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Two-level modeling of quarantine
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Continuum models of epidemics do not take into account the underlying microscopic network structure of
social connections. This drawback becomes extreme during quarantine when most people dramatically decrease
their number of social interactions, while others (like cashiers in grocery stores) continue maintaining hundreds
of contacts per day. We formulate a two-level model of quarantine. On a microscopic level, we model a single
neighborhood assuming a star-network structure. On a mesoscopic level, the neighborhoods are placed on a two-
dimensional lattice with nearest-neighbors interactions. The modeling results are compared with the COVID-19
data for several counties in Michigan (USA) and the phase diagram of parameters is identified.
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I. INTRODUCTION

Reaction diffusion dynamics on a lattice is an active topic
of current research [1]. The intrinsic stochasticity significantly
affects various macroscopic phenomena such as front propa-
gation [2] or phase transitions [3] and leads to completely new
effects such as extinction in metapopulation models [4]. One
particularly interesting area of research deals with reaction
diffusion dynamics on networks [5].

The topic of the spread of epidemics on networks has re-
ceived substantial attention in recent years [6]. These network
models eliminate the two main drawbacks [7] of the standard
SIR and SEIR models [8] of the spread of an epidemic.
The first drawback is related to the rate of recovery of an
infected individual. The modeling implies a Poisson process,
which means an exponential distribution of individual disease
duration. This is in contrast to observations showing that the
distribution is peaked around an average disease duration.
The second drawback is the assumption of an equal number
of contacts for each individual, i.e., ignoring the underlying
microscopic structure of the social network [7].

Different individuals have a different average number of
contacts, depending not only on their social behavior, but on
their work. The inhomogeneity in the number of contacts be-
comes especially well pronounced during the time of quaran-
tine, when the majority of people work from home, but some
individuals (like cashiers in a grocery store) still maintain hun-
dreds of contacts per day. Typically, metapopulation models
assume that the local neighborhoods are well mixed; then to
model the entire population, these neighborhoods are placed
on a lattice or form a network. The disease dynamics on such
a network can be investigated by taking into account various
migration patterns of individuals between the neighborhoods
[9]. The present work formulates a basic model of disease
dynamics during the quarantine, testing the other extreme,
where each single neighborhood is far from being well-mixed
and is modeled by a starlike network, while a larger region is
modeled as a lattice of these neighborhoods.

II. THE MODEL

The model consists of two levels. The microscopic model-
ing describes a single neighborhood assuming a star network
[10], a structure where every node (a household) is connected
to the central hub (a grocery store). The neighborhood consists
of a large number of households (denoted by N) not connected
to each other and not interacting with each other (mimicking
the quarantine). A representative from each household visits
the grocery store twice a week and interacts with a cashier.
If the store visitor is ill, the cashier can be infected with
probability β or vice versa: if the cashier is ill, the store
visitor can be infected with probability β (this is the first
important parameter of the model). Different stages of the
disease are considered. Apart from susceptible individuals
(healthy individuals who can catch the disease), there are
exposed individuals who are infected but cannot infect others
(this period lasts approximately 5 days [11]). The next step
in the disease progression is being infected without symp-
toms; it is assumed that this period lasts 3 days and during
this time the infected individual can infect others. Then a
person might develop symptoms, in which case they stay at
home (this period lasts about 15 days). Finally, an infected
individual can recover or die. The overall considered duration
of the disease for a single individual is in agreement with the
literature [12].

The main idea of the star network is the importance of the
central node: the cashier. Once a cashier gets the infection and
shows symptoms, they are replaced by a new cashier. During
the time the cashier is already infected and still working,
they can infect many customers, leading to an outbreak of
the disease in the neighborhood. Monte Carlo simulations
show that, in the majority of cases, the infected customers
eventually infect the new cashier, continuing the outbreak.
Prescribing a certain mortality rate (the second important
parameter of the model), one can compute the average number
of deaths in a single neighborhood as a function of time since
the start of the epidemic.
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FIG. 1. The number of exposed individuals in a single neighbor-
hood as a function of time for β = 0.05. The exponential fit (red
dashed curve) provides the characteristic duration of the outbreak τ .
The inset shows this τ as a function of β for two values of the number
of households in a neighborhood: N = 1000 (the dashed line with
circles) and N = 700 (the dotted line with x symbols).

