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A network consisting of excitatory and inhibitory (EI) neurons is a canonical model for understanding local
cortical network activity. In this study, we extended the local circuit model and investigated how its dynamical
landscape can be enriched when it interacts with another excitatory (E) population with long transmission delays.
Through analysis of a rate model and numerical simulations of a corresponding network of spiking neurons, we
studied the transition from stationary to oscillatory states by analyzing the Hopf bifurcation structure in terms
of two network parameters: (1) transmission delay between the EI subnetwork and the E population and (2)
inhibitory couplings that induced oscillatory activity in the EI subnetwork. We found that the critical coupling
strength can strongly modulate as a function of transmission delay, and consequently the stationary state can be
interwoven intricately with the oscillatory state. Such a dynamical landscape gave rise to an isolated stationary
state surrounded by multiple oscillatory states that generated different frequency modes, and cross-frequency
coupling developed naturally at the bifurcation points. We identified the network motifs with short- and long-
range inhibitory connections that underlie the emergence of oscillatory states with multiple frequencies. Thus, we
provided a mechanistic explanation of how the transmission delay to and from the additional E population altered
the dynamical landscape. In summary, our results demonstrated the potential role of long-range connections in
shaping the network activity of local cortical circuits.
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I. INTRODUCTION

The brain is organized as a network of highly specialized
subnetworks. Each of the subnetworks consists of a large
number of excitatory (E) and inhibitory (I) neurons communi-
cating via spikes. Randomly connected networks of excitatory
and inhibitory neurons have been a popular and useful model
to study the dynamical states and information processing in
local networks of the brain. Previous work has demonstrated
that balance of excitation and inhibition (EI balance) is a
crucial variable that determines two qualitatively different
states of network activity. When excitation and inhibition are
balanced, cancellation of excitatory and inhibitory synaptic
inputs to a neuron leads to asynchronous and nearly Poisson-
type spiking [1]. A mismatch between excitation and inhibi-
tion (in amplitude or timing) could result in various activities
such as perfect synchrony or pattern formations. In this study,
we will consider an oscillatory state in which the population
firing rate oscillates while individual neurons spike irregularly
[2–4]. Both asynchronous and oscillatory network states are
considered to play important roles in cortical processing; the
asynchronous activity of the balanced state provides a suitable
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substrate to perform complex computations [5,6], balanced
amplification [7,8], and propagation of rate- and time-coded
signals [9], and oscillatory rhythms play a crucial role in selec-
tive routing information across multiple brain areas [10–13].

Besides the EI balance, spike propagation time delays
introduce various complex effects on the network activity
dynamics. For instance, delays may destabilize the balanced
state of spiking networks [2–4], enrich the bifurcation struc-
ture of spatially extended neural field models by introducing
novel dynamical states [14,15], and gate the propagation of
spiking activity [16]. Moreover, by suitably tuning the delays,
oscillations can be enhanced and suppressed [17–19].

Experimental studies have shown that neurons in several
brain regions communicate with each other via long synaptic
delays [20–22]. Although long-range excitatory connections
have been known for some time, recent experimental studies
have also found long-range inhibitory connections. In particu-
lar, the long-range inhibition has been found to exist between
the entorhinal cortex and hippocampus with transmission
delay of 4.5 ms [23]. These long-range GABAergic axons can
enhance rhythmic θ activity in target areas [23]. In another
recent study, GABAergic CA1 neurons in the hippocampus
have been shown to form long-range inhibitory connections
to pyramidal neurons in the cortical area [24]. In addition,
projections from subcortical regions (which are largely made
of inhibitory neurons, e.g., globus pallidus, amygdala) to the
cortex are also long range and involve long delays [25–27].

In this study, we investigated the potential role of such
long transmission delays in shaping the dynamical landscape
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FIG. 1. The connectivity structure of the E1E2I3 network.

of local cortical activity. To this end, we considered a three-
population network (Fig. 1). This is a simple extension of the
recurrently connected network of excitatory (E) and inhibitory
(I) neurons—a generic and standard model of networks found
in the neocortex [1–4,9] as an additional excitatory population
is introduced in the network. The simplicity of the three-
population network enabled us to rigorously examine and
understand the network dynamics that arise from long delays.
This model also naturally introduced long-range inhibition,
whose existence is supported by recent experimental findings
[23,24,28].

Through analysis and simulations of our network mod-
els, we show that the asynchronous state can be interwoven
intricately with multiple oscillatory states when the EI net-
work was strongly coupled to a third excitatory population
with delays. Such dynamical landscapes naturally gave rise
to cross-frequency oscillations in parameter regime where
multiple oscillatory states merged. Thus, we revealed effects
of long inhibitory delays on local network dynamics. Our
study demonstrates the rich dynamic repertoire of interacting
subnetworks in the presence of long delays and paves the way
to study a network of multiple subnetworks.

II. NETWORK MODEL

The network consisted of two excitatory populations
(E1, E2) and one inhibitory population (I3). The E2I3 subnet-
work was the standard EI network [2], which was reciprocally
connected to the E1 population (Fig. 1). We did not include
recurrent excitatory connections within E1 and E2 because
we focused on oscillatory network activity generated by the
excitatory-inhibitory and inhibitory-inhibitory couplings. We
referred to the connectivity parameters between E1 and E2I3

as “lateral” and those within the E2I3 subnetwork as “local.”
The population E1 was considered to be located at a farther
distance; therefore, the transmission delay D between E1 and
E2I3 was larger than the transmission delay d within the E2I3

subnetwork. In this work, we investigated the effect of long
transmission delays and inhibitory connections from I3 to
E1, E2 and itself on network oscillations.

To study the network dynamics analytically, we considered
a rate model that described the firing rate dynamics of three
populations and compared the results with numerical simula-
tions of a comparable network with spiking neurons.

