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Experimental and numerical investigation of parametric spectral properties of quantum graphs
with unitary or symplectic symmetry
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We present experimental and numerical results for the parametric fluctuation properties in the spectra of
classically chaotic quantum graphs with unitary or symplectic symmetry. A level dynamics is realized by
changing the lengths of a few bonds parametrically. The long-range correlations in the spectra reveal at a fixed
parameter value deviations from those expected for generic chaotic systems with corresponding universality
class. They originate from modes which are confined to individual bonds or explore only a fraction of the
quantum graph. Similarly, discrepancies are observed in the avoided-crossing distribution, velocity correlation
function, and the curvature distribution of the level dynamics which also may be attributed to such localized
modes. We demonstrate that these may be easily identified by inspecting the level dynamics and consequently
their nonuniversal contributions to the parametric spectral properties may be diminished considerably. This is
corroborated by numerical studies.
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I. INTRODUCTION

Quantum graphs [1–4], that is, networks consisting of a
finite number of bonds connected at vertices, are used widely
to mimic spectral properties of closed and open quantum sys-
tems with chaotic classical dynamics [5,6]. They were orig-
inally introduced by Linus Pauling to model certain features
of organic molecules [7] and are also used for the study of
quantum wires [8], optical waveguides and mesoscopic quan-
tum systems [9]. It was proven in Ref. [10] that the spectral
properties of closed quantum graphs with incommensurable
bond lengths are described by those of random matrices from
the Gaussian ensemble [11] of the same universality class
[10]. This is in accordance with the Bohigas-Gianonni-Schmit
(BGS) conjecture for chaotic systems [12–14].

Quantum graphs have several particular features. First,
the semiclassical trace formula, which provides the fluctu-
ating part of the spectral density in terms of a sum over
the classical periodic orbits, is exact [2,15]. Second, the
correlation functions of scattering matrix elements of open
quantum graphs with a classically chaotic scattering dynamics
coincide with the corresponding random matrix theory (RMT)
results [16–20]. Third, and most importantly, quantum graphs
belonging to the orthogonal, the unitary and the symplectic
universality class can be realized experimentally with mi-
crowave networks consisting of coaxial cables connected by
joints. Graphs with unitary symmetry correspond to quantum
systems without time-reversal (T ) invariance, whereas sys-
tems belonging to the orthogonal or the symplectic univer-
sality class preserve T invariance [21–25]. However, in the
orthogonal case T 2 = 1 whereas in the symplectic one T 2 =
−1, corresponding to integer and half-integer spin systems,
respectively [6]. As a consequence, the eigenvalues of GSE
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systems exhibit Kramer’s degeneracy. A quantum graph con-
sisting of two coupled GUE graphs that are identical except
for a certain phase relation which ensures that it belongs to
the symplectic universality class was realized only recently
in Ref. [26]. Generic quantum systems with a classically
chaotic counterpart which are invariant under T operation
are described by the Gaussian orthogonal ensemble (GOE)
for integer-spin systems with T 2 = 1 and by the Gaussian
symplectic ensemble (GSE) for half-integer spin systems with
T 2 = −1 [6,27], and if time-reversal invariance is violated, by
the Gaussian unitary ensemble (GUE).

However, quantum graphs exhibit deviations from RMT
predictions [2] which are attributed to backscattering at the
vertices of a quantum graph leading to eigenstates which are
localized on individual bonds or on a fraction of the graph
[28]. Such states were excluded in Refs. [10,17–19] since
they are nonuniversal. Deviations are, actually, expected in
any quantum system in the long-range correlations of pairs of
eigenvalues if their distance is beyond a certain number L of
mean spacings, which is inversely proportional to the length of
the shortest periodic orbit [29,30], and observed for example
in the number variance �2(L) [11]. It was demonstrated in
Ref. [28] that the discrepancies between the experimental
or numerical �2(L) statistics of quantum graphs and RMT
predictions, observed at a comparatively small value of L,
indeed arise due to the presence of wave functions that are
localized on individual bonds. Such modes do not sense the
chaoticity of the underlying classical dynamics resulting from
the scattering at all vertices. Furthermore, the eigenenergies
associated with the localized wave functions depend on the
lengths of the associated bonds, and thus are nonuniversal.
Unfortunately, the occurrence of such localized modes is
unavoidable in microwave networks and the corresponding
quantum graphs due to the particular boundary conditions
obeyed by the microwaves or wave functions at the ver-
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tices. The effect of these modes on the spectral properties
is comparable to that of bouncing-ball orbits in a stadium
billiard [30]. However, in distinction to the latter their num-
ber is not of measure zero [2]. Consequently, extraction
of their contributions to the fluctuating part of the spectral
density and thus of their effect on the long-range correlations
is not possible.