The duration of the outbreak in a single neighborhood
(denoted by τ ) increases with β, but it is substantially shorter
than the duration of the epidemic in a large county, containing
hundreds of neighborhoods. To compute τ , we performed
10 000 simulations of a single neighborhood, in which we
produced an outbreak in a neighborhood by starting with an
infected cashier. Each particular realization has its own num-
ber of infected cashiers, which translates to the duration of the
outbreak: once the new cashier is not infected, the epidemic
dies out in a star network. The chance that a large number of
cashiers are infected one after another is exponentially small,
so averaging over many simulations gives an exponential
decrease in the number of exposed individuals in a neighbor-
hood. This time dependence of the average number of exposed
individuals was measured in simulations, and we performed
an exponential fit in the form A exp(−t/τ ). Figure 1 shows
these measurements and the resulting characteristic duration
of the outbreak τ as a function of β for two values of N (1000
households and 700 households in a neighborhood).

As expected, the outbreak in a single neighborhood lasts
longer for higher values of β and for larger number of
households N : for the higher β, it is easier to infect a new
cashier, prolonging the outbreak. Notice that the characteristic
duration of the outbreak in a neighborhood, τ , is not the same
as the individual illness time. This duration time τ (or the rate
of recovery of a neighborhood, 1/τ ) is used in the next level
of modeling: many neighborhoods on a lattice (see Fig. 2 for
the schematic representation of the system).

When on a lattice, each neighborhood can be in one of
three states: susceptible, infected, or recovered. Initially, all of
the neighborhoods are susceptible, but since some households
are already infected, there is a certain initial rate of “self-
infection” of a susceptible neighborhood. The neighboring
lattice sites are weakly interacting. There are no interactions
between the usual people (the leaf nodes) from different
neighborhoods. Instead, we assume that a representative from

FIG. 2. Schematic representation of the system: weakly coupled
SIR-like neighborhoods on a lattice. Each neighborhood has a star-
network structure.

each household from one neighborhood visits grocery stores
in the neighboring neighborhood, but these visits (once per
month to each of the four neighboring grocery stores) are
significantly less frequent than the visits to their own grocery
store (twice per week). Still, a susceptible neighborhood can
catch the infection from a neighboring infected neighborhood.
All of the relevant rates are measured in the “microscopic”
single neighborhood simulations. Then we performed Monte
Carlo simulations of neighborhoods on a lattice, and measur-
ing the times at which various neighborhoods got infected,
we computed the overall death toll in the county and the
number of cases as a function of time. The consensus in
the community is that the official total number of cases is
substantially underestimated, since only a fraction of infected
people is tested, so instead of relying on the reported number
of cases, we compared our results with the Michigan death
toll data. Figure 3 shows this comparison for Oakland County,
the second largest county in Michigan with a population of
over 1.2 million people. One can see that a perfect agreement
is achieved for two different sets of parameters: low β (less
infectious) with high mortality and high β (more infectious)
with low mortality.

