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Pair approximation for the q-voter model with independence on multiplex networks
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The q-voter model with independence is investigated on multiplex networks with full overlap of nodes in the
layers. The layers are various complex networks corresponding to different levels of social influence. Detailed
studies are performed for the model on multiplex networks with two layers with identical degree distributions,
obeying the LOCAL&AND and GLOBAL&AND spin update rules differing by the way in which the q-lobbies
of neighbors within different layers exert their joint influence on the opinion of a given agent. Homogeneous pair
approximation is derived for a general case of a two-state spin model on a multiplex network and its predictions
are compared with results of mean-field approximation and Monte Carlo simulations of the above-mentioned q-
voter model with independence for a broad range of parameters. As the parameter controlling the level of agents’
independence is changed ferromagnetic phase transition occurs which can be first- or second-order, depending
on the size of the lobby q. Details of this transition, e.g., position of the critical points, critical exponents and
the width of the possible hysteresis loop, depend on the topology and other features of the layers, in particular
on the mean degree of nodes in the layers which is directly predicted by the homogeneous pair approximation.
If the mean degree of nodes is substantially larger than the size of the q-lobby good agreement is obtained
between numerical results and theoretical predictions based on the homogeneous pair approximation concerning
the order and details of the ferromagnetic transition. In the case of the model on multiplex networks with layers
in the form of homogeneous Erdős-Rényi and random regular graphs as well as weakly heterogeneous scale-free
networks this agreement is quantitative, while in the case of layers in the form of strongly heterogeneous scale-
free networks it is only qualitative. If the mean degree of nodes is small and comparable with q predictions of
the homogeneous pair approximation are in general even qualitatively wrong.
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I. INTRODUCTION

Studies of interacting systems on complex, possibly hetero-
geneous networks constitute an important area of research in
contemporary statistical physics [1,2]. In particular, they com-
prise investigation of critical phenomena in nonequilibrium
models for, e.g., contact processes and epidemic spreading
[3], synchronization [4], and the opinion formation [5], where
the underlying network reflects the complexity and possible
heterogeneity of social interactions [6,7]. An important class
of the latter models, justified from the social point of view,
comprises these in which agents possessing opinions repre-
sented by two-state spins placed in the nodes of the network
make decisions on the basis of the opinions of randomly
chosen subsets (lobbies) of their neighbors, e.g., the voter
model [8–11], the q-voter (called also nonlinear voter) model
[12–14], various versions of the noisy q-voter model, e.g.,
with independence or anticonformism [15–22], and the q-
neighbor Ising model [23–26]. The above-mentioned models
differ by the opinion (spin) update rules, which leads to
different critical behavior. In particular, the noisy q-voter
models and the q-neighbor Ising model can exhibit phase
transition from the disordered paramagnetic (PM) state to the
ordered ferromagnetic (FM) state with unanimous opinion as
the parameter representing agents’ uncertainity in decision

*tomasz.gradowski@pw.edu.pl

making (“social temperature”) is decreased. This transition
can be first- or second-order, depending on the size of the
lobby q and details of the degree distribution of the network.
In the case of models on complete graphs quantitatively
correct description of such transition usually can be achieved
in the framework of the mean-field approximation (MFA)
[15,16,18,19,21,23–25]. However, in the case of models on
networks a more accurate pair approximation (PA) taking into
account dynamical correlations between interacting agents is
necessary to capture the dependence of the critical behavior on
the properties of the network, e.g., on its degree distribution
[10,11,17,20,21,26–28].

Recently it has been realized that even more complex and
heterogeneous structures occur frequently in social systems
which has prompted interest in the study of interacting sys-
tems on “networks of networks” [29]. In this context much
attention was devoted to multiplex networks (MNs) which
consist of a fixed set of nodes connected by various sets
of edges called layers [29–31]. Interacting systems on MNs
exhibit rich variety of collective behavior and critical phenom-
ena. For example, percolation transition [32,33], cascading
failures [34], threshold cascades [35,36], diffusion processes
[37,38], epidemic spreading [39], asymptotic behavior of the
voter model [40], coevolution dynamics of the nonlinear voter
model [41], and phase transitions in the equilibrium Ising
model [42,43] and related Ashkin-Teller model [44] as well
as in a nonequilibrium majority vote model [45] were studied
on MNs. Also the q-voter model with independence [16] and
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the q-neighbor Ising model [25] were studied on MNs with
layers in the form of complete graphs, both in the MFA and
by means of Monte Carlo (MC) simulations. For the two
latter models various opinion update rules were assumed as
generalizations of the rules for the corresponding models on
(monoplex) networks in order to take into account that agents
interact with separately chosen lobbies within different layers,
which correspond to different levels of social influence. It was
shown that the effect of network multiplicity on the critical
behavior (e.g., on the range of parameters for the occurrence
of the discontinuous FM transition) depends on the model and
on the assumed opinion update rule and is quantitatively well
described in the MFA.

The aim of this paper is to investigate the q-voter model
with independence, which is a particular kind of a general
noisy q-voter model, on MNs with layers in the form of
complex networks rather than complete graphs. This requires
going beyond the MFA. Thus, in this paper PA is extended to
a general case of two-state spin systems with up-down sym-
metry on MNs with layers in the form of complex networks
and with various spin update rules. This PA is applied to the
q-voter model with independence and the resulting theoretical
predictions concerning the FM transition are compared with
those based on the simple MFA and with results of MC simu-
lations of the model on MNs with layers with different degree
distributions, such as random regular graphs (RRGs), Erdős-
Rényi graphs (ERGs) [6,7,46], and scale-free (SF) networks
[6,7,47]. For the sake of brevity the problem under study is
considered here under several simplifying assumptions. First,
as natural generalizations of the opinion update rule for the
model on monoplex networks, the corresponding rules for the
model on MNs are assumed to have different AND forms
[16,25,36]: the agent changes opinion if interaction with every
lobby from every layer suggest change (LOCAL&AND rule),
or interaction with a set of all neighbors from all lobbies from
all layers suggests change (GLOBAL&AND rule). Then, only
the simplest homogeneous PA is considered in which all nodes
and edges are eventually treated as equivalent and their possi-
ble heterogeneity is neglected [10,17,20,21,26]. Moreover, the
interest is focused only on the stationary states of the model
corresponding to different (PM or FM) thermodynamic phases
and their stability, thus detailed study of the fluctuations of the
macroscopic quantities characterizing the model, such as the
magnetization, and their theoretical description in the frame-
work of the PA are omitted. Finally, detailed calculations are
performed only for the case of MNs with two layers (so-called
duplex networks) with identical degree distributions and with
full overlap of nodes (with each node belonging to both layers)
but with independently generated sets of edges; as a result,
possible effects of the correlation between the degrees of
nodes within different layers and of the edge overlap between
layers [48] on the observed phenomena are not studied.

Under the above-mentioned assumptions the model under
study exhibits qualitatively similar behavior as that on MNs
with layers in the form of complete graphs [16]. However,
details of the first- or second-order FM transition observed
in MC simulations (e.g., the precise location of the critical
point or points, width of the possible hysteresis loop, crit-
ical exponents) depend significantly on the topology of the
networks forming the layers of the MN. In general, better

agreement between numerical and theoretical results based
on the homogeneous PA occurs for the model on MNs with
layers with high density of edges. Then, as expected, in the
case of MNs composed of layers with negligible heterogene-
ity, e.g., RRGs and ERGs, the details of the FM transition
are quantitatively well captured by the theory based on the
homogeneous PA. Besides, it is shown that this theory yields
reasonably good agreement with numerical results also for
the model on MNs with weakly heterogeneous SF layers with
finite second moment of the degree distributions. In the case
of MNs with strongly heterogeneous layers this agreement is
much worse and only qualitative; possibility of formulation
of heterogeneous PA [11,27,28] for the model on such MNs,
which could better reproduce results of MC simulations, is
only briefly discussed here. Agreement between numerical
and theoretical results substantially deteriorates for the model
on MNs with low density of edges, and in this case predictions
of the homogeneous PA can be quantitatively wrong even
in the case of MNs with layers with negligible heterogene-
ity. Finally, it should be emphasized that the q-voter model
with independence is considered here only as a relatively
simple example and extension of the derived PA to other
models on MNs with similar opinion (spin) update rules is
straightforward.

II. THE MODEL

A. The q-voter model with independence on multiplex networks

The q-voter model with independence is a sort of stochastic
spin model for the opinion formation with random sequen-
tial updating [15–17]. Let us first describe the model on a
monoplex network. In this model agents represented by spins
si = ±1, i = 1, 2, . . . , N with two states corresponding to
opposite opinions are located in N nodes of the network, and
the edges correspond to possible interactions between them.
The dynamics of the model is defined by the spin flip rate
which depends on a parameter p (0 � p � 1) determining the
degree of stochasticity (“social temperature”) in the model.
This stochasticity manifests itself as agents’ independence in
decision making. At each elementary time step an agent and a
subset of q her neighbors (a q-lobby) are chosen randomly; the
neighbors are chosen without repetitions. Then, the opinion
of the agent is updated according to the following rule. With
probability 1 − p the agent acts as a conformist and with
probability p acts independently. In the case of conformity
the agent changes opinion, and the spin flips, if and only if
the opinions of all members of the q-lobby are identical and
opposite to that of the agent. In the case of independence the
agent changes opinion, and the spin flips, with probability
1/2, independently of the opinions of the members of the q-
lobby. Otherwise, the opinion of the agent remains unchanged.
Hence, the elementary time step corresponds to the opinion
update of one agent. This procedure is repeated until all agents
update their opinions, which corresponds to one MCSS; thus,
duration of the elementary time step is �t = 1/N .