The subject of the present article are parametric spectral
properties of quantum graphs belonging to the unitary and
symplectic universality class. The parametric sensitivity of
complex systems was investigated theoretically already more
than two decades ago in Refs. [31–41]. Furthermore, it was
investigated experimentally in flat, normal and superconduct-
ing microwave resonators, plates and quartz blocks [42–51].
Parametric GOE graphs were investigated experimentally in
Refs. [52,53]. Numerical simulations were performed for
GOE and GUE graphs in Refs. [2,54–56]. In both the nu-
merical and the experimental simulations deviations of the
avoided-crossing distribution, the curvature distribution and
the velocity correlator from the exact RMT results were
observed. These were attributed to an insufficient complexity
of the graphs. However, we will demonstrate, that the discrep-
ancies dominantly have their origin in the nonuniversal con-
tributions of localized states [55], which are generally present
in microwave networks and graphs with Neumann boundary
conditions at the vertices so that an increase of the complexity
does not necessarily lead to an improvement of the agreement
with RMT predictions. We present experimental and numeri-
cal results for the parametric spectral properties of GUE and
GSE graphs. For these universality classes the extraction of
eigenfrequencies from resonance spectra is easier than in the
GOE case because they exhibit stronger level repulsion, as
explained in Sec. II. The level dynamics of the GUE and
GSE quantum graphs is generated by changing the lengths
of bonds of the graph, so that nonuniversal contributions can
be extracted. Here we use the fact, that eigenstates which
are localized on bonds of which the lengths are not changed
do not sense the perturbation and, therefore, the associated
levels barely depend on the parameter. If an eigenstate is
confined to a bond of which the length is changed, the induced
perturbation only affects it and thus is local. Furthermore, we
propose parametric graphs which do not exhibit effects due to
nonuniversal states in the parametric spectral properties.

We will briefly review in Sec. II the salient properties
of microwave networks and quantum graphs, introduce the
experimental setup and explain how we proceed to determine
the eigenvalues of GUE and GSE quantum graphs. In Sec. III
we present experimental and numerical results for the spectral
properties of the microwave networks and the corresponding
quantum graphs. Then, in Sec. IV we present experimen-
tal results for the parametric spectral properties of various
quantum graphs, and numerical results for several realizations
of parametric GUE and GSE graphs. Finally, the results are
discussed in Sec. V.

II. EXPERIMENTAL REALIZATION OF GUE AND GSE
QUANTUM GRAPHS WITH MICROWAVE NETWORKS

Quantum graphs consist of V vertices that are connected
by B bonds. The geometry of a graph is defined by the lengths

Li j of the bonds and the connectivity matrix Ĉ. Its diagonal
entries are Cii = 0 and the off-diagonal ones Ci j equal unity
if vertices i and j are connected and zero otherwise. Here,
i, j = 1, . . . ,V . The wave-function component ψi j (x) on the
bond connecting vertices i and j are solutions of the one-
dimensional Schrödinger equation,

− d2

dx2
ψi j (x) = k2ψi j (x), i, j = 1, . . . ,V, (1)

with boundary conditions imposed on ψi j at the vertices to
ensure continuity and current conservation. To obtain chaotic
quantum graphs that can be realized experimentally with
microwave networks we chose bonds of incommensurable
lengths and Neumann boundary conditions at the vertices.

The microwave networks are constructed from coaxial
cables that are connected at T joints. The cables consist of
an inner conductor of radius r1 and a concentric outer one
of radius r2. The space between them is filled with Teflon of
which the dielectric constant was determined experimentally
to ε � 2.06. For a coaxial cable of length Li j the optical length
is then given as Lopt

i j = √
εLi j . Below the cutoff frequency

νc = c
π (r1+r2 )

√
ε

[57,58] for the first transverse electric mode
only the fundamental transverse electromagnetic (TEM) mode
can propagate between the conductors. These are the Lecher
modes which are described along the coaxial cables by a set
of one-dimensional wave equations,

d2

dx2
Ui j (x) + ω2ε

c2
Ui j (x) = 0 , i < j, Ci j = 1. (2)

Here, Ui j (x) denotes the difference between the potentials at
the conductors’ surfaces, c is the velocity of light, and ω =
2πν is the angular frequency with ν the microwave frequency.
This set of equations is also called telegraph equation. It is
applicable to lossless coaxial cables, that is, for vanishing
Ohmic resistance. At each pair of connected vertices i and j
the potential difference Ui j (x) obeys the continuity equation,

Ui j (0) = φi, Ui j (Li j ) = φ j, i < j, (3)

and the current is conserved at each vertex,

−
∑
j<i

Ci j
d

dx
Uji(x)

∣∣∣∣
x=Li j

+
∑
j>i

Ci j
d

dx
Ui j (x)

∣∣∣∣
x=0

= 0. (4)

Equation (2) together with the boundary conditions Eqs. (3)
and (4) is mathematically identical to the Schrödinger equa-
tion of a quantum graph with Neumann boundary condition
at the vertices and bond lengths Lopt

i j [2,4] when identifying√
εω/c of the microwave network with the wave number k of

the quantum graph, implying that the eigenfrequencies of the
former yield the eigenvalues of the latter.