A. Firing rate model

The rate model was described as a set of delay differential
equations,

τ1ṙ1(t ) = −r1(t ) + [J11s11(t ) + J12s12(t ) − J13s13(t ) + I1]+,

τ2ṙ2(t ) = −r2(t ) + [J21s21(t ) + J22s22(t ) − J23s23(t ) + I2]+,

τ3ṙ3(t ) = −r3(t ) + [J31s31(t ) + J32s32(t ) − J33s33(t ) + I3]+,

(1)

where Jab is the coupling strength of the connection from
population b to population a, Ia is an external input, and the
activation function [x]+ = x if x > 0 and = 0 otherwise. We
let J11 = J22 = 0 because there were no recurrent excitatory
connections. The dynamics of synaptic current from b to a
obeyed

τd ṡab = −sab + rb(t − Dab) a, b ∈ {1, 2, 3}, (2)

where τd is a decay time constant and Dab is a transmission
delay from b to a.

The connections between E1 and E2I3 had a transmission
delay, D, and the connections within the E2I3 subnetwork had
a transmission delay, d; D = D12 = D21 = D13 = D31 and
d = D23 = D32 = D33.

B. Network model with spiking neurons

For the spiking network model, we considered a network
of randomly connected leaky integrate-and-fire (LIF) neu-
rons where E1, E2, and I3 populations consisted of N1 =
N/2, N2 = N , and N3 = N/4 neurons (N = 10 000), respec-
tively. The membrane potential of neuron i in population a
obeyed

τmaV̇i(t ) = − Vi(t ) + μa + σaξi(t ) + Ja1

pN1

∑
j∈E1

si j

+ Ja2

pN2

∑
j∈E2

si j − Ja3

pN3

∑
j∈I3

si j (3)

and elicited an action potential when Vi reached a threshold Vth

(20 mV), and then reset to Vr (10 mV). Here, p (0.1) is connec-
tion probability, τma (20 ms for a = 1, 2; 10 ms for a = 3) is a
membrane time constant, Jab is total postsynaptic potential of
synaptic connections from population b to population a, μa is
an external input, and σaξi is Gaussian white noise with mean
zero and variance σ 2

a .
Every neuron received the same number pNa of recurrent

synaptic inputs from randomly selected neurons in popula-
tions a = 1, 2, 3. However, the neurons in E1 and E2 did
not receive synaptic inputs from other neurons in the same
population (i.e., E1-E1 and E2-E2 did not exist). The strength
of individual synapses from neuron j in population b to
neuron i in population a was given by Jab/(pNb).

The synaptic current si j decayed exponentially upon re-
ceiving a spike from a presynaptic neuron j in population b:

τd ṡi j = −si j + τma

∑
t k
i <t

δ
(
t − t k

i − Dab
)
,

where τd (1 ms) is synaptic decay rate, t k
i is the spike time of

presynaptic neurons, and Dab is the transmission delay from
neurons in population b to neurons in population a. As in the
firing rate model, the connections between E1 and E2I3 had
a transmission delay, D, and the connections within the E2I3

subnetwork had a transmission delay, d .
Following the previous studies [2,4,5], we estimated the

steady-state firing rate using the Fokker-Planck approach,
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which meant solving a system of three nonlinear equations
in a self-consistent manner.

ra = �a(Xa,Ya), a = 1, 2, 3, (4)

where

�a(Xa,Ya) =
[
τma

√
π

∫ (Vth−Xa )/Ya

(Vr−Xa )/Ya

et2
(1 + erf(t ))dt

]−1

,

Xa = μa + Ja1r1 + Ja2r2 − Ja3r3,

Ya =
√

σ 2
a + J2

a1r1 + J2
a2r2 + J2

a3r3.

Here, ra is the population-averaged firing rate, Xa is the mean
synaptic input, and Y 2

a is the variance of total synaptic input
to a neuron.

In the following network simulations, we adjusted the
mean (μa) and variance (σ 2

a ) of external inputs to obtain
the same steady-state firing rate (re = 5 Hz, ri = 10 Hz)
for different network configurations. To generate consistent
firing rates and synaptic noise across networks with different
coupling strengths, we fixed the standard deviation of the total
synaptic current (Ya = 5 mV; a ∈ 1, 2, 3) injected into each
population for all networks and derived the mean external
inputs μa that generated the desired firing rates by solving
Eq. (4) numerically using the threshold integration method
[29]. When given the coupling strength J’s and the desired
firing rates r’s, Ya did not match with the assumed value 5 mV,
we varied the variance of external inputs σ 2

a such that Ya was
equal to the assumed value of 5 mV. External inputs (Ia) to
the rate model were adjusted similarly to maintain same ra

across networks with different coupling strengths. Firing rate
equations [Eq. (1)] were solved using MATLAB’s delay differ-
ential equation solver, dde23. The simulation of networks with
spiking neurons was performed using the NEST simulation
tool [30].

III. OSCILLATORY DYNAMICS IN THE THREE
POPULATION MODEL

A. Linear stability of the steady state

To characterize how the lateral delay D affected the emer-
gence of oscillatory activity within the E2I3 subnetwork, we
performed linear stability analysis of the steady state of the
rate model and the spiking network model. We added a small
perturbation term to the steady-state firing rate such that
ra(t ) = ra0 + δraeλt . The rate perturbation induced a pertur-
bation in the synaptic current:

δsab(t ) = 
ab(λ)δrbeλt , (5)

where the synaptic kernel [Eq. (2)] in frequency domain is
given by


ab(λ) = e−λDab

1 + λτd
. (6)

From Eq. (5), we obtained the perturbation of total input to
population a

δIa(t ) = Ja1δsa1(t ) + Ja2δsa2(t ) − Ja3δsa3(t ). (7)

Finally, the new output rate of the network in response to the
input rate perturbation was given by

δraeλt = Ra(λ)δIa(t ). (8)

Similar to the synapse, the neuron population also acted like a
frequency filter which can be written as, for the rate model,

RRM
a (λ) = 1

1 + τaλ
(9)

and, for LIF neurons, RLIF
a can be either calculated numeri-

cally using the threshold integration method [29] or by hyper-
geometric functions [2,4].