It should be noted that the q-voter model with indepen-
dence is a particular member of a class of noisy q-voter
models which differ by details of the dynamics which is
reflected in slightly different spin flip rates. For example, the
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agents can be allowed to act independently only if the opinion
in their neighborhood is not unanimous and otherwise they
always behave as conformists [19,22], or, more generally, the
probabilities for independent action in the case of unanimous
and differing opinions in the neighborhood of an agent need
not be related to each other [20,21], or it is enough for agents
to act as conformists even if only a majority fraction of their
neighbors exhibits the same opinion [22], etc. This, in turn,
can lead to different critical behavior, e.g., absorbing rather
than FM phase can occur even for nonzero stochasticity level
induced by independence [19,22] which is not possible in the
q-voter model with independence as defined above. In this
paper the latter model is used as a particular example, but
other forms of stochasticity can be easily included in the PA
for the q-voter model on MNs derived below.

The q-voter model with independence on a MN con-
sists of agents represented by two-state spins si = ±1, i =
1, 2, . . . , N located in the nodes of the MN which interact
with independently chosen q-lobbies from every layer, each
q-lobby being a subset of q agent’s neighbors within one layer.
It should be emphasized that in the MN there is only one
set of nodes, while sets of edges corresponding to different
layers are generated separately. Thus, the agents located in the
nodes present the same opinion si to their neighbors within
each layer (the agents are nonschizophrenic). The dynamics
of the model is again defined by the spin flip rate which is a
generalization of that for the model on monoplex networks. In
particular, in this paper only AND generalizations of the spin-
update rule are considered in which, in general, it is assumed
that a node is activated if a sufficiently large fraction of its
neighbors in every layer are active [36]. Besides, different as-
sumptions concerning the status of independence of the agents
(GLOBAL on all layers or LOCAL on each layer separately)
can be made. The above-mentioned assumptions lead to the
LOCAL&AND or GLOBAL&AND spin update rules which
are described below. Of course, other generalizations of the
spin flip rate are possible and tractable within the formalism
of PA on MNs, e.g., the LOCAL&OR spin update rule, but it
seems they lead to less interesiting results [16] and will not be
considered here.

In both LOCAL&AND and GLOBAL&AND cases the
spins are updated randomly and sequentially. At each elemen-
tary time step an agent is chosen randomly. Then, q-lobbies of
her neighbors, one lobby per each layer of the MN, are chosen
randomly and independently. The neighbors belonging to a
q-lobby within a given layer are chosen without repetitions,
however, due to the topology of connections within the MN
(see Sec. II B) it can happen that the same node belongs to
two or more q-lobbies within different layers.

In the LOCAL&AND case the agent first interacts with
each q-lobby separately: with probability 1 − p she acts as
a conformist and tends to change opinion if and only if
the opinions of all members of the q-lobby are identical
and opposite to her opinion, and with probability p she acts
independently and tends to change opinion with probability
1/2. Then, if and only if for every layer of the MN the agent
tends to change opinion the spin eventually flips; otherwise
the opinion of the agent remains unchanged. Thus, under
further simplyfying assumptions used in this paper, including
independence of the degree distributions within each layer

(Sec. II B), in the LOCAL&AND case the spin flip rate is a
product of the rates for the q-voter model with independence
on monoplex networks corresponding to subsequent layers of
the MN.

In the GLOBAL&AND case all q-lobbies from all layers
of the MN are first aggregated into a single lobby. Then with
probability 1 − p the agent acts as a conformist and changes
opinion, i.e., the spin flips, if and only if the opinions of all
members of the latter lobby are identical and opposite to her
opinion, and with probability p the agent acts independently
and changes opinion, i.e., the spin flips, with probability 1/2.
Otherwise, the opinion of the agent remains unchanged. Thus,
in the GLOBAL&AND case the spin flip rate is formally equal
to the rate for the q-voter model with independence on an ag-
gregate monoplex network composed of all layers of the MN
with proportionally rescaled size of the q-lobby. Nevertheless,
there is a small difference in the dynamics of the models on
a MN and on an aggregate network: in the former case the
neighborhood of a given agent is formed by choosing sets
of q neighbors, each composed of agent’s neighbors within
only one layer, while in the latter one the neighborhood is
formed by choosing as many neighbors as necessary without
taking into account the layer in which they are connected to
a given agent. Under further simplifying assumptions used in
this paper, including independence and equality of the degree
distributions within each layer (Sec. II B), this difference turns
out to be unimportant, but in principle can manifest itself if,
e.g., the degree of heterogeneity of networks forming separate
layers differs substantially.

B. The models for multiplex networks

As mentioned in Sec. I a MN consists of a fixed set of N
nodes which are connected by many separately generated sets
of edges called layers [29–31]. For simplicity, in this paper
MNs with only two layers denoted as G(A), G(B) are consid-
ered (so-called duplex networks); the theoretical approach of
Sec. III can be easily extended to the case with more than two
layers. Thus, each node is characterized by two degrees k(A),
k(B) defined as the numbers of edges attached to it within the
respective layer. Moreover, it is assumed that the layers are
independently generated complex networks with the degree
distributions P(k(A) ), P(k(B) ) and with mean degrees of nodes
〈k(A)〉, 〈k(B)〉. Only MNs with layers with full overlap of
nodes are considered, such that each node has nonzero degree
within each layer, k(A) > 0, k(B) > 0; thus, full overlap of
nodes means that there are no nodes which belong only to
one, G(A) or G(B) layer, i.e., which have degree k(B) = 0 or
k(A) = 0, respectively. Hence, the joint degree distribution is
P(k(A), k(B) ) = P(k(A) )P(k(B) ). In particular, this means that
any correlations exist neither between the degrees k(A), k(B) of
nodes nor between the edges in the sense that the probability
that two agents are neighbors within one layer is independent
of that if they are neighbors within the other layer, i.e., there is
no other than accidental edge overlap [48]. Consequently, the
LOCAL&AND ar GLOBAL&AND spin flip rates (Sec. II A)
can be, at least to some extent, factorized into terms related
to consecutive layers which facilitates analytic calculations
within the PA. Nevertheless, influence of the above-mentioned
degree and edge correlations on the behavior of the q-voter
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model on appropriately constructed MNs can be important
and deserves further investigation.

Detailed theoretical calculations and MC simulations are
performed for the q-voter model with independence on MNs
with layers characterized by identical degree distributions
P(k(A) ) = P(k(B) ), thus with 〈k(A)〉 = 〈k(B)〉. In particular, the
layers under study can be complex networks in the form
of RRGs, ERGs, and heterogeneous SF networks. RRG is
a sort of random graph with degree distribution P(k) =
δk,k0 and mean degree 〈k〉 = k0, with N randomly connected
nodes, each with the same degree k0. ERG is a sort of
random graph with N nodes and binomial degree distribution
P(k) = (N − 1

k ) p̃k (1 − p̃)N−1−k with 〈k〉 = N p̃ [6,7,46]. The
SF network is characterized by a power degree distribution
P(k) ∝ k−λ, λ > 2, for k > kmin, and P(k) = 0 otherwise,
with 〈k〉 = (λ − 1)kmin/(λ − 2) [6,7,47]. ERGs can be effi-
ciently constructed by randomly connecting N nodes with
N〈k〉/2 edges. In turn, an efficient method to generate RRGs
and SF networks is to apply the Configuration Model [49].
Using the above-mentioned methods the two layers G(A), G(B)

are generated independently. Care is taken to avoid multiple
connections between nodes within each layer. However, since
layers are generated independently it is possible that a given
pair of nodes is connected by two edges, one from the layer
G(A) and the other from G(B). Hence, in the process of MC
simulation of the q-voter model with independence on a MN
it can happen that at a certain elementary time step the same
neighbor of a chosen agent belongs to both her q-lobbies, one
within the layer G(A) and the other within G(B).

III. THEORY

A. Mean-field approximation

Before introducing homogeneous PA for the q-voter model
on MNs with layers in the form of complex networks, in this
subsection simple MFA for the q-voter model on MNs with
layers in the form of fully connected and overlapping graphs
is recollected [16] and certain results which are important for
further discussion are derived. In this model the neighborhood
within each layer of a given spin consists of all other spins. In
the MFA the macroscopic quantity characterizing the model
is the concentration c of spins with direction up, related to
the order parameter, the usual magnetization m, by c = (1 +
m)/2. A dynamical equation for the concentration c has a form
of the rate equation,

∂c

∂t
= γ +(c, p) − γ −(c, p), (1)

where γ + (γ −) are rates of spin flips in the direction up
(down) averaged over all spins.

In the thermodynamic limit N → ∞ the rates in the case
of LOCAL&AND spin update rule are [16]

γ +(c, p) = (1 − c)
[
(1 − p)cq + p

2

]2
,

γ −(c, p) = c
[
(1 − p)(1 − c)q + p

2

]2
, (2)

where in both cases the first term accounts for the fact that
for the flip of the spin in the direction up (down) to occur,

first a spin with direction down (up) must be selected during
a simulation, and the second term results from the application
of the LOCAL&AND spin update rule described in Sec. II A.

It can be seen that Eq. (1) has a fixed point c = 1/2
(m = 0) corresponding to the PM phase. Denoting by A(c) =
(1 − c)[(1 − p)cq + p

2 ]2 − c[(1 − p)(1 − c)q + p
2 ]2 the right-

hand side of Eq. (1), with decreasing p this fixed point loses
stability when ∂A

∂c |
c=1/2

= 0, i.e., at

p�
MF = 2q − 1

2q − 1 + 2q−1
. (3)

Depending on the size of the q-lobby the transition from
the PM to the FM phase can be first-order (for small q) or
second-order (for large q). In the case of the second-order
transition the critical value of the independence parameter is
pc,MF = p�

MF , and for p < pc,MF Eq. (1) has two symmetric
stable solutions with c < 1/2 (m < 0) and c > 1/2 (m > 0),
corresponding to the FM phase, and an unstable solution
c = 1/2. In the case of the first-order transition a hysteresis
loop occurs: with decreasing p the PM solution c = 1/2 loses
stability at p = p(1)

c,MF = p�
MF and the only stable solutions

remain the two symmetric FM ones, while for increasing p the
two FM solutions disappear simultaneously at p = p(2)

c,MF >

p(1)
c,MF (the value of p(2)

c,MF can be determined numerically) and

the only stable solution is the PM one; thus, for p(1)
c,MF < p <

p(2)
c,MF there is a bistability region [16].