The schematic designs of the graphs used for the exper-
imental study of parameter-dependent spectral properties of
GUE and GSE graphs are shown in the upper and lower panels
of Fig. 1, respectively. In both graphs the valency equals three
for all vertices. Time-reversal invariance violation is induced
by a T -shaped circulator [22,25] at vertex 1 (and also 1̄ in
the GSE graph), which suppresses backscattering and admits
a wave entering it at a port to exit it at a certain port only as
indicated by the blue arrows, thus leading to unidirectionality
of propagation through it.
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FIG. 1. Schematic view of the quantum graphs used to investi-
gate the spectral properties of quantum systems belonging to the
unitary (upper panel) and symplectic (lower panel) universality class,
respectively. They consist of vertices of valency three in both cases.
Time-reversal invariance violation is induced by replacing T joints
by T -shaped circulators which induce unidirectionality as indicated
by the blues arrows in both panels. The GSE graphs are realized
by connecting two subgraphs which are identical except for the
orientation of the circulators. Corresponding vertices are marked by n
and n̄, with n = 1, . . . , 4. Furthermore, the coaxial cables connecting
them have the same length but carry an additional phase of relative
size 
 = π . Parameter-dependent graphs were realized by increasing
the length of one coaxial cable and decreasing that of another
one by the same amount with phasers denoted by PS-1 and PS-2
(PS-1̄ and PS-2̄).

We realized GSE graphs by proceeding as in Ref. [26]. Ac-
cordingly, we connected two GUE graphs, which are identical
except for the sign of the phase induced by the circulators,
by two bonds of same length where the microwaves traveling
through one of them experienced an additional phase of size

 = π . It was generated by a phase shifter which, actually,
changes the length of the coaxial cable by some increment
�l̃ and thus induces a change of the phase accumulated by
microwaves passing through it according to the relation

�ϕ = k�l̃ = 2πν

c
�l̃, (5)

implying that the phase shift �ϕ depends on the microwave
frequency ν or wave number k = 2πν/c.

A level dynamics, that is continuously changing eigen-
frequencies, was realized by varying the lengths of bonds
stepwise with a fixed increment �l . This is achieved by
introducing phase shifters, denoted by PS-1, PS-2, PS-1̄, and
PS-2̄ in Fig. 1. Here, we kept the average spectral density
ρ̄(k), which is given by Weyl’s law,

〈ρ(k)〉 = L
π

, (6)

fixed in the experiments by leaving the total length of the
network unchanged. Accordingly, we increased the length
in one bond stepwise by an increment �l , λ = N�l with
N = 1, 2, . . . , Nmax, and decreased it in another one by the
same amount [2].

The eigenfrequencies of a microwave network are deter-
mined experimentally by attaching an antenna to the vertex
0 of the GUE network and to vertices 0 and 0̄ for the GSE
network and measuring the reflection amplitude |S00(ν)| as
function of the microwave frequency ν. They correspond to
the positions νi of the resonance minima of |S00(ν)|. Their
identification, generally, is hindered by the broadening of
the resonances due to unavoidable absorption of microwave
power in the cables, T joints and circulators. Yet, good
agreement between the fluctuation properties in the spectra
of quantum systems with a classically chaotic dynamics with
those of random matrices belonging to the same universal-
ity class is expected only if the eigenvalue sequences are
complete [14,25,59]. The problem of absorption was elim-
inated in experiments with flat, cylindrical microwave res-
onators simulating quantum billiards [60–63] by performing
the measurements with cavities, that are superconducting at
liquid-helium temperature [49,51]. This is not possible with
microwave networks, because they contain Teflon. Due to
broadening, resonances might overlap and thus appear as
humps in a broad peak or dip in a transmission and reflection
amplitudes, respectively, thereby making the identification of
their positions, that is, of the eigenfrequencies, difficult in
some cases. In our experiments we took advantage of the
measurement of a level dynamics and were able to identify
all eigenfrequencies in the frequency range of operation of
the circulators by following the evolution of the minima in
the reflection spectra as function of the length parameter
while varying the lengths in pairs of bonds in such a way
that it was increased in one bond and decreased by the same
amount in the other one such that the total length was kept
constant. Thereby, the average integrated spectral density,
i.e., the number of eigenfrequencies 〈N (ν)〉 = 2νL/c below
a given frequency ν deduced from Eq. (6), did not change.
Thus, a jump in 〈N (ν)〉 when comparing the eigenfrequency
spectra for two neighboring parameter values might indicate
one or more missing levels. These, usually, show up as slight
humps in a broad resonance which are difficult to detect
otherwise or, in a few cases, are hidden and thus can only
be identified by looking at the level dynamics. Based on this
procedure we succeeded in extracting complete sequences
of eigenfrequencies. The length of the coaxial cables were
changed in steps of size �l = 0.84 mm. The total length of the
GUE graph was L = 2.60 m, that of the GSE graph equaled
L = 6.68 m, and the lengths was varied in Nmax = 60 steps
in the former one and in Nmax = 43 steps in the latter one,
corresponding to a maximal change of the respective bond
length by about 1–2% of L. An example is shown in Fig. 2.

In the experiments with the GSE graphs we attached a
second antenna at the vertex 0̄ and measured in addition
to |S00(ν)| = 0 transmission amplitudes |S00̄(ν)| and |S0̄0(ν)|
to achieve a more accurate tuning of the relative phase of
microwaves traveling through both connecting bonds to 
 =
π than is possible with the phase shifters which give �ϕ with
a certain error. Here, we exploited the fact that transmission
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FIG. 2. Reflection spectrum S00 of the GUE microwave network
(gray scale varying from black (|S00(ν )| = 0) to white (|S00(ν )| = 1)
as function of the length change caused by the phaser PS-1 in Fig. 1,
i.e., of the number of steps N of size �l . Complete sequences of
eigenfrequencies (red [gray] dots) were obtained by following the
evolution of the minima in the reflection spectra.

is suppressed for a phase shift 
 = π since the microwaves
traveling through both connecting bonds from port 0 to port
0̄ then interfere destructively at port 0̄. This is illustrated in
Fig. 3. In Fig. 4 we show in a density plot the transmission
amplitudes |S00̄(ν)| as function of frequency ν versus the
length increase �l̃ (top) and the thereby induced phase change
�ϕ (bottom) of the bond connecting vertices 4 and 2̄ in Fig. 1.