Combining Eqs. (5), (7), and (8), we obtained a system of
three linear equations in δra, a = 1, 2, 3, which had nontrivial
solutions when the determinant of following matrix was zero:

0 =
∣∣∣∣∣∣

−1 A12(λ) −A13(λ)
A21(λ) −1 −A23(λ)
A31(λ) A32(λ) −[1 + A33(λ)]

∣∣∣∣∣∣, (10)

where Aab(λ) = Ra(λ)Jab
ab(λ). Rearranging Eq. (10), we
obtained

0 = (1 − A12A21)(1 + A33︸︷︷︸
J33 coupling

)

+ A32A23 + A31A12A23︸ ︷︷ ︸
J23 coupling

(Fast inhibition)

+ A31A13 + A32A21A13︸ ︷︷ ︸
J13 coupling

(Slow inhibition). (11)

Equation (11) describes network motifs in the E1E2I3

model that can induce network oscillations. The two first lines
of Eq. (11) consist of motifs that receive fast inhibition with
short delay d via two different pathways. The local inhibitory
coupling J33 is responsible for generating oscillatory activ-
ity via the monosynaptic A33 loop, whereas the inhibitory
coupling J23 is responsible for generating oscillatory activity
via disynaptic A32A23 and trisynaptic A31A12A23 loops. The
third line of Eq. (11) consists of network motifs that receive
slow inhibition. In this case, the inhibitory coupling J13 is
responsible for generating oscillatory activity via disynaptic
A31A13 and trisynaptic A32A21A13 loops with long delay D.

B. Transition to oscillatory states

To obtain analytical estimates of a Hopf bifurcation, which
marks the transition from a steady state to an oscillatory state,
we substituted λ = iω into Eq. (11) to find bifurcation points
as a function of D and J33 (or D and J23). A similar calculation
was performed in Ref. [4]. We denoted the amplitude and the
phase of the population response function Ra(iω) as Ha and
φa, respectively, i.e., Ra(iω) = Ha(ω) exp[−iφa(ω)]. The am-
plitude and phase of the synaptic kernel 
ab(iω) were denoted
as Hs and φs, respectively, i.e., 
ab = Hs(ω) exp[−iφs(ω) −
iDabω], where Dabω is the phase shift due to a transmission
delay. To simplify notations, we let a = φa + φs be the sum
of phase shifts due to population response of a and synaptic
dynamics (without a delay), and ab = a + b, etc.
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The real part of Eq. (11) is

0 = 1 − cr cos(12 + 2Dω) + ci[cos(3 + dω)

− cr cos(123 + 2Dω + dω)] + cpd cos(23 + 2dω)

+ cpt cos(123 + 2Dω + dω)

+ ct cos(123 + 2Dω + dω) + cd cos(13 + 2Dω)

(12)

and its imaginary part is

0 = − cr sin(12 + 2Dω)

+ ci[sin(3 + dω) − cr sin(123 + 2Dω + dω)]

+ cpd sin(23 + 2dω) + cpt sin(123 + 2Dω + dω)

+ ct sin(123 + 2Dω + dω) + cd sin(13 + 2Dω),
(13)

where cr = J12J21H1H2H2
s is the bidirectional coupling be-

tween E1 and E2, ci = J33H3Hs is the I3-I3 coupling, cpd =
J32J23H2H3H2

s and cpt = J31J12J23H1H2H3H3
s are the disynap-

tic and trisynaptic E2-I3 couplings, respectively, and cd =
J13J31H1H3H2

s and ct = J32J21J13H1H2H3H3
s are the disynap-

tic and trisynaptic E1-I3 couplings, respectively.
In the following calculations, J33 and D were the two

bifurcation parameters, and we sought to express them as
functions of ω (see Appendix A for the derivation of other
critical couplings). First, to write J33 as a function of ω, we
removed D from Eqs. (12) and (13) by moving three (two)
terms in Eq. (12) [Eq. (13)] that did not include D to the other
side of the equation, squaring both sides of each equation, and
then adding two equations to obtain a quadratic equation of ci,

0 = Ac2
i + 2Bci + C.

Then,

c±
i = 1

A
(−B ±

√
B2 − AC)

or

J±
I3I3

= c±
i

/
(H3Hs), (14)

where

A = c2
r − 1,

B = −cr (cpt + ct ) + (c2
r − 1) cos(3 + dω)

− (crcd + cpd ) cos(2 + dω),

C = 2{(cpt + ct )[−cr cos(3 + dω) + cd cos(2 + dω)]

− cpd cos(23 + 2dω) − crcd cos(3 − 2)}
+ c2

r − c2
pd

+ c2
pt

+ c2
d + c2

t + 2cpt ct − 1.

Next, to write D as a function of ω, we invoked trigono-
metric identities in Eqs. (12) and (13) to derive a system of
equations to explicitly solve for cos 2Dω and sin 2Dω:[

M11 M12

M21 M22

][
cos 2Dω

sin 2Dω

]
=

[
P
Q

]
,

where

M11 = −M22 = −cr cos 12 − crci cos(123 + dω)

+ cpt cos(123 + dω) + cd cos 13

+ ct cos(123 + dω),

M12 = M21 = cr sin 12 + crci sin(123 + dω)

− cpt sin(123 + dω) − cd sin 13

− ct sin(123 + dω),

P = −1 − ci cos(3 + dω) − cpd cos(23 + 2dω)

Q = ci sin(3 + dω) + cpd sin(23 + 2dω).

Substituting c±
i calculated above, we obtained an expres-

sion for the lateral delay at the Hopf bifurcation

D± = 1

2ω
atan

(−M±
21P± + M±

11Q±

M±
22P± − M±

12Q±

)
. (15)

In the following sections, we describe the Hopf bifurcation
lines (D±, J±

33) that satisfy both Eqs. (13) and (12) by varying
ω and compare the analytical results with numerical solutions
of delay differential equations for the rate model and simula-
tions of networks of leaky integrate-and-fire neurons for the
spiking network model.