In order to gain more insight into the character of the phase
transition it is convenient to rewrite Eq. (1) in terms of the
magnetization m, expand the right-hand side of the resulting
rate equation in powers of m and write it as a derivative of an
effective potential V (m, p, q),

∂c

∂t
= −∂V (m, p, q)

∂m
, (4)

V (m, p, q) = C2(p, q)m2 + C4(p, q)m4 + C6(p, q)m6 + . . . ,

(5)

C2(p, q) = − (1 − p)2

22q
(2q − 1) − p(1 − p)

2q
(q − 1) − p2

2
,

C4(p, q) = − (1 − p)2

22q+1

[(
2q

3

)
−

(
2q

2

)]

− p(1 − p)

2q+1

[(
q

3

)
−

(
q

2

)]
,

C6(p, q) = −1

6

(1 − p)2

22q−1

[(
2q

5

)
−

(
2q

4

)]

−1

6

p(1 − p)

2q−1

[(
q

5

)
−

(
q

4

)]
(6)

[by convention, (x
y) ≡ 0 for x < y or y < 0]. It can be easily

calculated that C2(p�
MF , q) = 0 for any q, C4(p�

MF , q) > 0
for q = 2, 3, C4(p�

MF , 4) = 0, and C4(p�
MF , q) < 0 for q � 5;

moreover, C6(p�
MF , q) > 0 for q = 4, 5. Employing formal-

ism of the Landau theory of phase transitions (for applications
to the q-voter model see Refs. [15,16]) it can be deduced that
second-order transition occurs in the model under study at
p = pc,MF = p�

MF for q = 2, 3. On the other hand, for q � 5
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first-order transition is expected provided that at p = p�
MF

a pair of symmetric minima with |m| > 0 of the potential
V (m, p, q) exists, corresponding to the coexisting stable FM
phase; for q = 5 this is guaranteed by C6(p�

MF , 5) > 0 while
for q � 6 higher-order nonlinear terms in the expansion (5)
must be responsible for this. At p = p�

MF and q = 4, due
to mutual disappearance of the coefficients C2 and C4 with
C6 > 0, a tricritical point is expected separating the first- and
second-order phase transition curves on the (p, q) plane. The
above results concerning the critical values pc,MF or p(1)

c,MF
as well as the order of the FM transition are in agreement
with numerical analysis of the MF equation (1) and direct
MC simulation of the q-voter model with LOCAL&AND spin
update rue on a MN with layers in the form of complete graphs
[16]. In particular, comparison of Eq. (3) for q = 2 (p�

MF =
0.6) and q = 3 (p�

MF = 5/9 = 0.555 . . .) with Fig. 9 and
Fig. 16(b) of Ref. [16] (when the model shows continuous
phase transition) and for q = 5 (p�

MF = 0.36) with Fig. 14
and Fig. 16(b) of Ref. [16] (when the model shows first-order
phase transition) shows good agreement of Eq. (3) with pre-
dictions based on the MFA and with results of MC simulations
of the respective q-voter model with independence.

In the case of the GLOBAL&AND spin update rule the
rates in Eq. (1) in the thermodynamic limit are [16]

γ +(c, p) = (1 − c)
[
(1 − p)c2q + p

2

]
,

γ −(c, p) = c
[
(1 − p)(1 − c)2q + p

2

]
, (7)

thus in the MFA the q-voter model on a MN with fully
connected layers is equivalent to the 2q-voter model on a
(monoplex) fully connected graph. The fixed point with c =
1/2 loses stability at

p�
MF = 2q − 1

2q − 1 + 22q−1
, (8)

which may be also obtained from the result for the q-voter
model on a fully connected graph, Eq. (26) in Ref. [15],
simply by changing q into 2q. Comparison of the above result
for q = 2 (p�

MF = 0.2727 . . .) with Fig. 7 of Ref. [16] (when
the model shows continuous phase transition) shows good
agreement of Eq. (8) with numerical predictions based on the
MFA and with results of MC simulations. The coefficients in
the expansion of the effective potential (5) are

C2(p, q) = −1 − p

22q
(2q − 1) − p,

C4(p, q) = −1 − p

22q+1

[(
2q

3

)
−

(
2q

2

)]
, (9)

C6(p, q) = −1

6

1 − p

22q−1

[(
2q

5

)
−

(
2q

4

)]
. (10)

As expected, C2(p�
MF , q) = 0 for any q, C4(p�

MF , q) > 0 for
q < 5/2 and C4(p�

MF , q) < 0 for q > 5/2, thus for q = 2 the
second-order FM transition occurs at p = pc,MF = p�

MF , and
the transition should be first-order for q � 3. Since the size of
the q-lobby is an integer number there is no tricritical point
separating the first- and second-order FM transition curves on
the (p, q) plane characterized by mutual disappearance of the
C2 and C4 coefficients.

Predictions of the above simple MFA concerning the order
of the FM transition for different q and the existence of the
tricritical point turn out to be qualitatively correct also in
the case of the q-voter model on MNs with layers in the
form of complex networks. Besides, quantitative predictions
of the more advanced homogeneous PA formulated below also
converge to those of the MFA in the limit 〈k(A)〉, 〈k(B)〉 → ∞,
as expected.

B. General formulation of the pair approximation

Theoretical description of the q-voter model with indepen-
dence and q-neighbor Ising model on MNs with layers in the
form of complete graphs based on the MFA yields quantitative
agreement with results of MC simulations concerning both
the order of the transition from the PM to the FM phase and
the position of the critical point [16,25]. However, when the
above-mentioned models are studied on monoplex networks
a more accurate PA is necessary in order to take into account
the effect of the network topology (e.g., the degree distribution
and the mean degree of nodes) on the properties of the phase
transition [17,21,26]. Hence, in this paper PA is used for the-
oretical investigation of the q-voter model with independence
on MNs with two layers in the form of complex networks.
In order to make our approach more widely applicable in this
subsection a general case of a two-state spin model with up-
down symmetry is considered, and application of the results
to the q-voter model with LOCAL&AND or GLOBAL&AND
spin update rules is presented in Sec. III B. Henceforth in this
subsection p̂ denotes a parameter which controls the degree of
stochasticity in the general model (in the case of the q-voter
model this is the parameter p characterizing the degree of
independence of agents).

In the framework of the PA macroscopic quantities charac-
terizing the model are concentrations of spins with orientation
up or down located in nodes with degrees k(A), k(B), denoted
as ck(A),k(B), j = P( j|k(A), k(B) ), j ∈ {↑,↓} (hence, ck(A),k(B),↓ =
1 − ck(A),k(B),↑), as well as concentrations (within separate lay-
ers of the MN) of active bonds connecting nodes occupied
by spins with opposite orientations. In the heterogeneous PA
it should be taken into account that the latter concentrations
depend on the degrees of the connected nodes [11,27,28]. As
mentioned in Sec. I, in this paper only homogeneous PA is
considered in which only average concentrations of active
bonds b(A), b(B) within the layers G(A), G(B) normalized to
the total numbers of edges N〈k(A)〉/2, N〈k(B)〉/2, respectively,
independent of the degrees of connected nodes, are assumed
as macroscopic quantities. Due to this assumption possible
effect of heterogeneity of the layers on the properties of
the phase transitions observed in the model is neglected to
large extent, which can be particularly strong in the case of
layers in the form of SF networks with 2 < λ � 3. However,
for the layers in the form of weakly heterogeneous RRGs,
ERGs and SF networks with λ > 3 the homogeneous PA
is expected to yield quantitatively correct results. Moreover,
in the homogeneous PA the number of equations for the
significant macroscopic quantities is radically reduced, which
in the case of the q-voter model with independence enables
one to predict, partly analytically, the location of the critical
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point and the stability of the PM and FM phases, similarly as
in the MFA.

In the framework of the homogeneous PA the probabilities
that a randomly selected spin with orientation j ∈ {↑,↓}
has within the layer G(A) (G(B)) a neighbor with opposite
orientation are independent of the degrees of nodes and are
denoted by θ

(A)
j (θ (B)

j ). These probabilities play a crucial
role in the formulation of the dynamical equations of the PA
and can be expressed by the above-mentioned macroscopic
concentrations by generalizing reasoning for monoplex
networks [20] in the following way. In the case of layers
with full overlap of nodes the number of attachments of
active bonds to nodes with spins with a given orientation
j, independently of their degrees, within a given layer, say,
G(A), is N〈k(A)〉b(A)/2 and the number of attachments of all
bonds to such nodes is

∑
k(A),k(B) NP(k(A), k(B) )k(A)ck(A),k(B), j .