FIG. 3. Average transmission amplitude 〈|S00̄(ν )|2〉 as function
of the phase shift �ϕ read off the phase shifter. The relative phase of

 = π experienced by microwaves traveling through the connecting
bonds and required to realize a GSE graph, is identified as the phase
shift yielding a minimal 〈|S00̄(ν )|2〉.

FIG. 4. Density plot of the transmission amplitude |S00̄(ν )| ver-
sus microwave frequency ν for fixed relative length differences
�l̃ (top) and relative phase shift �ϕ (bottom) between the bonds
connecting vertices 2 and 4̄, respectively, 4 and 2̄.

To corroborate our experimental results we also performed
numerical simulations with GUE and GSE quantum graphs.
The microwave networks were designed such that the effect of
absorption was minimized by choosing the number of coaxial
cables as small as possible to achieve GUE or GSE behavior
of the spectral properties. Accordingly, the experimental GUE
and GSE networks consisted of 3 vertices and 4 bonds, and
of two copies with 5 vertices and 7 bonds including the
connecting bonds, respectively. To demonstrate, that these
numbers are sufficient we compared with numerical results
for more complex graphs, which consisted of 12 vertices
and 20 bonds for the GUE graph, and two copies with 7
vertices and 10 bonds for the GSE graph. The lengths of the
bonds were chosen similar to those of the coaxial cables and
increased or decreased stepwise by the same increment �l =
0.84 mm. We computed approximately 500 eigenfrequencies
in all numerical simulations for 100 parameter values were
the maximal change of length λ = Nmax�l of a bond was
approximately 3% of L.

The directionality induced in the experiments by the circu-
lators can not be accounted for in the vertex secular equation
deduced from the quantization condition for closed quan-
tum graphs [2]. In previous theoretical studies of GUE and
GSE graphs [25,26] their effect was modelled by introducing
a phase Ai j = −Aji = π/2 on the bonds connected to the
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circulator. Furthermore, in the experiments the graphs are
slightly opened by attaching antennas. This is equivalent to
attaching leads to the corresponding vertices of the quantum
graphs that are extended to infinity. Thus, to obtain a descrip-
tion which is as close as possible to the experimental situation,
we determined the reflection and transmission amplitudes of
open quantum graphs based on the bond scattering matrix
ŜB(k; {
i j}) [4,64] and the eigenvalues of closed ones from
the associated secular equation

ζB(k) = det[1 − ŜB(k; {
i j})] = 0. (7)

For a quantum graph with B bonds the bond scattering matrix
is a 2B × 2B matrix, ŜB(k; {
i j}) = D̂(k; {
i j})T̂ in the 2B
space of directed bonds,

D̂i j,nm = δi,nδ j,meikLi j+
i j , T̂ji,nm = δn,iCj,iCn,mσ̂
(i)
ji,nm, (8)

where the relative phase of π is accounted for in the phases

i j and the directionality at the circulators is incorporated
in the transition matrix T̂ji,im from vertex m to vertex j via
vertex i, with i = 1, 1̄ in Fig. 1. The vertex scattering matrix
σ̂ (i) equals σ̂

(i)
ji,im = ( 2

3 − δ jm) at the T joints, whereas at the
circulator at vertex 1 (1̄) it is given by

σ̂ (1) =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, (9)

when marking its ports clockwise (counterclockwise) by 1,
2, and 3, respectively. The solutions of Eq. (7) yield the
eigenvalues of a closed quantum graph.

The microwave networks were constructed from mi-
crowave coaxial cables (HASCO SMA-RG402), which have
a cut-off frequency νc � 33 GHz and T -joints (Pomona
Electronics 72968). Time-reversal invariance violation was
induced with circulators (Pasternack PE8403) which function
in the frequency interval 7–15 GHz. To change the lengths
of coaxial cables or realize a phase difference of 
 = π be-
tween the cables connecting the copies of GUE graphs in the
GSE graph, we used phase shifters (ATM P1507D). For the
measurement of the reflection and transmission amplitudes we
attached antennas to the ports denoted “0” and “0̄” in Fig. 1
and connected them to a vector network analyzer (Keysight
N5227A) via coaxial cables.