IV. DYNAMICAL STATES OF E1E2I3 NETWORK

In the following, we refer to the (nonoscillatory) steady
state as S and three oscillatory states as O1, O2, and O3.
As described in Eq. (11), three types of inhibitory couplings
J13, J23, and J33 are responsible for generating the oscillatory
states O1, O2, and O3, respectively.

A. Network activity states

To characterize different dynamical states of the three-
population network, we systematically varied the I3-I3 cou-
pling (J33) and the delay in lateral connections (D) (Fig. 2).
For each parameter pair (J33, D), we simulated the network for
1.2 s and measured the standard deviation of the population
rates to estimate whether the network exhibited oscillations.
The external input to each population was adjusted to main-
tain constant population rates across different network setups
(5 Hz for excitatory and 10 Hz for inhibitory spiking neurons)
while other network parameters remained fixed. For both
network models, the standard deviation of each population
rate was normalized by its means and averaged over three
populations to obtain the coefficient of variation of the popula-
tion activity. When the network was oscillating, the standard
deviation of the network activity was higher as the network
activity waxed and waned. This is, however, only an indirect
measure and may not directly imply oscillations; therefore, we
also examined the spectrum of the population activity (Fig. 4).

For a fixed value of D, the network exhibited three distinct
states, O1, S, and O3, as we varied J33. (Hopf bifurcation
estimates are shown as white lines in Fig. 2.) The estimates
of the network activity states closely matched with the states
obtained from a corresponding simulations of a network
of spiking neurons [Figs. 2(a) and 2(b)]. For low values
of J33, O1 was observed, which is characterized by slow
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FIG. 2. Bifurcation diagrams of (a) rate model and (b) spiking
network model as a function of I3-I3 coupling J33 and lateral delay D.
The strength of synaptic projection, JE1 (= J21, J31), from E1 to E2I3

is weak (a.i, b.i), intermediate (a.ii, b.ii) and strong (a.iii, b.iii). For
the rate model, J12 = 0.5, J13, J23, J32 = 2, d = 2.5, τd = 0. For the
spiking network model, the total (individual) synaptic weights J12 =
30(0.03), J13 = 80(0.32), J23, J32 = 50(0.2, 0.05) mV. Note that the
weights of individual synapses from neuron j in population b to
neuron i in population a is given by Jab/(pNb) (Eq. 3), so that I3 to I3

synaptic weights are between 0 and 0.6 mV. Local delay d = 2.5 ms,
and synaptic decay time τd = 1 ms. Color bars show the coefficient
of variations of the network models (See text for details). White lines
show analytical estimates of a Hopf bifurcation (Eqs. 14 and 15).

frequency oscillations (≈25 Hz) mediated by the E1-I3 loop
with lateral delay D = 5 ms [see white squares in Fig. 2(b)(i)
and the corresponding spiking activity in Fig. 4(a), top]. For
moderate values of J33, oscillations vanished and a nonoscilla-
tory state emerged (S) in which neurons fired asynchronously
and the population firing rate randomly fluctuated around
the steady state (akin to the asynchronous irregular state of
Ref. [2]). Finally, for very strong inhibitory coupling (high
J33), the nonoscillatory state was transformed into another os-
cillatory state O3, which was characterized by high-frequency
oscillations (≈100 Hz) mediated by the local I3-I3 loop with
local delay d = 2.5 ms. The E1-I3 interaction that gave rise
to the O1 state shared the same dynamic mechanism as the

FIG. 3. Effects of lateral inhibition on the dynamic landscape.
(a) Strong modulation at the interface of S and O3 in a network
configuration identical to Fig. 2(b)(ii). (b) The modulation of bi-
furcation line from S to O3 is significantly reduced as a result
of decreasing the coupling strength of lateral inhibition (i.e., J13)
by a factor of 0.3. All other network parameters were identical to
panel (a).

FIG. 4. (a) (Top) Instantaneous firing rate of E1 (black), E2

(blue), and I3 (red) populations in S, O1, and O3 states; (middle)
spike raster of the corresponding spiking activity. (Bottom) Oscil-
lation frequency of O1 and O3 states as a function of lateral delay;
black, analysis; red, simulations. (b) (Top) Alternation between S
and O3 states due to the lateral delay, corresponding to white squares
in Fig. 2(b)(ii)). (Middle) Analytical estimates of critical JI3I3 (black
line) and network states corresponding to the top row (black squares).
(Bottom) Analytical estimate of the phase lag �φ31 of I3 with respect
to E1 in the O3 state; black, full network [Eq. (B1)], red, simplified
E1I3 network [Eq. 19]. (c) Cross correlation of mean firing rate of E1

and I3, calculated using simulation results from part (b). (d) Cross-
frequency coupling appears when O1 and O3 merge; (top) mean firing
rate of I3 (gray), its high-frequency (red) and low-frequency (green)
components, and the sum of high and low frequencies (black);
(left bottom) power spectrum of I3 mean firing rate; (right bottom)
correlation between fast oscillation amplitude (black bar) and slow
oscillation phase (angle).

pyramidal-interneuron (PING) oscillations [31,32], and the
I3-I3 interaction of the O3 state was similar to the interneuron
(ING) oscillations [33,34].

As the lateral delay D was increased, the region of O1

monotonically increased and the state S was observed at
higher values of J33. The lateral delay D had a more dramatic
effect on the emergence of the state O3. The value of J33

at which the oscillatory state O3 was observed varied in a
periodic manner as D was increased [see the interface of O1

and S and that of O3 and S in Figs. 2(a)(i) and 2(b)(i)]. While
the oscillation frequency in O1 state decreased monotonically
with D, the oscillation frequency in O3 state was independent
of D [Fig. 4(a), bottom; black lines indicate analysis and red
squares indicate simulations].