Introducing the “weighted” or “link” layer-dependent
concentration of nodes with spins up C(A)

↑ =∑
k(A),k(B) P(k(A), k(B) )k(A)ck(A),k(B),↑/〈k(A)〉, taking into account

that the respective concentration of nodes with spin down
is C(A)

↓ = 1 − C(A)
↑ , and repeating the above reasoning for

the layer G(B) with the weighted concentration of nodes
with spins up C(B)

↑ the conditional probabilities θ
(A)
j , θ

(B)
j ,

j ∈ {↑,↓}, are finally obtained as

θ
(A)
↑ = b(A)

2C(A)
↑

, θ
(A)
↓ = b(A)

2(1 − C(A)
↑ )

,

θ
(B)
↑ = b(B)

2C(B)
↑

, θ
(B)
↓ = b(B)

2(1 − C(B)
↑ )

. (11)

In the case of models on MNs the dynamical equations
of the homogeneous PA comprise equations for the con-
centrations of nodes with spins up ck(A),k(B),↑ as well as for
concentrations of active links within the layers b(A), b(B). The
former equations can be written in a general form as rate
equations,

∂ck(A),k(B),↑
∂t

= γ +(ck(A),k(B),↑, θ
(A)
↓ , θ

(B)
↓ , p̂)

− γ −(ck(A),k(B),↑, θ
(A)
↑ , θ

(B)
↑ , p̂), (12)

where γ + (γ −) are rates of spin flips in the direction up
(down) averaged over all nodes with degrees k(A), k(B). In
many cases, including the q-voter model on MNs considered
in this paper, the latter rates can be decomposed into products

γ + = (1 − ck(A),k(B),↑)F+(θ (A)
↓ , θ

(B)
↓ , p̂| ↓),

γ − = ck(A),k(B),↑F−(θ (A)
↑ , θ

(B)
↑ , p̂| ↑). (13)

In Eq. (13) the concentrations of nodes with spin up (down)
account for the fact that in order to increase (decrease) the
concentration of nodes with spins up during a simulation
first a spin with orientation down (up) must be selected and
its flip should be attempted. The functions F+ (F−) are
rates of spin flips provided that a spin with orientation down
(up) was selected, which depend on the model under study.
Note that due to the homogeneous PA, and the particular
model under study, the latter functions do not depend on the
degrees k(A), k(B). Then, multiplying both sides of Eq. (12) by
P(k(A), k(B) )k(A)/〈k(A)〉 and summing over k(A) it is possible to

obtain a dynamical equation for the weighted concentration
C(A)

↑ (an equation for C(B)
↑ is derived analogously),

∂C(A)
↑

∂t
= (1 − C(A)

↑ )F+(θ (A)
↓ , θ

(B)
↓ , p̂| ↓)

−C(A)
↑ F−(θ (A)

↑ , θ
(B)
↑ , p̂| ↑). (14)

Moreover, it can be easily shown from Eqs. (12) and (13)
that for any different degrees ck(A),k(B),↑ − ck′(A),k′(B),↑ → 0 with
increasing time, thus the systems of equations (12) and (14)
both have a stable stationary solution ck(A),k(B),↑ = c for any
degrees k(A), k(B) as well as C(A)

↑ = C(B)
↑ = c, where c is an

usual (unweighted) concentration of nodes with spins up in
the MN; since the nodes of layers of the MN fully overlap a
single quantity c yields the concentrations of nodes with spins
up within each layer, as expected. As mentioned in Sec. I in
this paper we are interested only in the stationary solutions
(fixed points) of the system of equations for the macroscopic
quantities, characterizing different thermodynamic phases in
the model. Hence, in the adiabatic limit for long times the
concentrations ck(A),k(B),↑ can be replaced with c [20] and
Eq. (14) can be written in the form

∂c

∂t
= (1 − c)F+(θ (A)

↓ , θ
(B)
↓ , p̂| ↓)

− cF−(θ (A)
↓ , θ

(B)
↓ , p̂| ↑). (15)

In the same approximation the conditional probabilities in
Eq. (11) become

θ
(A)
↑ = b(A)

2c
, θ

(A)
↓ = b(A)

2(1 − c)
,

θ
(B)
↑ = b(B)

2c
, θ

(B)
↓ = b(B)

2(1 − c)
, (16)

and resemble those appearing in the PA for the q-voter model
on monoplex networks [17].

The dynamical equations for the concentrations of active
links can be obtained by observing that each flip of a spin
located in the node with degrees k(A), k(B) causes changes in
b(A) and b(B) by

�b(A) (i(A)|k(A) ) = 2

N〈k(A)〉 (k(A) − 2i(A) ),

�b(B) (i(B)|k(B) ) = 2

N〈k(B)〉 (k(B) − 2i(B) ), (17)

where i(A) (i(B)) is the number of active bonds attached to
this node within the layer G(A) (G(B)), 0 � i(A) � k(A), 0 �
i(B) � k(B). The spin flip rate f (i(A), i(B), p̂|k(A), k(B) ) is also
a function of the concentrations of active links within layers,
and its form characterizes the particular model. Denoting by
P( j, i(A), i(B)|k(A), k(B) ) conditional probability that the spin
with orientation j ∈ {↑,↓} has i(A), i(B) neighboring spins
with opposite orientation within the layers G(A), G(B), respec-
tively, provided that it is located in the node with degrees
k(A), k(B), it is easily obtained that the average changes of
the concentrations b(A), b(B) at each elementary time step
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are

�b(A) =
∑

j∈{↑,↓}

∑
k(A),k(B)

P(k(A), k(B) )

×
k(A)∑

i(A)=0

k(B)∑
i(B)=0

P( j, i(A), i(B)|k(A), k(B) )

× f (i(A), i(B), p̂|k(A), k(B) )�b(A) (i(A)|k(A) ), (18)

and �b(B) which is evaluated as in Eq. (18) with
�b(A) (i(A)|k(A) ) replaced by �b(B) (i(B)|k(B) ). In the first approx-
imation it can be assumed that orientations of the above-
mentioned neighboring spins are independent. In this approx-
imation the possibility is neglected that a pair of neighboring
spins can be also connected by an edge in one or both layers
G(A), G(B) and thus interact directly. Moreover, the possibility
is neglected that a neighboring spin in the layer G(A) is
also a neighboring spin in the layer G(B) if the respective
edges within these two layers overlap and form a multiple
connection within the MN (Sec. II B). As a result it can
be approximated that the numbers of active bonds i(A), i(B)

attached to the node with degrees k(A), k(B) within the layers
G(A), G(B) result from independent binomial distributions with
parameters given by Eq. (16), thus

P( j, i(A), i(B)|k(A), k(B) )

= P( j|k(A), k(B) )P(i(A), i(B)|k(A), k(B), j)

= ck(A),k(B), jBk(A),i(A)

(
θ

(A)
j

)
Bk(B),i(B)

(
θ

(B)
j

)
, (19)

where Bk,i(θ ) = (k
i )θ

i(1 − θ )k−i denotes the binomial factor.
Again approximating ck(A),k(B),↑ ≈ c, combining Eqs. (18) and
(19), taking into account that an elementary time step is �t =
1/N and going to the thermodynamic limit N → ∞ yields the
equation for the concentration b(A),

∂b(A)

∂t
= 2

〈k(A)〉
∑

j∈{↑,↓}
c j

∑
k(A),k(B)

P(k(A), k(B) )

×
k(A)∑

i(A)=0

k(B)∑
i(B)=0

Bk(A),i(A)

(
θ

(A)
j

)
Bk(B),i(B)

(
θ

(B)
j

)

× f (i(A), i(B), p̂|k(A), k(B) )(k(A) − 2i(A) ), (20)

and a complementary equation for the concentration b(B)

which can be obtained from Eq. (20) by replacing 〈k(A)〉 by
〈k(B)〉 and k(A) − 2i(A) by k(B) − 2i(B).

As mentioned above, homogeneous PA under certain quite
general assumptions leads to a radical decrease of the num-
ber of dynamical equations for the significant macroscopic
quantities; in the case of models on MNs with full overlap
of nodes there are only three such quantities, i.e., the con-
centration c of nodes with spins up in the MN and con-
centrations b(A), b(B) of active links within the consecutive
layers G(A), G(B). Further reduction is possible under cer-
tain assumptions concerning the degree distributions of the
layers.

A final form of the system of equations (20) depends on
the joint degree distribution P(k(A), k(B) ) and the form of
the spin flip rate. A particularly simple situation occurs if

the layers of the MN are independently generated networks
with degree distributions P(k(A) ), P(k(B) ) which yields the
joint degree distribution P(k(A), k(B) ) = P(k(A) )P(k(B) ), and
if the model obeys the LOCAL&AND spin update rule so
that the spin flip rate is a product of rates for the model
on two monoplex networks corresponding to the two layers,
f (i(A), i(B), p̂|k(A), k(B) ) = f (i(A), p̂|k(A) ) f (i(B), p̂|k(B) ). Under
these two assumptions the summations over k(A), k(B) as well
as over i(A), i(B) in Eq. (20) can be performed separately, which
yields

∂b(A)

∂t
= 2

〈k(A)〉
∑

j∈{↑,↓}
c j

∑
k(A)

P(k(A) )

×
k(A)∑

i(A)=0

Bk(A),i(A)

(
θ

(A)
j

)
f (i(A), p̂|k(A) )(k(A) − 2i(A) )

×
∑
k(B)

P(k(B) )
k(B)∑

i(B)=0

Bk(B),i(B)

(
θ

(B)
j

)
f (i(B), p̂|k(B) ),

(21)

and a complementary equation for b(B) which can be obtained
from Eq. (21) by exchanging the superscripts A, B.

C. Application to the case of the q-voter model with
independence on multiplex networks

In this subsection general equations of Sec. III A for
the concentrations of spins with orientation up and of the
active bonds are written explicitly for the q-voter model with
independence on MNs with two layers.