III. FLUCTUATION PROPERTIES IN THE
EIGENFREQUENCY SPECTRA OF THE

MICROWAVE NETWORKS

Before comparing the spectral properties of quantum sys-
tems with a chaotic classical counterpart with random matrix
theory (RMT) predictions, their system-specific properties
need to be eliminated by unfolding the eigenvalues such that
the spectral density is uniform, that is, the mean spacing is
constant across the whole spectrum. Quantum graphs and mi-
crowave networks have the advantage, that the mean spectral
density, which is given by Weyl’s law Eq. (6) is frequency in-
dependent. Accordingly, the unfolded eigenvalues εi of mean
spacing unity are easily obtained from the ordered eigenfre-
quencies νi, νi+1 � νi, i = 1, 2, . . . as εi = 2νiL/c. The ex-
perimentally obtained dynamics of the unfolded eigenvalues

FIG. 5. Level dynamics obtained from the experimental reflec-
tion spectra of the microwave networks with unitary (upper panel)
and symplectic (lower panel) symmetry shown schematically in
Fig. 1. Here, λ corresponds to the absolute value of the change
in length λ = N�l, N = 1, . . . , Nmax induced in bonds comprising
a phaser.

of the microwave networks sketched in Fig. 1 is depicted in
Fig. 5 for the GUE graph (top) and GSE graph (bottom).

We first investigated fluctuation properties in the eigen-
value spectra for fixed λ to test whether they comply with the
prediction of the BGS conjecture, that is, behave like typi-
cal chaotic systems with corresponding universality class. In
Fig. 6 we show the nearest-neighbor spacing distribution P(s)
of adjacent spacings si = εi+1 − εi which provides a measure
for short range correlations. Furthermore, we show as a rep-
resentative for long-range correlations the variance �2(L) =
〈(N (L) − 〈N (L)〉)2〉 of the number of unfolded eigenvalues
N (L) in an interval of length L, where 〈N (L)〉 = L for a
proper unfolding procedure. The �2(L) statistics is particu-
larly sensitive to missing levels and to contributions which are
nongeneric in the sense that they do not comply with the BGS
conjecture for typical chaotic systems with corresponding
universality class. Shown are the results obtained from the ex-
perimental eigenfrequencies (black histograms and triangles
up) of the microwave networks shown schematically in Fig. 1,
those for the numerically computed eigenvalues of quantum
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FIG. 6. Nearest-neighbor spacing distribution P(s) (upper pan-
els) and number variance �2(L) (lower panels). The black curves and
triangles up show the results obtained from measurements with the
microwave networks shown schematically in Fig. 1 for the GUE (left
panels) and GSE (right panels) universality classes. The red (gray)
dashed curves and triangles down were obtained from numerical
simulations of GUE and GSE quantum graphs. The corresponding
RMT curves are shown as black dashed lines.

graphs (red [gray] histograms and triangles down) belonging
to the unitary (left) and symplectic (right) universality class
and the corresponding RMT curves (black dashed lines). Note
that even though the microwave networks are constructed
from a small number of bonds and vertices, the experimental
curves are close to the numerical results for the more complex
quantum graphs.

For the nearest-neighbor spacing distribution agreement
of the experimental curve with the numerical and RMT
curves is good except in the region around the peak in
the GUE case. These deviations may be attributed to the

FIG. 7. Velocity distributions of GUE (left) and GSE (right)
graphs. Compared are the experimental (black histograms) and corre-
sponding numerical results (red [gray] dashed-line histograms) with
the associated RMT curve (dashed line).

FIG. 8. Numerically computed level dynamics of a GUE (left)
and GSE (right) graph. In the former the length of one bond was
increased by λ, in the latter those of two corresponding bonds were
increased by λ.

experimental inaccuracy in the determination of the eigenfre-
quencies. Nevertheless, the results confirm that the microwave
networks indeed belong to the unitary and symplectic univer-
sality class, respectively. For the �2(L) statistics we find good
agreement between the experimental, numerical and RMT
results only below L � 2 − 3, and thus recover the findings
of Ref. [28]. There, the discrepancies beyond a certain value
of L were attributed to the occurrence of short periodic orbits
confined to individual bonds by backscattering at the vertices
bordering them. These orbits do not sense the chaoticity of
the classical dynamics associated with the quantum graph,
which arises due to the scattering of the wave functions—or
of the microwaves in the experiments—at all its vertices.
In addition, they depend on the lengths of the associated
bonds, as is clearly visible in the periods of the oscillations
of the experimental and numerical curves, and thus lead to
nonuniversal features of the spectral properties. Since the
number of periodic orbits that travel only through a fraction of
the quantum graph is large [2], it is impossible to extract their
contributions from the eigenvalue spectra. However, as will
be outlined in the following section, it is possible to diminish
their effect on parametric spectral properties.

Note, that the nearest-neighbor spacing distributions in-
crease around s � 0 as P(s) � s2 and P(s) � s4 for the
GUE and GSE, respectively, implying that the probability
that two eigenfrequencies are close to each other is low for
the GUE graph and much smaller for the GSE graph. This

FIG. 9. Comparison of the avoided-crossing distribution of the
level dynamics (red [gray] curves) shown in Fig. 8 with the RMT
result (black dashed line).
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FIG. 10. Comparison of the curvature distribution of the level
dynamics (red [gray] curves) shown in Fig. 8 with the RMT result
(black dashed line).

characteristics is of particular advantage for the identification
procedure of the eigenfrequencies of microwave networks.

