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We study the pedestrian motion along a corridor in a nonpanic regime, as usually happens in evacuation
scenarios in, e.g., schools, hospitals, or airports, by means of Monte Carlo simulations. We present a model,
a combination of the well-known social force model (SFM) and Vicsek model (VM), that takes into account
both model interactions, based on the relative position (SFM) and based on the velocity of the particles with
some randomness (modulated by an external control parameter, the noise η, VM), respectively. To clarify the
influence of the model ingredients we have compared simulations using (a) the pure Vicsek model (VM) with two
boundary conditions (periodic and bouncing back) and with or without desired direction of motion, (b) the social
force model (SFM), and (c) the model (SFM + VM). The study of steady-state particle configurations in the
VM with confined geometry shows the expected bands perpendicular to the motion direction, while in the SFM
and SFM + VM particles order in stripes of a given width w along the direction of motion. The results in the
SFM + VM case show that w(t ) � tα has a diffusivelike behavior at low noise η (dynamic exponent α ≈ 1/2),
while it is subdiffusive at high values of external noise (α < 1/2). We observe the well-known order-disorder
transition in the VM with both boundary conditions, but the application of a desired direction condition inhibits
the existence of disorder as expected. Similar behavior is observed in the SFM case. For the SFM + VM case we
find a susceptibility maximum which slowly increases with system size as a function of noise strength. This might
be indicative of a order-disorder transition in the range of densities (ρε [ 1

12 , 1
9 ]) and speeds (v0ε [0.5, 2]) studied.

DOI: 10.1103/PhysRevE.102.022307

I. INTRODUCTION

Collective behavior of a large number of self-propelled par-
ticles (SPP) can result in spontaneously developing ordered
motion observable by changes in adequate control parame-
ter(s). Many groups of living beings (from cells and bacteria
to fish, birds, mammals and even humans) exhibit this specific
kind of motion under particular conditions. From the point of
view of statistical physics, the occurrence of collective motion
is a nonequilibrium phase transition which has attracted much
attention of the community in the last decades (for more
details see the reviews [1–3]).

The first step in the understanding of this complex behavior
has been to propound simple but nontrivial models, such as the
Vicsek model (VM) [4] in the middle of the nineties. In the
VM, point particles with constant speed interact with each-
other only by trying to align their direction of motion with
their nearest neighbors, with an uncertainty of this process
represented by an external noise η. This simple rule (explained
in detail in Sec. II A) is enough to reproduce flocking behavior
at low values of η, as commonly observed in nature.

However, the complexity of collective motion often re-
quires to go beyond a point particle model by taking into
account short- and long- range particle-particle interactions
and interactions with the environment. In particular, it is pos-
sible to model a crowd as a system of particles by considering
person-person and person-wall interactions. One of the first
models of this type proposed to describe pedestrian motion
was the so-called social force model (SFM) [5]. Unlike the
simplistic Vicsek model, the SFM introduces the idea of social
interactions by modeling the individual reaction to the effect
of environment (either other pedestrians or borders), and a
preferential direction of motion. This model will be explained
in detail in Sec. II B.

The main idea of our work is to analyze—by using sta-
tistical mechanical tools—the evacuation of people along a
hallway in a nonpanic regime, such as occurs in schools,
hospitals or airports. To model this situation, it is important
to take into account a series of considerations such as: the
excluded-volume and mass of human-particles; the interper-
sonal interactions that make them want to keep their own
space; the intent to remain away from the walls; the existence
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of a desired direction of motion; but also the idea of being
influenced by the motion of nearest neighbors. With this in
mind, we propose in the present work a an approach by
introducing a model—a combination of the standard VM and
SFM—which takes into account position based particle inter-
actions as in the SFM and additionally a Vicsek-like alignment
modulated by a noise η. We call this the SFM + V M model,
and it will be described in detail in Sec. II C.

To identify the influence of the different parts of the
model, we have compared the VM, the SFM + VM, and the
SFM in the stationary configuration of N particles moving
through a corridorlike system in a normal evacuation situation
(slow speed regime). We have studied all models under the
same external conditions (number of particles N , system-size
Lx × Ly, particle speed v0, external noise η where applicable,
etc.). In particular, we have analyzed the VM under different
boundary conditions, with the purpose of introducing the
effect of walls into the VM, and the idea of a desired direction
of motion, such as it is defined in the SFM, to flesh out
the comparison between models, and we have studied the
effect of these variations on a possible order-disorder phase
transition. Finally, it is worth mentioning that even though
the SFM has been widely studied (see for example [6,7] and
references therein), the statistical physics issues related to
phase transitions of social models have been less extensively
studied (see e.g. [8,9]).