Let us start with the model with the LOCAL&AND spin
update rule. For the q-voter model with independence on a
monoplex network corresponding to the layer G(A) of the MN
the spin flip rate is

f (i(A), p|k(A) ) = (1 − p)

∏q
j=1(i(A) − j + 1)∏q
j=1(k(A) − j + 1)

+ p

2

= (1 − p)
i(A)!(k(A) − q)!

k(A)!(i(A) − q)!
+ p

2
. (22)

The formula for f (i(B), p̂|k(B) ) can be obtained from Eq. (22)
by changing the superscript A into B. The averaged rates γ +,
γ − in Eq. (12) for nodes with given degrees k(A), k(B) can
be obtained as averages of the spin flip rate, Eq. (22), over
the binomial distributions of the numbers of active bonds
attached to such nodes within the layers G(A) and G(B). Since∑k(A)

i(A)=0 Bk(A),i(A) (θ (A)
j ) i(A)!(k(A)−q)!

k(A)!(i(A)−q)! = θ
q
j , etc. [17], the rates as-

sume the form as in Eq. (13),

γ +(ck(A),k(B),↑, θ
(A)
↓ , θ

(B)
↓ , p)

= (1 − ck(A),k(B),↑)
[
(1 − p)θ (A)q

↓ + p

2

][
(1 − p)θ (B)q

↓ + p

2

]
,

γ −(ck(A),k(B),↑, θ
(A)
↑ , θ

(B)
↑ , p)

= ck(A),k(B),↑
[
(1 − p)θ (A)q

↑ + p

2

][
(1 − p)θ (B)q

↑ + p

2

]
. (23)

Substituting Eq. (23) in Eq. (12) and using Eq. (15) as
well as substituting Eq. (22) in Eq. (21) and performing
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summations over k(A), k(B) as in Ref. [17] yields the following system of equations for the macroscopic quantities c, b(A), b(B)

with γ ± given by Eq. (23) with ck(A),k(B),↑ replaced by c,
∂c

∂t
= γ +(c, θ (A)

↓ , θ
(B)
↓ , p) − γ −(c, θ (A)

↑ , θ
(B)
↑ , p),

∂b(A)

∂t
= 2

〈k(A)〉
∑

j∈{↑,↓}
c j

{
(1 − p)θ (A)q

j

[〈k(A)〉 − 2q − 2
(〈k(A)〉 − q

)
θ

(A)
j

] + p

2
〈k(A)〉(1 − 2θ

(A)
j

)}[
(1 − p)θ (B)q

j + p

2

]
, (24)

and a complementary equation for b(B) obtained from Eq. (24) by exchanging the superscripts A and B.
Further simplification of the above system of equations can be achieved if the two layers are independently generated networks

with identical degree distributions P(k(A) ) = P(k(B) ) and mean degrees of nodes 〈k(A)〉 = 〈k(B)〉 = 〈k〉. Due to the symmetry of
Eq. (24) and the complementary equation for b(B) a solution exists with equal active bond concentrations within both layers,
b(A) = b(B) = b (and thus with θ

(A)
j = θ

(B)
j = θ j , j ∈ {↑,↓}). Then the two rate equations for the active bond concentrations can

be replaced with a single equation for b. Hence, in this case the model on a MN is described by only two macroscopic quantities
c, b obeying the equations

∂c

∂t
= (1 − c)

[
(1 − p)θq

↓ + p

2

]2
− c

[
(1 − p)θq

↑ + p

2

]2
,

∂b

∂t
= 2

〈k〉
∑

j∈{↑,↓}
c j

{
(1 − p)θq

j [〈k〉 − 2q − 2(〈k〉 − q)θ j] + p

2
〈k〉(1 − 2θ j )

}[
(1 − p)θq

j + p

2

]
. (25)

In particular, for p = 0 the above system of equations reduces to
∂c

∂t
= (1 − c)θ2q

↓ − cθ2q
↑ ,

∂b

∂t
= 2

〈k〉
∑

j∈{↑,↓}
c jθ

2q
j [〈k〉 − 2q − 2(〈k〉 − q)θ j]. (26)

It can be easily verified that in the framework of the PA the above q-voter model with p = 0 is equivalent to the 2q-voter model
on an aggregate monoplex network with mean degree 2〈k〉 being a superposition of the two layers. However, this is not the case
for 0 < p � 1.

In the case of the GLOBAL&AND spin update rule the respective spin flip rate cannot be written as a product of the rates
evaluated separately for each layer. For the model on MNs with two layers it takes a form

f (i(A), i(B), p̂|k(A), k(B) ) = (1 − p)

∏q
j=1(i(A) − j + 1)∏q
j=1(k(A) − j + 1)

∏q
j′=1(i(B) − j′ + 1)∏q
j′=1(k(B) − j′ + 1)

+ p

2

= (1 − p)
i(A)!(k(A) − q)!

k(A)!(i(A) − q)!

i(B)!(k(B) − q)!

k(B)!(i(B) − q)!
+ p

2
. (27)

The rates γ +, γ − in Eq. (13) are

γ +(ck(A),k(B),↑, θ
(A)
↓ , θ

(B)
↓ , p) = (1 − ck(A),k(B),↑)

[
(1 − p)θ (A)q

↓ θ
(B)q
↓ + p

2

]
,

γ −(ck(A),k(B),↑, θ
(A)
↑ , θ

(B)
↑ , p) = ck(A),k(B),↑

[
(1 − p)θ (A)q

↑ θ
(B)q
↑ + p

2

]
. (28)

Assuming again that layers of the MN are independently generated so that P(k(A), k(B) ) = P(k(A) )P(k(B) ), substituting Eq. (28)
in Eq. (12) and using Eq. (15) as well as substituting Eq. (27) in Eq. (20) and in the latter case performing summations over
k(A), k(B) as in Ref. [17] yields the following system of equations for the macroscopic quantities c, b(A), b(B), with γ ± given by
Eq. (28) with ck(A),k(B),↑ replaced by c,

∂c

∂t
= γ +(c, θ (A)

↓ , θ
(B)
↓ , p) − γ −(c, θ (A)

↑ , θ
(B)
↑ , p),

∂b(A)

∂t
= 2

〈k(A)〉
∑

j∈{↑,↓}
c j

{
(1 − p)θ (A)q

j θ
(B)q
j

[〈k(A)〉 − 2q − 2(〈k(A)〉 − q)θ (A)
j

] + p

2
〈k(A)〉(1 − 2θ

(A)
j

)}
, (29)

and a complementary equation for b(B) obtained from Eq. (29) by exchanging the superscripts A and B.
In the case of independently generated layers with identical degree distributions P(k(A) ) = P(k(B) ) and 〈k(A)〉 = 〈k(B)〉 = 〈k〉

the solution with b(A) = b(B) = b exists which obeys a system of equations

∂c

∂t
= (1 − c)

[
(1 − p)θ2q

↓ + p

2

]
− c

[
(1 − p)θ2q

↑ + p

2

]
,

∂b

∂t
= 2

〈k〉
∑

j∈{↑,↓}
c j

{
(1 − p)θ2q

j [〈k〉 − 2q − 2(〈k〉 − q)θ j] + p

2
〈k〉(1 − 2θ j )

}
. (30)
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It can be easily verified that in the framework of the PA the
above q-voter model with independence in a whole range
of p, 0 � p � 1, is equivalent to the 2q-voter model with
independence on an aggregate monoplex network with mean
degree 2〈k〉 being a superposition of the two layers of the MN.

It should be emphasized that under two main assumptions
consisting in the use of homogeneous PA and constraining
attention only to stationary thermodynamic phases (fixed
points) the systems of equations for the macroscopic concen-
trations c and b, Eqs. (25) and (30) are obtained in which the
only dependence on the degree distribution within layers of
the MN is via the mean degree of nodes 〈k〉. As a result,
in theoretical description dependence is lost of such basic
quantities as the order of the transition and the location of
critical point or points on the details of the degree distributions
within layers P((k(A) ), P(k(B) ), in particular on their hetero-
geneity. This leads to substantial discrepancies between the
predictions of the PA and results of MC simulations in the case
of the q-voter model on MNs with strongly heterogeneous
layers. Nevertheless, the homogeneous PA in principle takes
into account the degree heterogeneity of nodes; cf. Eqs. (12)
and (20). Thus, when going beyond the adiabatic limit and dis-
cussing, e.g., fluctuations of the macroscopic quantities within
the homogeneous PA, the obtained results can depend on the
heterogeneity of the degree distributions [20,21]; however,
such investigation is beyond the scope of this paper.

IV. RESULTS AND DISCUSSION

A. Methods of analysis

In this section results of MC simulations of the mentioned
q-voter models with independence on MNs with two layers
in the form of complex networks are presented and compared
with predictions of the analytic approaches based on the MFA
and PA. Both layers have identical degree distributions P(k)
and mean degrees 〈k〉. In particular, layers in the form of RRG,
ERG, and SF networks with various power-law exponents λ,
covering both homo- and heterogeneous networks are consid-
ered. The order parameter for the model is the magnetization
m related to the concentration c of nodes with spins with ori-
entation up by c = (1 + m)/2. Assumption that the q-lobbies
are chosen without repetition imposes certain constraints on
the parameters of the networks forming the layers of the MNs
on which the model can be studied. In the case of RRGs the
condition k0 = 〈k〉 � q is sufficient to fulfill this assumption.
In the case of SF networks the sufficient condition is kmin � q
which imposes a constraint on the minimum value of the mean
degree of layers, 〈k〉 � (λ − 1)q/(λ − 2). In the case of ERGs
nodes with degrees k(A) < q or k(B) < q are always present
in the MN. In order not to distort the degree distribution by
excluding such nodes from MC simulations it is assumed that
in this case the whole neighborhood within the respective
layer forms the q-lobby. In order to minimize the effect of
such nodes on the numerical results only layers in the form of
ERGs with 〈k〉 
 q are considered.

In general, numerical evolution of the models under con-
sideration revealed existence of two phases: the PM phase
with m = 0 and the FM phase with m �= 0 with continuous
or discontinuous transition from the former to the latter with
decreasing parameter p. The overall scenario of this transition

for the models on all kinds of investigated MNs with a broad
range of mean degrees of nodes, with both LOCAL&AND
and GLOBAL&AND spin update rules is the same, only
details such as the critical values of the control parameter p
differ.