IV. PARAMETRIC FLUCTUATION PROPERTIES OF
THE LEVEL DYNAMICS

In this section we investigate the spectral properties of
the parameter-dependent unfolded eigenfrequencies εi(λ) of
the family of graphs generated by varying the lengths Li j of
two or four coaxial cables (see Fig. 1) in the experiment or
of some bonds in the numerical simulations, of which the
number will be further specified in the corresponding subsec-
tion. They were changed stepwise by an increment �l , L̃i j =
Li j + λ, λ = N�l, N = 1, . . . , Nmax. The specific form of
the parameter X which thereby induces a transformation of the
quantum graph is not needed, because for the characterization
of universal parametric properties system-specific properties
have to be extracted. System-specific properties become man-
ifest in the variance σX of the velocities ∂εi(X )/∂X [65],

σ 2
X = 1

N

N∑
j=1

(
∂εi(X )

∂X
−

〈
∂εi(X )

∂X

〉)2

, (10)

where the average 〈∂εi(X )/∂X 〉 � 0 in the systems considered
in the present article. The system-specific properties related to
the parametric variation are eliminated by unfolding not only
the eigenfrequencies for a fixed parameter value X but also the
parameter along each curve εi(X ). We applied two unfolding

FIG. 11. Comparison of the velocity-correlation function of the
level dynamics (red [gray] curves) shown in Fig. 8 with the RMT
result (black dashed line).

FIG. 12. Numerically computed level dynamics of a GUE (left)
and GSE (right) quantum graph. The lengths of two bonds were
changed in the GUE graph and identically in each copy of the GSE
graph such that the total length was unchanged. Thus, the spectral
density is independent of the parameter.

procedures to the parameter X ,

� = σX X (11)

and

� =
∫ X

0
σX ′dX ′. (12)

Both procedures yield similar results. This may be attributed
to the fact that the lengths of the bonds are varied linearly.
Accordingly, we present only results which were obtained
on the basis of the unfolding procedure Eq. (11). For fully
chaotic systems, the velocities should be Gaussian distributed
with variance unity independently of the universality class
if the unfolding procedure is applied properly. We compare
in Fig. 7 the distributions obtained from the experiments
(black histogram) and corresponding numerical simulations
(red [gray] dashed histogram) with the RMT curve (black
dashed line). Similar results were obtained for the other
realizations of parametric quantum graphs.

We considered three statistical measures for the spectral
properties of the level dynamics, the distribution of avoided
crossings P(c), where c is the distance between two neighbor-
ing eigenvalues εi(�) and εi+1(�) at closest encounters, the

FIG. 13. Comparison of the avoided-crossing distribution of the
experimental (black lines) and numerical level dynamics (red [gray]
dashed lines) shown in Figs. 5 and 12, respectively, with the RMT
result (black dashed line).
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FIG. 14. Comparison of the curvature distribution of the experi-
mental (black lines) and numerical level dynamics (red [gray] dashed
lines) shown in Figs. 5 and 12, respectively, with the RMT result
(black dashed line).

distribution of the curvatures k j ,

k j = 1

πβ

∂2ε j (�)

∂2�
, (13)

and the velocity-correlation function,

C(x) =
〈

∂ε j (�)

∂�

∣∣∣∣
�=�0

∂ε j (�)

∂�

∣∣∣∣
�=�0+x

〉
�0, j

. (14)

Analytical expressions were derived for all three Gaussian
ensembles for the avoided-crossing distribution P(c) [31,32],

Pβ=2(c) = π

2
c exp

(
−π

4
c2

)
,

(15)

Pβ=4(c) = 81π2

128
c3 exp

(
−9π

16
c2

)
,

and the curvature distribution P(k) [33,37–39],

Pβ=2(k) = 2

π

1

(1 + k2)2
,

(16)

Pβ=4(k) = 8

3π

1

(1 + k2)3
,

FIG. 15. Comparison of the velocity-correlation function of the
experimental (black lines) and numerical level dynamics (red [gray]
lines) shown in Figs. 5 and 12, respectively, with the RMT result
(black dashed line).

FIG. 16. Difference between the maximal and minimal value of
each eigenvalue εn(λ) as function of n.

whereas for the velocity correlator only the asymptotic behav-
ior is known for large x,

C(x) → − 2

βx2
, x � 1, (17)

and for β = 2, 4 [34,35,40] for small x 	 1, respectively,

Cβ=2(x) � 1 − 2x2,
(18)

Cβ=4(x) � 1 − 8

3
x2.

In the following three subsections we summarize our exper-
imental and numerical results for different level dynamics
which were generated by varying the number of bonds of
which the lengths were varied.

A. Increasing the lengths of bonds

Before doing the experiments we performed various nu-
merical simulations to design the microwave networks. First,
we performed parametric variations by increasing the length
of only one bond in the GUE graph and of two corresponding
ones in the GSE graph. Accordingly, the average integrated
spectral density 〈N (k)〉 = kL/π increases linearly with λ =
N�l [53]. The resulting level dynamics is shown in Fig. 8
for the GUE (left panel) and the GSE (right panel) graph.
Figures 9–11 display the numerical (red [gray] curves) and
RMT results (black dashed lines) for the avoided-crossing
and curvature distributions and the velocity correlators for
the GUE (left panels) and the GSE (right panels) graphs,

FIG. 17. Same as described in the caption of Fig. 14 after cut-
ting out energy levels corresponding to wave functions trapped on
individual bonds.
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FIG. 18. Same as described in the caption of Fig. 15 after cut-
ting out energy levels corresponding to wave functions trapped on
individual bonds.

