrations on both sides of the
cotransporter. Importantly, we reinforce here that the final
distribution of particles A and B is compatible with static head
equilibrium under any conditions.

Next, we applied our model to the 1 : 1 symport catalyzed
by LacY in which particles A and B correspond to H+ and
lactose, respectively. The free-energy variations of this sym-
port were estimated from experimental data and are available
in Fig. 1(b) of Ref. [2], as reproduced in the Supplemental
Material [25]. Thus, using these free-energy variations and
assuming that �� = −100 mV, which is a typical value for
the membrane potential of E. coli [26], we calculated from
Eq. (6) the 14 Metropolis acceptance probabilities for LacY.
We performed simulations for ξ equal to 0 and 1.

The results for ξ = 0 are shown in Fig. 2. As one can see
from this figure, the initial concentration of H+ is higher in
the periplasm than in the cytoplasm, and hence, according
to Fick’s law , there is a thermodynamic force pushing H+
ions from the periplasm to the cytoplasm. In addition to this
force, the membrane potential generates another force that
also pushes H+ ions from the periplasm to the cytoplasm. We
thus expect NH+

c to increase and NH+
p to decrease until the

equilibrium configuration is reached, in accord with the re-
sults in Fig. 2(a). On the other hand, Fig. 2(b) shows that there
is a thermodynamic force pushing lactose molecules from
the cytoplasm to the periplasm. However, what is observed
is that the lactose molecules are being pumped against their
concentration gradient, since NL

c increases and NL
p decreases.

The energy to drive this lactose movement comes entirely
from the downhill movement of H+, and these two movements
are coupled by LacY. In equilibrium, the system has approxi-
mately 25% of H+ ions and 99% of lactose molecules in the
cytoplasm. It can be verified that these values satisfy Eq. (14).

In Fig. 3 we present the results for the case of ξ = 1. From
this figure, one can see that the time evolution of the system
is completely different from that in Fig. 2, even though the

FIG. 2. Dynamics of lactose transport by LacY for ξ = 0. We
used in all plots 106 time steps of τ = �t/10 for integrating Eqs. (11)
and (12) with the following initial conditions: n1 = 103, nk �=1 = 0,
NH+

p = 105, NL
p = 2.5 × 104, NL

c = 7.5 × 104, NH+
c = 103. In addi-

tion, we considered that Vc = Vp = 106/C0. (a) H+ fractions in the
cytoplasm and periplasm. (b) Lactose fractions in the cytoplasm
and periplasm. (c) The variation in the Gibbs free-energy across
the membrane is denoted by the solid black line. Also shown as
dashed gray lines are the H+ electrochemical gradient, �μ̃H+ , and
the lactose concentration gradient, �μL.

initial conditions are the same. First, a greater amount of H+
ions was carried from the periplasm to the cytoplasm. Thus, by
comparing Figs. 2(a) and 3(a), we can see that, in the second
case, the H+ ions were carried approximately four times faster
than in the case of ξ = 0. This is due to the presence of an
additional H+ leakage pathway in our modified model. On
the other hand, the lactose molecules took three times longer
than the ions to reach their equilibrium state, whereas the final
configuration of each species is reached simultaneously when
ξ = 0. In fact, when we compare Figs. 2(b) and 3(b), we

FIG. 3. Dynamics of lactose transport by LacY for ξ = 1. In all
plots, we used 2.5 × 106 time steps of τ = �t/10 for integrating
Eqs. (11) and (12) with the same initial conditions as in Fig. 2. (a)
H+ fractions in the cytoplasm and periplasm. (b) Lactose fractions in
the cytoplasm and periplasm.
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observe that the lactose molecules were moving 2.5 times
slower in the second case than in the first case. Hence,
the system as a whole has become slower when leakage is
allowed. This result is counterintuitive, since without tightly
coupling the movement of the driven and driving species, the
system can operate as a symport and a uniport at the same
time, and so LacY should work more efficiently. Instead, these
two modes of operation are competing, and for the initial
conditions of the system, the uniport of H+ is being favored
over the symport of lactose. In equilibrium, the system has
approximately 98% of H+ ions and 50% of lactose molecules
in the cytoplasm. These values satisfy Eqs. (14) and (17).

To the best of our knowledge, the present model is the first
to introduce the leak parameter ξ , and thus it is important to
establish a way to estimate it. However, this is not a simple
task, especially because we believe that this parameter is not a
property of the cotransporter, and thus it can even depend on
the initial conditions of the experiment. Moreover, the most
accessible experimental quantities are the ratios between the
equilibrium concentrations in Eq. (17), and these quantities
do not depend on ξ . Nevertheless, there is a possible way to
estimate this parameter if the ratio between the leak current,

Ileak = ξνAQA

3�t
(α25n2 − α52n5), (18)

and the maximal cotransport current is known. For instance,
as mentioned before, this ratio for the symport of Na+ and

glucose via the SGLT1 varies from 0.05 and 0.1, and thus
the value of ξ could be adjusted in such a way that the
ratio calculated by our model lies within the interval obtained
experimentally. Unfortunately, for LacY, the value of this ratio
is not known. This method for estimating ξ should be further
investigated.

In summary, we presented a stochastic model based on
the modified alternating access mechanism that correctly re-
produced the cotransport dynamics found in the literature
and is compatible with the static head equilibrium condition.
This model can be used in the studies of cell mechanics,
since ion pumps and cotransporters are essential for cells to
maintain intracellular osmolyte concentrations, which in turn
control cell pressure and volume. Thus, these ion channels and
pumps should be considered in any cell mechanics simulation
[27–29]. Our model can also be used to study the mechanosen-
sitivity of cotransporters, which is a poorly studied problem
on the interface between physics and biology with possible ap-
plications to heart disease therapies (for details, see Ref. [30]).
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