For small values of q, i.e., for q = 2, 3 in the case with
LOCAL&AND spin update rule and for q = 2 in the case
with GLOBAL&AND spin update rule the transition from
FM to PM phase with decreasing p is continuous. In order
to determine the possible universality class of this transition
in Sec. IV B results of MC simulations were performed of the
models on MNs with given topology of layers and different
numbers of nodes N and with PM initial conditions with
m = 0. For a range of values of p in the vicinity of the
critical point time series of the instantaneous magnetization
m̃ = N−1 ∑N

i=1 si were collected after initial transient. Next,
the magnetization m, susceptibility χ , and the fourth-order
Binder cumulant U4 were evaluated as functions of p,

m(p) = [〈|m̃|〉t ]av, (31)

χ (p) = N
[(〈m̃2〉t − 〈|m̃|〉2

t

)]
av

, (32)

U4(p) = 1

2

[
3 − 〈m̃4〉t

〈m̃2〉2
t

]
av

, (33)

where 〈·〉t denotes time average for a given realization of
the MN network and [·]av denotes averaging over different
realizations of the MN network with given N and degree
distribution P(k). The above quantities are expected to obey
finite-size scaling (FSS) relations analogous to those valid
for equilibrium systems on complex heterogeneous networks
[50],

m = N−β/ν fm[N1/ν (p − pc)], (34)

χ = Nγ /ν fχ [N1/ν (p − pc)], (35)

pc − p̃(N ) ∝ N−1/ν, (36)

where p̃(N ) denotes the value of p for which the susceptibility
χ of the model on a network with N nodes has a maximum
value.

The critical value pc for the FM transition is obtained from
the intersection point of the Binder cumulants for different
sizes N of the MN [51]. Next, from Eqs. (34) and (35)
the exponents β/ν and γ /ν, respectively, are determined.
Furthermore, Eq. (36) is used to calculate the exponent 1/ν; as
a result, the critical exponents β and γ are finally evaluated.
Eventually, it is verified if the obtained exponents fulfill the
hyperscaling relation,

2
β

ν
+ γ

ν
= Deff , (37)

where the effective dimension Deff = 1 is expected in the
case of systems on MNs with layers in the form of com-
plex networks which do not have any particular spatial
dimension [50].

For q > 4 in the case of the LOCAL&AND spin update
rule and for q � 3 in the case of the GLOBAL&AND spin
update rule the FM transition in the q-voter model on different
MNs becomes discontinuous, with hysteresis loop which size
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FIG. 1. Results of MC simulations of the q-voter model with independence with q = 4 and LOCAL&AND spin update rule on a MN
with SF layers with γ = 2.5 and kmin = 10. (a) Binder cumulants U4 vs p for N =5 × 102 (+), 103, 2 × 103, 5 × 103, 104, 2 × 104 (×),
(b) magnetization m and (c) susceptibility χ rescaled according to Eq. (34) and Eq. (35), respectively, with critical exponents from Table I.

depends on the topology of the layers, particularly on 〈k〉. In
order to determine stability regions of the PM and FM phases
and the width of the possible hysteresis loop simulations for
each value of p are run with two different sets of initial
conditions: random PM set with m = 0 and uniform FM set
with m = 1. After long enough transient the time-averaged
magnetization is evaluated based on a large number of MC
steps following the transient. From simulations the average
magnetization m and thus concentration c in the resulting
stationary state of the system are obtained, which are later
compared with predictions of the homogeneous PA.

Analysis of the theoretical equations resulting from the
PA presented in Sec. IV C was performed using numerical
methods of solving systems of algebraic equations applied
to Eqs. (25) and (30) in order to find their equilibria and to
determine their stability, as well as a Dormand-Prince order
4/5 Runge-Kutta method to obtain time evolution of the
concentrations c, b. Equilibria of the systems of equations (25)
and (30) are solutions of equations ∂b/∂t = 0, ∂c/∂t = 0.
Different stable equilibria correspond to different thermody-
namic phases of the models under study. In general, numerical
results and predictions of the PA show quantitative or at least
qualitative (e.g., concerning the order of the FM transition)
agreement for the model on MNs with the mean degree of
nodes within layers 〈k〉 large enough, in particular for 〈k〉 

q. Otherwise, for small 〈k〉 comparable with q, numerical and
theoretical results differ substantially. Thus, in Sec. IV C the
two above-mentioned regimes are discussed separately.

B. Finite size scaling and critical exponents

In order to find the possible universality class of the FM
transition for small q the q-voter model on MNs with large
mean degrees 〈k〉 
 q and different degree distributions of
layers was investigated numerically. Exemplary curves m(p),
χ (p), U4(p) for the LOCAL&AND spin update rule are
shown in Fig. 1 and the results are summarized in Table I.
The estimated critical exponents turn out to be similar to
those for the q-voter model on (monoplex) networks with
the corresponding degree distributions [21]. In particular, in
all cases the exponent β is slightly below 1/2 which is the
value following from the MFA in Sec. III.A using the Landau
theory. On the other hand the remaining critical exponents
depend on the topology of connections. For homogeneous

and weakly heterogeneous layers (RRGs, ERGs, SF networks
with λ > 3) the exponents are close to their MF values,
γ = 1, ν = 2. However, for strongly heterogeneous layers
(SF networks with λ < 3) they seem to be nonuniversal and
depend on the degree distribution. In Ref. [21] arguments
were given to determine this dependence in the case of the
q-voter model on SF networks with λ < 3. In particular, it
was shown that the exponent ν fulfils the relation 1/ν =
(1 − b)/2, where b is the scaling exponent for the dependence
of the second moment of the degree distribution on the number
of nodes, 〈k2〉 = ∫ kmax

kmin
P(k)k2 dk ∝ Nb, which in turn can be

estimated taking into account that the maximum degree kmax is
approximately such that probability to find a node with degree
k > kmax is of order 1/N , i.e.,

∫ ∞
kmax

P(k) dk ≈ N−1, and the

degree distribution is normalized as
∫ kmax

kmin
P(k) dk = 1. This

yields kmax ≈ kminN1/(λ−1), 〈k2〉 ∝ N (3−λ)/(λ−1), i.e., b = 3−λ
λ−1

and 1/ν = λ−2
λ−1 . For the q-voter model on a MN with SF layers

with λ = 2.5 from MC simulations ν = 3.59 was obtained
(Table I), which is comparable with the predicted value ν =
3.0 and much above the values ν ≈ 2 obtained in the case
of weakly heterogeneous layers. Finally, in all cases under
study the hyperscaling relation, Eq. (37), is fulfilled with good
accuracy.

C. Comparison of predictions of the homogeneous pair
approximation with numerical simulations

In this section a comparison is performed between the
predictions of the homogeneous PA and results of MC simu-
lations of the q-voter model on MNs with layers formed by
various complex networks. Let us start with the case with
large 〈k〉, so that 〈k〉 
 q. First, results obtained from the

TABLE I. Critical value of the independence parameter pc, criti-
cal exponents β/ν, γ /ν, 1/ν, and effective dimension Deff of the q-
voter model with independence with q = 4 and LOCAL&AND spin
update rule on MNs with layers with different degree distributions.

pc β/ν γ /ν 1/ν Deff

SF λ = 2.5, kmin = 10 0.541 0.129(9) 0.748(5) 0.279(28) 1.006
SF λ = 3.0, kmin = 10 0.535 0.209(3) 0.594(5) 0.453(37) 1.013
RRG k = 10 0.5152 0.251(2) 0.504(1) 0.503(19) 1.006
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homogeneous PA for this case are outlined; their overall form
is the same for both LOCAL&AND and GLOBAL&AND
spin update rules. Depending on the parameters 〈k〉, q two
different kinds of bifurcation diagrams of the systems of
equations (25) and (30) are obtained as the parameter p
is varied, typical of the continuous or discontinuous phase
transition. In both cases at high p the only stable fixed point
is c = 1/2 (m = 0), b � 1/2, corresponding to the PM phase.
In the scenario corresponding to the continuous transition to
the FM phase as p is decreased this point loses stability via
a supercritical pitchfork bifurcation at p = pc and for p < pc

a pair of stable equilibria with c > 1/2 (m > 0), b < 1/2, or
c < 1/2 (m < 0), b < 1/2, exists, corresponding to the FM
phase with positive or negative magnetization, respectively. In
the scenario corresponding to the discontinuous transition as p
is decreased two pairs of stable and unstable equilibria appear
via two saddle-node bifurcations taking place simultaneously
at p = p(2)

c . For p(1)
c < p < p(2)

c the two above-mentioned
stable equilibria, one with c > 1/2 (m > 0), b < 1/2, and the
other with c < 1/2 (m < 0), b < 1/2, corresponding again
to the FM phase with positive or negative magnetization,
respectively, coexist with the stable equilibrium with c = 1/2
(m = 0), b � 1/2, corresponding to the PM phase; the basins
of attraction of the three stable equilibria are separated by
stable manifolds of the two unstable equilibria. Eventually
at p = p(1)

c the fixed point corresponding to the PM phase
loses stability via a subcritical pitchfork bifurcation by col-
liding with the above-mentioned pair of unstable equilibria,
and for p < p(1)

c the only two stable fixed points are those
corresponding to the FM phase. Hence, p(1)

c , p(2)
c correspond

to the lower and upper critical value of p for the first-order
transition, respectively, and for p(1)

c < p < p(2)
c stable PM and

FM phases coexist. It should be noted that the values of pc

for the continuous and p(1)
c for the discontinuous transition to

the FM phase can be obtained analytically by means of linear
stability analysis of the PM fixed point of Eq. (25) or (30) with
c = 1/2 (m = 0) [see the Appendix, Eqs. (A10) and (A12)].

Provided that 〈k〉 
 q, according to the homogeneous
PA the models under consideration exhibit first-order phase
transition to FM phase for q � 5 in the case of LOCAL&AND
spin update rule and for q � 3 for the GLOBAL&AND rule;
otherwise, the transition is second-order. This is illustrated
in Fig. 2(a) and Fig. 3(a), respectively, for the case of the
model on MNs with layers with relatively large mean degree
of nodes 〈k〉. The above-mentioned minimal values of the
size of the q-lobby for the occurrence of the discontinuous
FM transition agree with those in the appropriate models on
MNs with layers in the form of complete graphs [16] which
were analytically confirmed by the MFA (Sec. IIIA). In the
case of LOCAL&AND spin update rule it is difficult to verify
analytically if the PA predicts occurrence of the tricritical
point separating the first- and second-order transition exactly
at q = 4, nevertheless, numerical analysis of the stable fixed
points of Eq. (25) supports this conjecture [Fig. 2(a)]. In
contrast, in the case of the GLOBAL&AND update rule there
is no numerical evidence for the existence of any tricritical
point [Fig. 3(a)], again in agreement with predictions of
the MFA.