Next, we examined whether the long-range inhibition from
I3 to E1 (i.e., J13) was responsible for the periodic modulation
of the boundary that separated oscillatory (O3) and nonoscil-
latory (S) states (Jcrit

33 ). To this end, we reduced the coupling
strength of long-range inhibition, i.e., J13, of the network
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shown in Fig. 2(b)(ii) by a factor of 0.3 while keeping other
network parameters fixed. We found that the strong modula-
tion of the critical Jcrit

33 was significantly reduced [compare the
interface of S and O3 in Figs. 3(a) and 3(b)]. A similar effect
was observed when connections from E1 to E2I3 were reduced
by a factor of 0.53 [compare Figs. 2(b)(i) and 2(b)(ii)]. These
observations suggested that the strong coupling between E1

and E2I3, mediated by the long-range inhibition, gave rise
to the periodic modulation of the bifurcation line between S
and O3.

To better understand this phenomenon, we next examined
the oscillation dynamics at the interface of the nonoscillatory
state S and the oscillatory state O3.

B. Modulation of critical I3-I3 coupling due to lateral delay

To gain intuition on why the local coupling J33 may depend
on lateral delays D, we reduced the subnetwork E2I3 to an
inhibitory population I3. This effectively assumed that the
subnetwork E2I3 operated in an inhibition dominated regime.
By solving Eqs. (12) and (13) for the critical I3-I3 coupling in
terms of D, we obtained

J33 = [1 − 2cd (ω) cos(13 + 2Dω + π ) + cd (ω)2]1/2

H3(ω)Hs(ω)
.

(16)

From Eq. (16), the reduced network model suggested
that the critical J33 modulated periodically as a function of
D, and the period of modulation T = π/ω∗ = 1/(2 f ∗) was
determined by the frequency of network oscillations, ω∗ =
2π f ∗. [Here we assumed that the oscillation frequency at the
transition to O3 state depends weakly on D; in other words,
ω(D) ≡ ω∗ on the boundary of O3 as shown in Fig. 4(a)
(bottom).] Moreover, the maximum of J33 was attained at

(2n + 1)π = 13(ω∗) + 2Dω∗ + π, (17)

and the minimum of J33 at

2nπ = 13(ω∗) + 2Dω∗ + π (18)

for n = 0,±1, ..., where 13(ω∗) + 2Dω∗ is the total phase
shift induced by the bidirectional lateral connections between
E1 and I3, and π appears due to the inhibitory coupling. In
other words, Eq. (17) [Eq. (18)] suggested that the critical J33

reached its maximum (minimum) when the network oscilla-
tion relayed through the lateral connections was antiphase (in
phase) to the oscillations generated in I3.

Conceptually, this phenomenon can be understood as fol-
lows. If oscillatory activity relayed through lateral connec-
tions is in phase with oscillatory activity generated by the local
I3-I3 loop, weak coupling is sufficient to induce network-wide
oscillations. On the other hand, if the relayed network activity
is antiphasic to locally generated activity, stronger coupling
is required to overcome the suppression of the local activity
by the relayed activity. Because changing the lateral delay
shifts the phase of relayed activity continuously, the critical
coupling strength modulates quasiperiodically with a period
determined by the oscillation frequency. In Fig. 2(b)(i), for
instance, the period of O3 boundary (T ≈ 5 ms) is deter-
mined by the oscillation frequency of O3 state [ f ≈ 100 Hz,
Fig. 4(a), bottom]: T ≈ 1/(2 f ) as predicted by Eq. (16).

We also calculated the relative phase �φmax
31 (�φmin

31 ) of I3

population rate with respect to the E1 population rate at the
maximum (minimum) of J33. For the reduced network model,
the phase lag was given by

�φ31 = −π + 1 + Dω, (19)

and at the max and min of J33,

�φmax
31 = (n − 1)π,

�φmin
31 = (

n − 1
2

)
π, n = 0,±1,±2, ...,

(20)

where we used Eqs. (17) and (18) to evaluate Dω∗ and
assumed that the phase shifts due to population response func-
tions are equal, i.e., 1 = 3. We then verified numerically
that the phase lag in the full E1E2I3 network can be approx-
imated by that of the reduced network [Fig. 4(b), bottom;
black, full network; red, reduced network]. See Appendix B
for the derivation of phase lags in the full and reduced network
models.

C. Cross-frequency coupling in the oscillatory activity

When the coupling strength between the lateral excitatory
population (E1) and the local excitatory-inhibitory network
(E2I3) was further increased, oscillatory dynamics at different
frequencies started merging and generated oscillations with
multiple frequency with codependence between different os-
cillation frequencies.

At the intermediate step toward the emergence of multifre-
quency oscillations, we examined how the strength of connec-
tions from the excitatory population E1 (JE1 ) affected the land-
scape of the network states. First, we found that increase in JE1

increased the region of the state O1. Second, JE1 also increased
the modulation in the boundary of state O3. Together, these
changes meant that region of the nonoscillatory state was not
observed for some values of D, such that the nonoscillatory
state appeared in isolated regions, S1 and S2 in Figs. 2(a)(ii)
and 2(b)(ii). There was a wide range of inhibitory coupling J33

[e.g., 80–120 mV in Fig. 2(b)(ii))], over which the network
can switch between nonoscillatory and oscillatory states by
varying the lateral delay [white squares in Fig. 2(b)(ii)) and
the corresponding spike activity shown in Fig. 4(b), top and
middle].