The paper is organized as follows: after this introduction,
a detailed description of the models can be found in Sec. II,
the simulation details are presented in Sec. III, and results are
analyzed and discussed in Sec. IV. In Sec. V we present a
comparison to experimental findings. Finally, a summary and
our conclusions are developed in Sec. VI.

II. MODELS

A. Vicsek model (VM)

The Vicsek model [4] describes the dynamics of N SPP
characterized at time t by their position ri(t ) and velocity
vi(t ) (i = 1, ..., N), and in its simplest version all particles
are considered to have the same speed v0 (|vi| = v0). At each
time step, particle i assumes the average direction of motion
of its neighbors (within an interaction circle of radius R0)
distorted by the existence of an external noise of amplitude η

(η = [0, 1]). The simple update rules in the 2D case are given
by

θi(t + �t ) = 〈θ (t )〉R0 + ηξi(t ), (1)

vi(t + �t ) = v0[cos θi(t + �t ), sin θi(t + �t )], (2)

ri(t + �t ) = ri(t ) + �t vi(t + �t ), (3)

where 〈θ (t )〉R0 is the average of the direction of motion
of all the nearest neighbors of the i − th particle (whose
distance ‖r j − ri‖ � R0), and ξi(t ) is a scalar noise uniformly
distributed in the range [−π, π ]. The update rules given by
Eqs. (1) and (3) are known in the literature as angular noise
[4] and forward update [10], respectively. The VM has no
intrinsic length and time scales, so one typically chooses
�t = 1 as the time unit and R0 = 1 as the length unit. For the

joined model, however, both acquire physical units through
integration with the SFM. We will see that this yields the
identification �t = 0.1 s and R0 = 1 m (see Sec. II C). The
only control parameters of the model are the noise amplitude
η, the speed v0 and the density of particles ρ = N/V , where
V = Lx × Ly is the volume of the 2D system.

These simple rules are enough to reproduce a fundamental
aspect of collective behavior: the existence of a phase transi-
tion between a disordered state and an ordered phase (where
the direction of motion is the same for all particles) as the
noise intensity η decreases. The normalized average velocity
of the system, defined as

ϕ ≡ 1

Nv0
|

N∑
i=1

vi |, (4)

is the appropriate order parameter to describe this phase
transition [2,4]. In the disordered phase ϕ ∼ 0 while ϕ → 1
for the ordered phase. A critical line ηc(v0, ρ) separates the
disordered from the ordered states. To ensure the indepen-
dence from initial conditions, ϕ has to be averaged over time
after it reaches a stationary regime. This value is called ϕstat.
The order of this phase transition is still a matter of con-
troversy [10,11]. Until now the consensus seems to indicate
that depending on how the noise is applied—angular noise or
vectorial noise—the transition can be continuous or first-order
like, respectively (for more details, see Ref. [2]).

B. The social force model

Contemporary to the VM, the social force model (SFM)
was proposed by Helbing and Molnar [5,12] to describe the
behavior of pedestrians. Since then, the SFM has been widely
studied and applied for different situations (see, for example,
Refs. [6,13,14]).

The SFM determines the direction of motion for each
particle by taking into account three interactions: the “desire
force,” the “social force,” and the “granular force,” which are
defined as

(1) The “desire force” (FDi) represents the desire of SPP to
march in a given direction; if we are modeling the evacuation
of a crowd, the target of the desire will be the exit. This force
involves the idea of a desired speed of motion vD, and it is
given by

FDi = mi
(vDêt − vi)

τRT
, (5)

where mi is the particle mass, vi is the current particle velocity,
êt the unit vector pointing to the target direction, and τRT is
the relaxation time of the particle velocity toward vD. In the
present work, the desired speed has been taken as equal to the
Vicsek-particle speed vD = v0.

(2) The “social force” (FSi) takes into account the fact
that people like to move without bodily contact with other
individuals. The “private space” wish is represented as a short
range repulsive force based on the distance ri j = ‖ri − rj‖
between the center of mass of the individual i and its neighbor
j. The complete expression is the following:

FSi =
N∑

j( 
=i)

A exp

[
(d − ri j )

B

]
n̂ij, (6)
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where the constants A and B (assumed to be the same for all
particles) define the strength and range of the social force,
n̂ij is the normalized vector pointing from pedestrian j to i,
and d is the pedestrian diameter when one considers identical
particle sizes.