Although in the framework of the homogeneous PA the
critical values of the parameter p as well as the location of the

fixed points corresponding to the PM and FM phases depends
only on the mean degree 〈k〉, MC simulations reveal that
the details of the continuous or discontinuous FM transition
depend also on the topology of the layers rather than only on
the first moment of the degree distribution. Comparison of the
theoretical approach with numerical simulations of the model
on MNs with various topologies of the layers, presented in
Figs. 2(b)–2(d) and Figs. 3(b)–3(d), shows very good quanti-
tative agreement between theory and simulations for layers in
the form of homogeneous networks, in particular ERG, RRG
(results not shown on plots due to almost full overlap with
those for ERG) and weakly heterogeneous SF networks with
exponent λ � 3 (i.e., with finite second moment of the degree
distribution). Both the order of the transition and the width
of the possible hysteresis loop are predicted correctly by the
PA. In contrast, numerical results for MNs with layers in the
form of strongly heterogeneous SF networks with exponent
2 < λ < 3 significantly differ from the theoretical predictions,
which is illustrated in in Figs. 2(b)–2(d) and Figs. 3(b)–
3(d) for λ = 2.5. The discrepancies become even bigger for
smaller values of λ (not shown on plots) which manifests
itself with shrinking, or even practically disappearing, hys-
teresis loop. Nevertheless, despite quantitative differences, the
order of the phase transition is predicted correctly by the
homogeneous PA, thus there is qualitative agreement between
theoretical and numerical results.

In the case of MNs with homogeneous or weakly hetero-
geneous layers agreement between numerical and theoretical
results based on the homogeneous PA is very good in a broad
range of the mean degrees of nodes 〈k〉 provided that 〈k〉 
 q.
This is illustrated in Figs. 4(a), 4(c), and 4(e), where location
of the critical point or points in the case of second- and
first-order FM transition, respectively, is shown as a function
of 〈k〉 for the model with LOCAL&AND spin update rule with
different sizes of the q-lobby. The position of the critical point
pc in the case of the second-order transition [Fig. 4(a)] and
of the critical points p(1)

c , p(2)
c in the case of the first-order

transition [Figs. 4(c) and 4(e)] is very well predicted directly
from simulations of Eq. (25). In the case of the critical point pc

for the second-order transition and the lower critical point p(1)
c

for the first-order transition this prediction coincides with the
analytic result of Eq. (A10) in the Appendix. The values of pc

or p(1)
c and p(2)

c as well as the width of the possible hysteresis
loop increase with 〈k〉 and saturate at maximum values for
〈k〉 → ∞, with the topology of the layers approaching that of
a complete graph. This proves that the homogeneous PA cap-
tures all details and provides quantitatively correct description
of the FM transition in the q-voter model with independence
on MNs with homogeneous or weakly heterogeneous layers
with large enough mean degrees of nodes within layers. This
description is significantly improved in comparison with that
based on the MFA which results do not depend even on such
basic feature of the layers as the mean degree of nodes [16]. In
contrast, as mentioned above, in the case of MNs with strongly
heterogeneous layers the homogeneous PA, which does not
assume any particular topology of the network, is insufficient
to describe quantitatively the details of the FM transition in
the q-voter model under study.

As mentioned in Sec. III C in the framework of PA
the q-voter model with independence on MNs with the
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FIG. 2. LOCAL&AND rule on duplex network. (a): Concentration c vs degree of stochasticity parameter p according to the PA for fixed
value of 〈k〉 = 40. Stable fixed points denoted with solid line, unstable fixed points with dashed line (q = 2..9 from right to left). (b)–(d)
Magnetization m vs parameter p; numerical results for the ERG (black dots), SF with λ = 3 (blue circles), and SF with λ = 2.5 (red triangles)
compared with the PA results for different values of q.

GLOBAL&AND spin update rule is equivalent to the 2q-voter
model on an aggregate monoplex network being a superpo-
sition of the two layers. This equivalence has already been
observed in the q-voter model on MNs with layers in the
form of complete graphs [16]. Performed MC simulations of
the q-voter model on duplex networks also confirm that it is
fully equivalent to the q-voter model on appropriate aggregate
monoplex networks, independently of the topology and for
a broad range of the mean degree of nodes in layers (not
shown). Therefore, small differences in the dynamics of these
two models mentioned in Sec. II A do not have visible effect
on the observed phase transitions.

Let us in turn consider the models on MNs with layers
with the mean degree of nodes 〈k〉 small and comparable
with the size of the q-lobby. In this case predictions of
the homogeneous PA and results of MC simulations differ
substantially even for the models on MNs with layers in the
form of homogeneous ERG or RRG. These differences are
illustrated in Fig. 4 for the model with the LOCAL&AND
spin update rule. Again, MC simulations reveal that for q � 4
the model undergoes continuous [Figs. 4(a) and 4(b)] and

for q � 5 discontinuous FM transition [Figs. 4(c)–4(f)]. For
q = 4 and small 〈k〉 the PA correctly predicts the occur-
rence of the continuous FM transition, but the predicted crit-
ical value pc significantly exceeds that obtained numerically
[Figs. 4(a) and 4(b)], in contrast with what is observed for
larger 〈k〉. For q = 5 both the lower and upper critical values
p(1)

c , p(2)
c obtained from the MC simulations decrease fast with

decreasing 〈k〉, and for 〈k〉 < 10 the numerical value of p(1)
c

becomes much lower than that predicted by the PA [Fig. 4(c)].
Nevertheless, for 〈k〉 > 6 the theory correctly predicts that
the transition is first-order, and the numerical value of p(2)

c
agrees with that predicted from the PA [Fig. 4(c)]. However,
for 〈k〉 � 6 the PA incorrectly predicts that the lower and
upper critical values p(1)

c , p(2)
c merge, the transition is second-

order and occurs at higher pc than observed in simulations
[Figs. 4(c) and 4(d)].

Discrepancies between the theory based on the PA and
results of the MC simulations are even more significant for
q = 6 [Figs. 4(e) and 4(f)]. For example, for 〈k〉 = 7 the
PA predicts that with decreasing p the PM fixed point at
m = 0 loses stability at p = p(1)

c , but in a narrow interval of
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FIG. 3. GLOBA&AND rule on duplex network. (a) Concentration c vs degree of stochasticity p according to the PA for fixed value of
〈k〉 = 40. Stable fixed points denoted with solid line, unstable fixed points with dashed line (q = 2..7 from right to left). (b)–(d) Magnetization
m vs parameter p; numerical results for the ERG (black dots), SF with λ = 3 (blue circles), and SF with λ = 2.5 (red triangles) compared with
the PA results for different values of q.

the parameter p just below p(1)
c another stable fixed point

appears corresponding to a phase with partial FM ordering
characterized by small but nonzero value of the magnetiza-
tion. Only as p is further decreased the latter fixed point loses
stability and a discontinuous transition to the usual FM phase
with m ≈ 1 occurs [Fig. 4(f)]. This complex scenario is not
confirmed by the MC simulations where usual discontinuous
jump of the magnetization is observed with decreasing p,
typical of the first-order FM transition to a highly ordered
phase, at a critical value p(1)

c much lower than that predicted
theoretically [Fig. 4(f)]. In contrast, for increasing p the
theory correctly predicts that the transition from the FM
to the PM phase is discontinuous and the predicted upper
critical value p(2)

c agrees well with that obtained from the
MC simulations [Figs. 4(e) and 4(f)]. For q � 7 and small
〈k〉 such substantial differences between the numerical and
theoretical scenarios for the FM transition in the model un-
der study do not occur. Nevertheless, the examples above
show that the theory based on the homogeneous PA, though
more elaborate than that based on a simple MFA, can also
fail for the q-voter model with independence on MNs with

homogeneous layers with low density of edges (similar ob-
servation was reported for the case of the q-voter model on
monoplex networks [17]).

For completeness, the q-voter model with different sizes of
the q-lobby was also studied on MNs with strongly hetero-
geneous layers and the smallest possible value kmin = q + 1
to assure that the agents forming the q-lobby can be chosen
without repetitions for all nodes. The dependence of the
magnetization m on the parameter p is shown in Fig. 5 and
compared with predictions of the homogeneous PA for the
model with the LOCAL&AND spin update rule and small val-
ues of q for which second- or first-order FM transition occurs.
In all cases differences between the obtained numerical results
and those for the model with the same q and large 〈k〉 are only
quantitative (cf. Fig. 2), e.g., the width of the hysteresis loop
is smaller or even unnoticeable as in the q = 5, kmin = 6 case
[Fig. 5(b)] but the order of the transition is not changed. Also
predictions of the homogeneous PA, though quantitatively
incorrect, do not show any dramatic qualitative discrepancies
with the results of MC simulations. This is probably due to the
fact that even for the smallest possible values of kmin the mean
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FIG. 4. Comparison between the lower (p(1)
c ) and upper (p(2)

c ) critical values of parameter p for the LOCAL&AND rule model with
(a) q = 4, (c) q = 5, (e) q = 6, obtained from MC simulations of the model on RRGs (symbols) and from PA (lines). Magnetization m vs
parameter p; numerical results for the RRG (connected black dots) compared with the PA results for (b) q = 4, 〈k〉 = 5, (d) q = 5, 〈k〉 = 6,
(f) q = 6, 〈k〉 = 7.

degrees of nodes within layers 〈k〉 remain relatively large, e.g.,
for λ = 2.5 〈k〉 � 3q is expected (Sec. IV A) which improves
the accuracy of the theoretical analysis.