respectively. Deviations are clearly visible in the curvature
distribution for the GSE graph and for both universality
classes in the velocity correlator. The latter results are sim-
ilar to those obtained for microwave networks belonging to
the GOE and numerically also for GUE quantum graphs
in Refs. [2,52–54]. As already assumed in these works, we
attribute these deviations to the presence of nonuniversal
features resulting from wave functions confined to individual
bonds or a fraction of the graph due to backscattering at
the vertices. The corresponding unfolded eigenfrequencies are
recognizable as stripes of nonzero slope formed by adjacent
ones in Fig. 8. Indeed, the eigenfrequencies associated with
such localized states depend weakly on the parameter, when
they are localized on bonds of which the lengths are not
changed, or else only the localized state is affected by the
perturbation, which thus is local, so that their velocities are
vanishingly small and change linearly with the length after
unfolding. To eliminate their effect on the spectral properties
of the level dynamics shown in Fig. 8 we would need to disre-
gard the stripes, that is, cut out the corresponding eigenvalues
from the sequence of spectra, which can be tedious [41,66].

FIG. 19. Schematic view of the GSE quantum graph used to
numerically investigate the parametric spectral properties for an
increasing number of pairs of bonds of which the length were varied.
In bonds marked by triangle up the lengths was increased in steps
by an increment �l , and simultaneously it was decreased in the
bonds marked by triangles down. In the first simulation we varied
the lengths of the green [(3, 4), (3̄, 4̄)] and yellow [(2, 3), (2̄, 3̄)]
bonds, in the second in addition those of the cyan [(0, 3), (0̄, 3̄)]
and orange [(0, 1), (0̄, 1̄)] bonds and, finally, also those of the gray
[(1, 4), (1̄, 4̄)] and violet [(1, 2), (1̄, 2̄)] ones.

FIG. 20. Level dynamics of the GSE graph shown schematically
in Fig. 19, where the lengths of in total two (left panel), four (middle
panel) and six (right panel) bonds were changed in each of its halves.

We, instead considered a different parametric variation, where
the lengths of two bonds were varied such that the integrated
spectral density remained constant [2].

B. Variation of the lengths of pairs of bonds,
keeping 〈N(k)〉 unchanged

Figures 5 and 12 show the experimental and numerical
level dynamics for GUE (upper panel) and GSE (lower panel)
graphs. They were generated by varying the lengths of pairs
of bonds in such a way that the total length of the graph was
unchanged. The experimental (black full lines) and numerical
(red [gray] lines) results for the associated avoided-crossing
and curvature distributions and the velocity correlator are
shown in Figs. 13–15. The experimental and numerical results
are similar, even though we chose more complex quantum
graphs for the latter. However, while agreement of them
with the RMT results (black dashed lines) is comparatively
good for the avoided crossings [49,67,68], this is not the
case for the curvature distribution and the velocity correlator.
These deviations are again attributed to the effect of wave
functions which are confined to bonds of nonvarying length
and thus are associated with eigenvalues of velocity zero in
the level dynamics. Since the spectral density, and thus the
unfolding do not change with the parameter, they can be easily
identified as nearly straight lines of slope zero. In Fig. 5
examples are the eigenvalues starting at ε(λ = 0) � 109 for
the GUE graph (upper panel) and at ε(λ = 0) � 114 for the
GSE graph (lower panel). Similarly, the eigenvalues close to
ε(λ) � 188 in the left panel and ε(λ) � 190 in the right one
of Fig. 12 are examples for the numerical GUE and GSE
graph, respectively. To identify such “trivial” eigenvalues, we
computed for each eigenvalue εn(λ) the difference between
its maximal and minimal value in the considered λ range,
δ(λ) = maxλ[εn(λ)] − minλ[εn(λ)]. Examples are shown in
Fig. 16 where δ(λ) is plotted for the experimental (left)
and numerical (right) GSE graph. To extract nonuniversal
contributions, we discarded those εn(λ), for which δ(λ) was
below a certain threshold, which was one quarter of the
mean spacing in Figs. 17 and 18. The agreement between the
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FIG. 21. Comparison of the avoided-crossing distribution ob-
tained for the level dynamics shown in Fig. 19 with the RMT result
(black dashed line). The red (gray) curve is obtained for the case of
in total four varying lengths, the green one (dash-dotted line) for that
of eight varying lengths and the turquoise one (dashed line) when
changing the lengths of all bonds.

experimental, respectively, the numerical curvature distribu-
tions and velocity correlators and the RMT results improves,
in the latter case for x below its value at the minimum of C(x).
To obtain an estimate for the improvement we fit a function
to the experimental and numerical curvature distributions,
Pβ (k) = Nβ/(1 + k2)α , where Nβ is the normalization and
α = (2 + β )/2 serves as fit parameter. For β = 2, 4, i.e., α =
2, 3 it coincides with the analytical results Eq. (16) for the
unitary and symplectic cases. The fit yielded for the experi-
mental GUE and GSE graphs before cutting out nonuniversal
contributions α = 1.2 and α = 1.7, and afterwards α = 1.7
and α = 2.9 which are close to the expected values (see
Eq. (16)). The results were similar for the numerical ones.
This finding confirms our assumption that deviations may be
attributed to the effect of localized states. To take into account
all levels associated with wave functions which are localized
on a small fraction of the graph, the threshold for δ(λ) would
have to be increased. However, then the set of available data,
and thus their statistical relevance, would decrease which is
an important issue for the experimental data. Thus, at this
point, the fact that we use simple microwave networks with
minimally required complexity becomes perceptible.