This degeneracy implies that there is a curve on the phase
plane of parameters (β, mortality), such that each point on
this curve describes the current death toll data (as of April
20, 2020) well. We computed this curve not only for Oakland
County but also for two other counties in Michigan: Macomb
County (with total population of above 850 000) and Genesee
County (with total population of above 400 000, see Fig. 4).
We have also checked the effect of the size of neighborhoods.
The total population of Oakland County is known and fixed
in the modeling. Therefore, the size of the neighborhood fully
determines the lattice size. This is exactly what Fig. 4 shows
for Oakland County: smaller neighborhoods on a larger lattice
(solid line, pluses) and larger neighborhoods on a smaller
lattice (dashed line, circles). All the parameters in the figure
fit the data very accurately, so there is a (small) uncertainty
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FIG. 3. Death toll as a function of time in Oakland County,
Michigan. The initial time is March 1, 2020. In each panel, circles
represent the official data [13], and solid curves show the results
of simulations of neighborhoods on a lattice (10 such simulations
are shown in each panel to demonstrate the effect of stochasticity).
The upper panel corresponds to β = 0.04 and a mortality of 1.15%,
while the lower panel corresponds to β = 0.07 and a mortality
of 0.3%. Both panels show an excellent agreement with the data.
Assuming N = 1000 households in a neighborhood with an average
of 3 persons in a household, Oakland County was simulated on a
20 × 20 lattice, a total of 400 neighborhoods.

in determining the mortality even for a fixed value of β; the
uncertainty is related to the fact that there can be smaller and
bigger neighborhoods. The reason for this effect is that, for
the same β, larger neighborhoods have stronger outbreaks.
Therefore, a smaller mortality parameter is required to obtain
the observed death toll.

The main question now is: how one can constrain the pa-
rameter space? Which set of parameters (β, mortality) is more
reasonable? First, one would like to describe these counties
with similar values of β and mortality rates. Therefore, the
top left corner of the phase space is not a good region to try
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Blue circles: Oakland county, N=1000
Black squares: Macomb county, N=1000
Red diamonds: Genesee county, N=1000
Magenta +: Oakland county, N=700

FIG. 4. Phase diagram of parameters for three counties in Michi-
gan. Each point of the curve corresponds to a set of parameters
that perfectly describes the current death toll data for the respective
county. Assuming N = 1000, Oakland County (dashed line, circles)
was simulated on a 20 × 20 lattice, Macomb County (dotted line,
squares) was simulated on a 17 × 17 lattice, and Genesee County
(dotted line, diamonds) was simulated on a 12 × 12 lattice. For
comparison, we also show simulations of Oakland County for N =
700 and 24 × 24 lattice (solid line, pluses).

since the curves move apart. Another reason for not choosing
parameters in the top left region of the diagram is that, for
low contagiousness (low β) and high mortality, the epidemic
is almost over, and unfortunately, we are not there yet. The
low right region of the phase space is not a good candidate
either. For a highly contagious disease (high β), a substantial
fraction of the population is already infected. For example,
simulations show that, for β = 0.07, more than one-third of
the total number of households in Oakland County would
already be infected (as of April 24, 2020). This number is too
high as can be seen from the testing data: less than 20–25% of
tests in Michigan are positive. Since this data is for people
who are tested (people from a high risk group with some
symptoms), this is clearly an upper bound for the fraction
of currently infected individuals. As a result, the reasonable
region of the phase diagram is in the middle, for example,
with β � 0.05.

Choosing parameters from this (middle) region of the
phase diagram, one can compute the fraction of susceptible
households as a function of time (see the solid curve in Fig. 5).
If the quarantine is not lifted, approximately three-quarters
of the population will not catch the disease. The dotted line,
however, shows the fraction of susceptible cashiers: most of
them get infected during the epidemic. The observation that
nodes with a high degree (in our case, the cashiers) are much
more likely to be infected is known in the literature as the
“20/80 rule” [14]. The inset shows the fraction of infected
households; one can see that the peak was reached in the
middle of April.