V. SUMMARY AND CONCLUSIONS

In this paper the q-voter model with independence, which
is a sort of model for the opinion formation, was studied
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FIG. 5. Magnetization m vs parameter p for the q-voter model with the LOCAL&AND spin update rule on a MN with SF layers; numerical
results for λ = 2.5 (connected black dots) compared with predictions of the homogeneous PA for (a) q = 4, kmin = 5 (b) q = 5, kmin = 6
(c) q = 6, kmin = 7.

on MNs with two layers in the form of complex networks
with identical degree distributions and full overlap of nodes,
corresponding to different levels of social influence. The
presence of the two layers was taken into account by assuming
the LOCAL&AND or GLOBAL&AND rules for the opinion
update of the agents, which differ by the way in which the
lobby of neighbors influencing the opinion of a given agent is
formed. Both in theoretical investigations based on the MFA
and homogeneous PA as well as in MC simulations FM phase
transition was observed as the parameter p controlling the
level of agents’ independence was changed. This transition
can be first- or second-order, depending on the size of the
q-lobby, and the details of the transition, e.g., location of the
critical points, critical exponents and the width of the possible
hysteresis loop, depend on the topology of the underlying
MN. The homogeneous PA was derived for a more general
case of a two-state spin model with up-down symmetry on
MNs and applied to the above-mentioned q-voter model.
Good agreement was obtained between predictions of this PA
and results of MC simulations for the model on MNs with
layers with moderate and large mean degrees of nodes 〈k〉,
in particular significantly larger than the size of the q-lobby.
Then theoretical and numerical results show good quantitative
agreement for the model on MNs with layers in the form of
homogeneous ERGs and RRGs and weakly heterogeneous SF
layers. For the model on MNs with strongly heterogeneous
SF layers this agreement is only qualitative, e.g., the order of
the transition is predicted correctly. Theoretical and numerical
results diverge and can differ even qualitatively for mean
degrees of nodes 〈k〉 small and comparable with q, even for
small degree of heterogeneity of the layers forming the MN.
Results obtained in this paper can be easily extended to other
models, e.g., the q-neighbor Ising model, as well as to models
on MNs with more than two layers and layers with different
topologies.

It can be seen that the systems of equations (25) and (30)
for the concentrations c, b obtained in the homogeneous PA
depend only on the mean degree of nodes 〈k〉 within each
layer of the MN rather than on the precise form of the degree
distribution P(k). This is probably the main source of quan-
titative discrepancy between theoretical and numerical results
for the width and location of the hysteresis loop in the case of
the first-order transition to the FM phase in the q-voter model
with independence on MNs with strongly heterogeneous SF
layers with λ < 3. It can be expected that predictions based on
some form of heterogeneous PA will yield better agreement
with results of MC simulations. Such predictions can be
obtained, e.g., by extending the general formulation of the
heterogeneous PA for systems on monoplex networks [27,28]
to the case of MNs, as it was done in Ref. [45] for the majority-
vote model on MNs. It should be mentioned that also the cases
of the q-voter model with independence on MNs with partial
overlap of nodes and with correlations between degrees of
nodes within different layers can be relatively easily studied
in the framework of the above-mentioned extension.

APPENDIX

In this Appendix stability of the PM phase for the q-voter
model with independence on a MN with two layers with
identical degree distributions is investigated. For the LO-
CAL&AND and GLOBAL&AND spin update rules the PM
phase corresponds to the fixed point of the two-dimensional
systems of equations, Eq. (25) and Eq. (30), respectively,
characterized by c = 1 − c = 1/2. By performing linear sta-
bility analysis it is shown that with decreasing p the PM fixed
point loses stability at p = p� (0 < p� < 1); in the case of the
second-order transition to the FM phase p� corresponds to the
critical value pc, while in the case of the first-order transition
it corresponds to the lower critical value p(1)

c .

Let us start with the LOCAL&AND spin update rule and denote the right-hand sides of the system of equations (25) as

A(c, b) = (1 − c)
[
(1 − p)θq

↓ + p

2

]2
− c

[
(1 − p)θq

↑ + p

2

]2

B(c, b) = 2

〈k〉
∑

j∈{↑,↓}
c j

{
(1 − p)θq

j [〈k〉 − 2q − 2(〈k〉 − q)θ j] + p

2
〈k〉(1 − 2θ j )

}[
(1 − p)θq

j + p

2

]
. (A1)
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At fixed points there is A(c, b) = 0, B(c, b) = 0. The (stable
or unstable) PM fixed point exists for a whole range of the
parameter p, i.e., for 0 � p � 1. Since at this point c = 1/2,
from the condition A(c, b) = 0 follows that θ↑ = θ↓ ≡ θ ,
where 0 � θ � 1/2 depends on p, i.e., the position of the PM
fixed point is (c = 1/2, b = θ ). Then, since for 0 < p � 1
there is (1 − p)θq + p

2 > 0, for c = 1/2 from the condition
B(c, b) = 0 follows that

(1 − p)θq[〈k〉 − 2q − 2(〈k〉 − q)θ ] = − p

2
〈k〉(1 − 2θ ).

(A2)
Solution of this nonlinear equation yields the value of θ at the
PM fixed point.

Stability of the PM fixed point can be determined from the
eigenvalues of the Jacobian matrix of the right-hand sides of
Eq. (A1) at the fixed point. For this purpose let us first evaluate

∂θ
q
↓

∂c

∣∣∣∣∣
c= 1

2 ,b=θ

= qθ
q
↓

1 − c

∣∣∣∣∣
c= 1

2 ,b=θ

= 2qθq,

∂θ
q
↓

∂b

∣∣∣∣∣
c= 1

2 ,b=θ

= qθ
q−1
↓

2(1 − c)

∣∣∣∣∣
c= 1

2 ,b=θ

= qθq−1,

∂θ
q
↑

∂c

∣∣∣∣∣
c= 1

2 ,b=θ

= −qθ
q
↑

c

∣∣∣∣∣
c= 1

2 ,b=θ

= −2qθq,

∂θ
q
↑

∂b

∣∣∣∣∣
c= 1

2 ,b=θ

= qθ
q−1
↑

2c

∣∣∣∣∣
c= 1

2 ,b=θ

= qθq−1. (A3)

Using the above formulas it is easily obtained that

∂A

∂b

∣∣∣∣
c= 1

2 ,b=θ

= 0. (A4)

Thus, the Jacobian at the PM fixed point has an overall form∣∣∣∣∣
∂A
∂c

∣∣
c= 1

2 ,b=θ
0

∂B
∂c

∣∣
c= 1

2 ,b=θ

∂B
∂b

∣∣
c= 1

2 ,b=θ

∣∣∣∣∣, (A5)

and its eigenvalues are λ1 = ∂A
∂c |

c= 1
2 ,b=θ

, λ2 = ∂B
∂b |

c= 1
2 ,b=θ

. The

PM fixed point loses stability as with decreasing p one of
the eigenvalues changes sign from negative to positive. After
some transformations it is obtained that

λ1 =
[
(1 − p)θq + p

2

]
[2(1 − p)(2q − 1)θq − p], (A6)

and, taking into account Eq. (A2),

λ2 = 2

〈k〉
[
(1 − p)θq + p

2

]
{(1 − p)qθq−1[〈k〉 − 2q − 2(〈k〉 − q)θ ] − 2(1 − p)θq(〈k〉 − q) − p〈k〉}. (A7)

Concerning λ2, multiplying both sides of Eq. (A2) by q and dividing by θ and then inserting the result in Eq. (A7) it is finally
obtained that

λ2 = − 2

〈k〉
[
(1 − p)θq + p

2

][ pq〈k〉
θ

(1 − 2θ ) + 2(1 − p)θq(〈k〉 − q) + p〈k〉
]
. (A8)

Thus, for 0 < p < 1, 0 � θ � 1/2, q � 〈k〉 there is λ2 < 0.
Hence, the PM fixed point with decreasing p loses stability
when λ1 crosses zero. Since (1 − p)θq + p

2 > 0 this happens
at p = p� such that

2(1 − p�)(2q − 1)θ�q − p� = 0, (A9)

i.e., for

p� = 2(2q − 1)θ�q

1 + 2(2q − 1)θ�q
, (A10)

where θ� denotes the value of θ at the critical point. Substitut-
ing p = p� in Eq. (A2) yields finally

θ� = 〈k〉 − 1

2〈k〉 − 1
. (A11)

For 〈k〉 → ∞, i.e, for the case of layers in the form of fully
connected graphs, there is θ� → 1/2 and p� = 2q−1

2q−1+2q−1 , in
agreement with the MFA result, Eq. (3).

In the case of the GLOBAL&AND spin update rule the
stability analysis of the PM fixed point of the system of
equations (30) can be performed in a similar way, which yields
at the critical point

p� = 2(2q − 1)θ�2q

1 + 2(2q − 1)θ�2q
, (A12)

θ� = 〈k〉 − 1

2〈k〉 − 1
. (A13)

The same result can be obtained by replacing 〈k〉 → 2〈k〉,
q → 2q in Eq. (34) of Ref. [17], which yields the value
of p� for the q-voter model with independence on a mono-
plex network. This is in agreement with the fact that the
system of equations (30) describing the q-voter model with
GLOBAL&AND spin update rule on a MN with two layers
can be obtained from that describing the q-voter model on a
monoplex network by making the above-mentioned replace-
ment (Sec. III B). Again, for 〈k〉 → ∞ there is θ� → 1/2 and
p� = 2q−1

2q−1+22q−1 , in agreement with the MFA result, Eq. (8).
It should be noted that in Ref. [28] was shown that for

any model with up-down symmetry on a (monoplex) RRG
with degree k the PA at the critical point yields θ� = k−2

2(k−1) .
Equations (A11) and (A13) show that this result is valid
also for the q-voter model on MNs with two independently
generated layers in the form of RRGs with identical degree
distributions provided that k is replaced with 2k, and only the
values of p�, Eqs. (A10) and (A12), depend on the details of
the LOCAL&AND and GLOBAL&AND spin update rules. In
the latter case for MNs with layers in the form of complex net-
works in Eqs. (A11) and (A13) k can be eventually replaced
by 〈k〉, but this replacement is valid in the homogeneous PA
only.
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