As the strength of synaptic input from E1 was further
increased, two Hopf bifurcation lines defining the O1 and O3

states merged and created a small region in the space spanned
by J33 and D in which the network exhibited nonoscillatory
activity S1 [Figs. 2(a)(iii) and 2(a)(iii)]. Outside of S1, where
O1 and O3 merged [e.g., white square in Fig. 2(b)(ii)i)], the
slow oscillatory activity induced by the lateral E1-I3 loops
and the fast oscillatory activity induced by the local I3-I3

loop coexisted. This was evident in the power spectrum of
inhibitory population firing rate, which showed two peaks at
low (25 Hz) and high (100 Hz) frequencies [Fig. 4(d), left
bottom]. Moreover, when the population rates were band-
passed filtered at high and slow frequencies and then summed
up, the filtered population rates closely followed the actual in-
hibitory firing rates [Fig. 4(d), top]. Interestingly, in our model
amplitude of the fast oscillation was modulated according to
the phase of slow oscillation [Fig. 4(d), right bottom]. This
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FIG. 5. Composition of three oscillatory states. α denotes
the relative strength of E2-I3 loop: J23 = αJI , J33 = JI . (a) Rate
model; J12 = 0.5, J13 = 2, J32 = 4, J21 = J31 = 1, d = 2.5, τd = 0.
(b) Spiking network model; (ii), power spectrum of population I3’s
mean firing rates for D = 7 ms in (b)(i); total (individual) synap-
tic weights, J12 = 30(0.03), J13 = 60(0.24), J32 = 120(0.12), J21 =
J31 = 30(0.06) mV, d = 2.5 ms, τd = 1 ms. Color bars show the co-
efficient of variations of network models. White lines show analytical
estimates of a Hopf bifurcation [Eqs. (A2) and (15)].

was akin to the modulation of γ -band oscillation power by
the phase of θ -band oscillation observed in the hippocampus
[12,35].

Thus, we showed that when a partially overlapping neuron
population participated in the generation of both fast oscilla-
tion and slow oscillation (i.e., I3 is part of the fast I3-I3 loop
and the slow E1-I3 loop), cross-frequency coupling emerged
in which slow oscillation generated via the lateral loop (E1-I3)
with long delay D modulated the amplitude of fast oscillation
(I3-I3) by providing periodic input.

D. Emergence of an oscillatory state driven by E2-I3 coupling

Thus far, we considered oscillatory activity generated by
the I3-I3 loop. In this section, we describe how including
the oscillatory activity due to the E2-I3 loop further enriches
the dynamical landscape of the three population network.
To control the interaction of the E2-I3 and I3-I3 loops, we
introduced a parameter α that determined the relative strength
of the E2-I3 coupling with respect to I3-I3 coupling: J23 =
αJI , J33 = JI .

With weak coupling between E2-I3 (i.e., small α), Hopf
bifurcation structure was identical to the one obtained by
varying J33 alone, as shown in Figs. 2(a)(i) and 2(b)(i). In
other words, the O3 state, driven by the I3-I3 loop, was the only
oscillatory state that can be generated by the E2I3 subnetwork.
When α was increased, a new oscillatory state O2, driven
by the E2-I3 loop, emerged in the small isolated regions in
the space spanned by J1 and D [Figs. 5(a)(i) and 5(b)(i).
The O2 state emerged in a parameter space which led to
the nonoscillatory state (S) for low values of α. That is, for
high α values, long-range interactions with the population E1

destabilized the nonoscillatory state of the E2I3 subnetwork to
create oscillations.

To better understand why nonoscillatory and different os-
cillatory states appeared as a function of JI , we fixed the lateral
delay [e.g., D = 9 in Fig. 5(a)(i)] and examined the changes
in network state as JI increases. For small JI , local inhibition
was too weak to withstand the oscillatory instability driven
by the lateral E1-I3 loop, so the network entered the O1 state.
The network shifted to the nonoscillatory state S when the
local inhibition JI was increased. When JI became sufficiently
strong to generate oscillatory activity through the E2-I3 loop,
the network entered O2 state. When JI was further increased,
the increased I3-I3 coupling suppressed the oscillatory activity
induced by the E2-I3 loop, which brought the network back
to the nonoscillatory state. For strong JI , the I3-I3 coupling
became the dominant network motif producing oscillatory
activity, and hence the network entered the O3 state.

The O2 state, however, appeared only within a restricted
range of lateral delays [e.g., 7 < D <10 in Fig. 5(a)(i)]
and vanished gradually outside of this range. As discussed
in Sec. IV B, the O2 state appeared when the oscillatory
activity relayed through the lateral connections was in phase
with the ongoing oscillations in the E2I3 subnetwork. On
the other hand, the O2 state could no longer exist when the
relayed network activity no longer enhanced the local activity.
Such resonance and cancellation effects, occurring repeatedly,
gave rise to isolated O2 states at multiple sites. The periodic
appearance of stationary and oscillatory states is a robust
phenomenon in delayed feedback system, which has been
investigated in the context of controlling pathological brain
rhythms [17,19].

When the E2-I3 coupling became stronger (α was in-
creased), the O2 state expanded across the nonoscillatory state
S and merged with the O1 state, creating a complex config-
uration of multiple network states as shown in Fig. 5(a)(ii).
The O1 and O3 states, previously separated by S, were now
bridged by an elongated O2 region. When α was further in-
creased, all three oscillatory states, O1, O2, and O3, appeared
contiguously, and the nonoscillatory states formed isolated
regions surrounded by the O1 and O2 states [Figs. 5(a)(iii) and
5(b)(iii)]. Such a dynamical landscape is similar to the pre-
viously discussed bifurcation structure that produced cross-
frequency oscillations at a parameter region where multiple
Hopf bifurcations meet [see Figs. 2(a)(iii) and 2(b)(iii)].

In networks of spiking neurons, O2 states emerged from the
nonoscillatory state at multiple sites, as predicted by the anal-
ysis. However, unlike the dynamical landscape of the firing
rate model [Fig. 5(a)(i)], network simulations showed that O2

states did not exist in isolation. The network activity remained
oscillatory in between the O2 and O3 states [Fig. 5(b)(i)],
and the oscillation frequency increased gradually as the net-
work transitioned from O2, S, to O3 [Fig. 5(b)(ii)]. This
discrepancy between the analytical prediction and network
simulation suggested that the activity of our network model
cannot make sharp state transitions as predicted by the Fokker-
Planck formulation. This discrepancy is possibly because of
the finite-size effects [2]. When α became large as shown
in Fig. 5(b)(iii), the O2 state expanded horizontally across
the nonoscillatory state, connected the O1 and O3 states,
and created isolated nonoscillatory states surrounded by the
oscillatory states, O1 and O2, similar to the firing rate model
[Fig. 5(a)(iii)].