C. Variation of the lengths of an increasing number of bonds,
keeping 〈N(k)〉 unchanged

To further verify this assumption we performed additional
numerical simulations with GSE graphs, where we added
successively phasers to corresponding bonds, that is, changed
lengths in an increasing number of such pairs, as illustrated
in Fig. 19. First we considered a graph where the lengths of
the two bonds connecting vertices (3,4) (3̄, 4̄) (green, triangle
up) were increased and two other ones [(2, 3), (2̄, 3̄)] (yellow,
triangle down) were decreased, then we, in addition, increased
the lengths of two further bonds [(0, 3), (0̄, 3̄)] (cyan, tri-
angle up) and decreased those by the same amount in two
other ones [(0, 1), (0̄, 1̄)] (orange, triangle down), were the

FIG. 22. Same as described in the caption of Fig. 21 for the
curvature distribution. In addition, we show the result for the case
where the length increment was chosen differently for each qudruplet
of bonds as violet dash-dotted-dotted line.

length increment was chosen equal in all bonds. Finally, we
increased lengths in the green, cyan and gray-colored bonds
[(1, 4), (1̄, 4̄)] and decreased them by the same amount in
the yellow, orange and violet coloured bonds [(1, 2), (1̄, 2̄)].
The resulting level dynamics are shown in Fig. 20. For the
case, were the lengths of only two bonds (left panel) were
varied in each half of the GSE graph, which corresponds
to the experimental situation, eigenvalues corresponding to
wave functions which are localized on the unchanged bonds,
and thus barely depend on λ are clearly visible as nearly-
straight lines. With increasing number of bonds of which
the lengths were varied, their number decreases. Accordingly,
this provides a method with which nongeneric effects may
be extracted. This is reflected in the curvature distribution
and the velocity correlator which are shown in Figs. 21–23.
While the avoided-crossing distribution barely changes with
increasing number of bonds of which the length is varied,
agreement between the RMT result (black dashed line) and
the numerical one shown as full red (gray) line, dash-dotted

FIG. 23. Same as described in the caption of Fig. 22 for the
velocity correlator.
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green line and dashed turquoise line for in total four, eight and
twelve bonds of which the lengths are varied improves with
the number of varied bonds. The agreement between the RMT
and numerical curves becomes good for the more complex
GSE graph used for the numerical simulations in the previous
subsections, when varying all bond lengths while keeping
the resonance density unchanged. Furthermore, we chose the
increments for each quadruplet of bonds of constant total
length differently thus achieving a higher complexity. The
results are shown as violet (dash-dotted-dotted line) curves
in Figs. 22 and 23. A fit to Pβ (k) = Nβ/(1 + k2)α yielded
α = 1.4, 1.9, 2.3, 3.0 for the cases where the lengths of four,
eight, twelve and fourteen bonds were varied, thus confirming
our observation that in the latter case agreement with the RMT
results is good. This corroborates our assumption that the
discrepancies between the parametric spectral properties of a
quantum graph and RMT have their origin in the presence of
localized wave functions, as was proposed for GOE graphs
in Ref. [55].

V. CONCLUSIONS

We investigated experimentally and numerically paramet-
ric fluctuation properties in the spectra of microwave net-
works simulating quantum graphs belonging to the unitary or
symplectic universality class. Here, the parametric variations
of the eigenvalues were realized by varying the lengths of
bonds of the graph, while keeping its total length and thus
the spectral density fixed. As in the parameter-independent
case the spectral properties deviate from RMT predictions.
Similar observations were made in previous experiments with
GOE graphs [52,53] and attributed to insufficient complexity
of the graphs, that is, to a too small number of vertices. We,

however, demonstrate that the deviations are similar in size
for the numerical and experimental graphs, even though the
former were constructed from a larger number of vertices.
Furthermore, we show that the origin for these discrepancies
are predominantly contributions from eigenstates which are
localized on a fraction of bonds. For this we identify these
states by exploiting the fact that, when an eigenstate is local-
ized on a bond of which the length is varied, the associated
perturbation is local and it is the only affected state, whereas
if it is localized on a bond with fixed length it doesn’t feel the
perturbation. Accordingly, because we introduce a parametric
variation which does not change the spectral density, the
associated eigenvalues do not change with the parameter and
thus they can be easily found. We show that the agreement
with the RMT results becomes better when extracting such
eigenstates. Finally, we propose a procedure which minimizes
the effect of nonuniversal eigenstates. Varying the lengths
of all or almost all bonds in a sufficiently complex GSE
quantum graph—our example consisted of 12 vertices and
20 bonds—we were able to achieve good agreement between
the numerical and RMT results for the curvature distribution
and velocity correlator [55]. Note, however, that the spectral
properties for a fixed parameter value still exhibit deviations
since extracting eigenvalues corresponding to localized states
would cause discrepancies that are due to these missing levels.
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