In the revised version of this paper, we were able to
compare the results of our simulations with the death toll data
until June 15, 2020. Since gatherings of up to 10 people in the
state of Michigan were allowed starting from May 21, 2020,
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FIG. 5. Fraction of susceptible households (blue solid curve)
and fraction of susceptible cashiers (red dashed curve) as a func-
tion of time. The inset shows the fraction of infected households.
Simulations of Oakland County, Michigan, on a 20 × 20 lattice for
N = 1000, β = 0.05, and a mortality of 0.62%.

and the “stay at home order” was lifted on June 1, 2020, the
death toll data for a later period cannot be described by the
current quarantine model with starlike networks for individual
neighborhoods. As predicted by the model (see Fig. 3), the
death toll curve saturates. Figure 6 shows a nice agreement
with the data; using the standard least-square method, the
best fit was obtained for β = 0.039 and a mortality of 1.29%,
which corresponds to the left region in the phase diagram
(Fig. 4). Figure 6 also shows that approximately 10.3% of
the population in Oakland County caught the disease, which
is about 123 600 individuals. The reported number of cases
is much lower: the official number of cases by June 15,
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FIG. 6. Death toll as a function of time in Oakland County
(Michigan): official data (black squares) and simulations of the
model (blue solid line). This figure takes into account the official
Michigan death toll data up to June 15, 2020. The inset shows the
fraction of susceptible individuals. Simulations of Oakland County
are performed on a 20 × 20 lattice for N = 1000, β = 0.039, and a
mortality of 1.29%.

2020, was 8564 (and another 2749 cases are in question)
[13]. Therefore, the official data underestimates the number
of cases by a factor of 11 to 14.

III. SUMMARY AND DISCUSSION

This work focuses on modeling disease dynamics during
the quarantine, when most people dramatically decrease their
number of contacts, but some individuals still maintain hun-
dreds of contacts per day. On a microscopic level, this pattern
is modeled by a star network, where the central node (say, a
cashier in a neighborhood) is connected to all other nodes, but
all other connections are prohibited. A big county is modeled
as many such neighborhoods on a lattice (Fig. 2). Simulations
show that the results do not strongly depend on the number
of households N in a single neighborhood if changing N is
compensated by adjusting the number of neighborhoods on
a lattice to keep the county population constant. However,
the results strongly depend on the two main parameters:
the transmission coefficient β and the mortality. Stochastic
simulations of this two-level model show a sloppy behavior
[15]: different sets of these parameters can describe the same
death toll data in a county. We were able to identify the
region in the phase plane of parameters that reproduces the
observations in different counties and estimate the mortality
and the infection probability. Analyzing the later data, we
obtained the mortality in Oakland County to be around 1.3%,
which also suggests that the real number of coronavirus cases
in this county is 11–14 times larger than the number of
reported cases. This number is 5 times lower than in a recent
controversial study in Santa Clara County [16], but is still very
high. In some places, where the outbreak is (was) particularly
severe (for example, certain parts of Italy), the official death
toll might be under-reported [17]. The situation in Michigan
hospitals is substantially better, so it was assumed that the
Michigan death toll data is accurate.

The presented model is phenomenological and aims at
capturing basic features of a quarantine and avoiding the
drawbacks of continuum modeling. It can be easily modified
to include more details: other essential workers with a large
number of connections (for example, health care workers and
more cashiers in the same grocery store) and population struc-
ture in a county. Yet, phenomenological models are useful for
our basic understanding of the underlying physical mecha-
nisms and can produce good predictions. Figure 5 shows that
the fraction of infected cashiers is very large, justifying the
assumption that a recovered neighborhood during the quaran-
tine cannot be infected again. However, when the quarantine
is lifted, more high-degree nodes (people with many contacts
per day, for example, university teachers of general physics
classes) will return to work, a substantial fraction of whom
are still susceptible. This is likely to lead to the second wave
of the disease outbreak.

In order to perform simulations of neighborhoods on a lat-
tice, one needs to use a microscopic model of a neighborhood
to compute the recovery rate. This idea of two-level modeling,
when the rates are measured in a microscopic model and then
used in on a macroscopic level, has recently been employed
in a completely different problem of rare cell clustering on a
substrate [18].
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