022308-7



KIM, EGERT, AND KUMAR PHYSICAL REVIEW E 102, 022308 (2020)

FIG. 6. The connectivity structure of E1I1-E2I2 network.

E. Essential role of long-range inhibition

We asked if the long-range inhibitory connections were
essential for creating network motifs that involved excitatory-
inhibitory or inhibitory-inhibitory loops with long delays in
the three-population network. To this end, we examined the
connectivity motifs of a network of two fully connected E1I1

and E2I2 networks coupled by long-range excitation between
respective excitatory populations (E1 and E2) (Fig. 6). In
this model, long-range inhibition did not exist in the sense
that inhibitory populations were coupled to local excitatory
populations but did not interact with the other EI network.

To isolate the crucial network motifs in four population
network, we performed the stability analysis to derive an
equation analogous to Eq. (10):

0 =

∣∣∣∣∣∣∣
−1 + AE1E1 −AE1I1 AE1E2 0

AI1E1 −1 − AI1I1 0 0
AE2E1 0 −1 + AE2E2 −AE2I2

0 0 AI2E2 −1 − AI2I2

∣∣∣∣∣∣∣.
(21)

We defined the coupling matrices for the subnetworks E1I2

and E2I2 as

M1 =
(−1 + AE1E1 −AE1I1

AI1E1 −1 − AI1I1

)
,

M2 =
(−1 + AE2E2 −AE2I2

AI2E2 −1 − AI2I2

)
.

Then Eq. (21) became

0 = |M1M2| + AE1E2 AE2E1 [AI1E1 AE2I2 − (1 + AI1I1 )(1 + AI2I2 )].

(22)

where the first term |M1M2| was for a network in which
the subnetworks E1I1 and E2I2 were uncoupled, and the
second term captured the interaction between two subnet-
works through the long-range excitatory connections, AE1E2

and AE2E1 .
From the stability analysis, we identified five types

of motifs that were introduced by the long-range con-
nections between the excitatory populations. The motif
AE1E2 AE2E1 AI1E1 AE2I2 included feedforward excitation (AI1E1 )
and feedforward inhibition (AE2I2 ) linked to the reciprocal
long-range excitatory connections AE1E2 AE2E1 . The remaining
four motifs AE1E2 AE2E1 , AE1E2 AE2E1 AI1I1 , AE1E2 AE2E1 AI2I2 , and
AE1E2 AE2E1 AI1I1 AI1I1 involved recurrent excitation between two
excitatory populations and recurrent inhibition within in-
hibitory populations. Note that none of these motifs included

the excitatory-inhibitory or inhibitory-inhibitory couplings
with long delays which were the source of oscillatory dynam-
ics with multiple frequencies in our study. Thus, this analysis
result verified that the long-range inhibitory connections from
and to I3 are essential for creating long-range inhibitory loops
present in the three-population model [see Eq. (11)].

V. CONCLUSION

A population of neurons embedded in a larger network
rarely acts alone but interacts with neighboring and distant
neurons. In the present study, we used a generic network
model to investigate how including long synaptic delays may
affect the dynamics of a standard model for local corti-
cal circuits. When an additional excitatory population was
coupled to a local excitatory-inhibitory network via long-
range connections, the lateral delays between them created
a rich bifurcation structure, composed of isolated stationary
state, multiple oscillatory states, and cross-frequency coupling
(Fig. 2). To the best of our knowledge, it is the first time that
isolas of nonoscillatory (Fig. 2) and oscillatory (Fig. 5) states
have been found in biological neuronal networks consisting of
multiple excitatory and inhibitory populations over a wide pa-
rameter regime. Our results suggest that long delays observed
in the brain can potentially play a significant role in reshaping
the local network dynamics.

While the idea of long-range inhibition is inspired from
experimental data, we note that we have not modeled any
specific brain region. Instead, here our aim has been to char-
acterize to what extent long-range inhibition may affect the
dynamics of the standard EI network which models a typical
network in the neocortex. The simplicity of the model allowed
us to systematically isolate the various motifs that contribute
to multifrequency oscillations and emergence of isolas of
oscillatory and nonoscillatory activity.

It is interesting to note that cross-frequency oscillations,
one of the dynamics found in our model, is also an important
feature of population activity recorded from the hippocampus
and neocortex of awake behaving animals. The proposed cir-
cuit model for the cross-frequency oscillations in hippocam-
pus, however, has a different structure—it consists of one
excitatory and two types of inhibitory neurons, where fast
spiking and O-LM interneurons are responsible for generating
γ (30–80 Hz) and θ (4–12 Hz) rhythms, respectively [12,36].
However, the hippocampus is a target of long-range inhibition
from other brain regions, e.g., entorhinal cortex [23]. The
long-range inhibition, as predicted by our results, may also
contribute to the emergence and control of cross-frequency
oscillations in the hippocampus.

The dynamic regime of our network model is defined by
the cancellation of excitatory and inhibitory synaptic inputs
to individual neurons that result in asynchronous spiking. In
this noise-driven regime, the net synaptic current is highly
noisy fluctuating around the mean input that remains below
the spike threshold [2,4]. The balanced network [1] also op-
erates in the noise-driven regime, but uses O(1/

√
N ) scaling

of synaptic weights that creates finite noise in the large-N
limit. By contrast, our model used O(1/N ) scaling of synap-
tic weights which dilutes the synaptic noise if N becomes
infinitely large. Finite, but large, network size allowed our
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model to generate noisy synaptic and spiking activity in the
network simulations.

We note that the excitatory-excitatory connections in the
three-population model did not play a role in generating
the oscillatory dynamics investigated in this study. The long
excitatory delays between E1-E2 populations, however, took
part in relaying the oscillatory activity between the E2I3 sub-
network and the E1 population. Moreover, the short recurrent
excitatory delays within the E1 and E2 populations do not
generate oscillatory activities in the standard EI network [2,4],
and therefore, we excluded those connections from our model.
In a previous work, it was shown that when two local EI net-
works were coupled via long-range excitatory-excitatory con-
nections, multiple metastable dynamics emerged and switched
from one to another spontaneously [37]; however, oscillatory
activities with multiple frequencies were not observed in
such a network. Our three-population model and analysis
on the E1I1-E2I2 network suggest that the existence of long-
and short-range inhibitions may be important for generating
oscillatory dynamics with multiple frequencies.

Various effects of time delay on neural dynamics have been
studied extensively in neural field equation that models spatial
interactions. It has been shown that the delay can induce
oscillations for local excitation-lateral inhibition interaction
[38], give rise to rich bifurcation structure in a simple scalar
model [39], and stabilize stochastic bump attractors [40].
Our results demonstrate that a lumped firing rate model and
randomly connected spiking models can also develop rich
dynamic repertoire without explicit spatial interactions.

Our network simulations and analysis were restricted to
a special case in which all delays were fixed. It would be
of interest to study the effects of distributed delays in the
future, as in Refs. [41–43], to reflect biologically realistic
connectivity and go beyond the three-population motifs.
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APPENDIX A: CALCULATION OF CRITICAL COUPLINGS

We substitute λ = iω and calculate the rate response func-
tion Ra(iω) and the synaptic kernel 
ab(iω). For the rate
model,

RRM
a (iω) = 1/(1 + iτaω) = Ca exp(−iφa),

Ca = 1√
1 + τ 2

a ω2
, φa = atan(τaω),

with 0 � atan(τaω) < π/2, and for the spiking network,

RLIF
a (iω) = τmaRTHIN

a (iω) = Ca exp(−iφa),

Ca = τma

∣∣RTHIN
a

∣∣, φa = −arg
(
RTHIN

a

)
,

where RTHIN
a is the population response function obtained

numerically from the threshold integration method [29]. The
synaptic kernel


ab(iω) = exp(−iωDab)/(1 + iωτd )

= Cs exp(−iφs − iωDab),

Cs = 1√
1 + ω2τ 2

d

, φs = atan(τdω),

with 0 � atan(τdω) < π/2.
Substituting Ra(iω) and 
ab(iω) to Eq. 11 yields

0 = 1 − cr exp(−i12 − i2Dω) + ci[exp(−i3 − idω)

− cr exp(−i123 − i2Dω − idω)]

+ cp0 [cp1 exp(−i23 − i2dω)

+ cp2 exp(−i123 − i2Dω − idω)]

+ ct exp(−i123 − i2Dω − idω)

+ cd exp(−i13 − i2Dω),

where we decompose cpd and cpt in Eqs. (12) and (13) in terms
of cp0 = J23A2As, cp1 = J32A3As, and cp2 = J31J12A1A3A2

s in
order to explicitly solve for J23 in the following calculations.

To study the bifurcation structure when J23 are varied, we
manipulated Eqs. (12) and (13), as discussed in Sec. III B, to
solve for the inhibitory coupling strength J23 = cp0/(A2As):

Ac2
p0

+ 2Bcp0 + C = 0,

cp0 = 1

A
(−B ±

√
B2 − AC),

(A1)

where

A = c2
p2

− c2
p1

,

B = −crcp2 cos(3 + dω) + (cd cp2 − cicp1 ) cos(2 + dω)

− cp1 cos(23 + 2dω) − crcicp2 + ct cp2 ,

C = c2
r + (crci )

2 + c2
d + c2

t − c2
i − 1

+ 2
[(

c2
r ci − ci − crct

)
cos(3 + dω)

− crcd cos(3 − 2)

+ (ct − crci )cd cos(2 + dω) − crcict
]
.

On the other hand, to study the bifurcation structure when
both J23 and J33 are varied, we similarly manipulate Eqs. (12)
and (13) to solve for the inhibitory coupling JI where J23 =
αJI and J33 = JI :

AJ2
I + 2BJI + C = 0,

JI = 1

A
(−B ±

√
B2 − AC),

(A2)

where

A = (
cr c̄i − cp2 c̄p0

)2 − c̄2
i − (

cp1 c̄p0

)2

− 2c̄icp1 c̄p0 cos(2 + dω),

B = (
c2

r c̄i − crcp2 c̄p0 − c̄i
)

cos(3 + dω)

+ (
cp2 c̄p0 cd − cr c̄icd

)
cos(2 + dω)

− cp1 c̄p0 cos(23 + 2dω) − cr c̄ict + cp2 c̄p0 ct ,
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C = c2
r + c2

d + c2
t − 1 + 2[−crcd cos(3 − 2)

− crct cos(3 + dω) + cd ct cos(2 + dω)],

and c̄p0 = αcp0/J23 and c̄i = ci/J33.

APPENDIX B: PHASE LAG

From the second and third lines of the coefficient matrix,
Eq. (10), we can derive

δr3 = A31 + A32A21

1 + A33 + A23A32
δr1,

which implies that the relative phase difference

�φ31 = arg[(A31 + A32A21)/(1 + A33 + A23A32)] (B1)

of I3 with respect to E1 is determined by the later couplings,
A31 and A32A21, that connect E1 to E3, and the local couplings,
A33 and A23A32. In Fig. 4(b), we numerically evaluate the
above �φ31.

On the other hand, for the reduced two-population network
considered in Sec. IV B, the first line of Eq. (10),

δr3 = − 1

A13
δr1,

gives a simple expression for the phase difference

�φ31 = −π + 1 + Dω.
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