(3) The “granular force” (FGi) is considered when the
pedestrians are in contact with each other. It is a repulsive
force inspired by granular interactions, includes compression
and friction terms, and is expressed as

FGi = [
k n̂ij + κ�vt

ji t̂ij
]
g(d − ri j ), (7)

where g(d − ri j ) is zero when d < ri j and d − ri j otherwise.
The first term represents a compressive force, its strength
given by the constant k, which acts in the n̂ij direction.
The second term in Eq. (7)—related to friction—acts in
the tangential direction t̂ij (orthogonal to n̂ij), and it de-
pends on the difference �vt

ji = (vj − vi) · t̂ij multiplied by the
constant κ .

The interaction pedestrian—wall is defined analogously by
means of social (FSWi) and granular forces (FGWi). If riW

denotes the distance between the i-pedestrian and the wall,
and n̂iW is the wall normal pointing to the particle, then the
“social force” is defined as

FSiW = A exp

[
(d/2 − riW )

B

]
n̂iW. (8)

Similarly, denominating t̂iW as the direction tangential
(orthogonal to n̂iW), the “Granular force” is expressed as

FGWi = [k n̂iW − κ (v̂i · t̂iW) t̂iW]g(d/2 − riW ). (9)

For the force constants in the interactions between the par-
ticles and the walls we choose the same values as for the
interparticle forces.

By considering all the forces described above, the equation
of motion for pedestrian i of mass mi is given by

vSFM
i (t + �t ) − vSFM

i (t )

= 1

mi
(FDi + FSi + FSWi + FGi + FGWi)�t, (10)

ri(t + �t ) = ri(t ) + vSFM
i (t + �t )�t . (11)

C. The combined model (SFM + VM)

Realistic evacuations in a nonpanic situation have different
behavior depending on geometry and average speed. How-
ever, and even in the case of similar boundary conditions, it
is expected that one observes differences between evacuations
in a school, hospital, or airport. An important factor here is the
existence of intrinsic fluctuations in the moving-interacting
particles, such as children, passengers, or patients. Further-
more, humans display behavior not captured by the forces in
the SFM. For instance, people would like to catch up with
those walking (or running) in front of them and avoid being
overrun by those behind, i.e., they are displaying velocity-
dependent interactions beyond spatial ones. Both these effects
can be included in the modeling by combining the standard
SFM with the Vicsek model.

The central idea is to take into account not only the
social interactions described above but the influence of nearest

neighbors in the Vicsek-style, and to include noise η as an
external parameter, which modulates this interaction. We will
refer to this model as SFM + V M. In this way, in the SFM +
VM the velocity of particle i is given by

vi(t + �t ) = v0
vV M

i (t + �t ) + �vSFM
i (t )∥∥vV M

i (t + �t ) + �vSFM
i (t )

∥∥ . (12)

Here vV M
i (t + �t ) is the velocity of particle i given by Eq. (2)

and �vSFM
i (t ) is the velocity change of the SFM given by

Eq. (10).

III. SIMULATION DETAILS

As was previously mentioned, we are going to compare all
models under equal external conditions. An important point
here is to match all relevant physical units in the models.
To match the simulations to real systems, we have assumed
length-units are given in meters and time-units, in seconds.
To correlate pedestrians with particles, in the case of the SFM
and SFM + VM, we have considered particles with d = 0.7 m
(with R0 = 1 m as the VM interaction range) and 80 kg of
mass. We use the typical value τRT = 0.5 s for the relaxation
time in the SFM and an integration time step of �t = 0.1 s.
This set of values allows us, on the one hand, to combine the
(discrete) VM with the (continuous) SFM, and on the other
hand, it yields a reliable discretization of the SFM dynamics.

After these assumptions, it is possible to define the mass
and force variables in Eq. (10) as kilograms and Newtons,
respectively, as the SFM requires.

The simulations were performed in a system of N = 300
self-propelled particles moving in corridor of size Lx × Ly,
with Lx = 600 and Ly ∈ [2.5, 6]. Periodic boundary condi-
tions were applied in the horizontal direction at Lx, so that
circulation of particles occurred in a loop. A size of Lx = 600
was then chosen to make sure that the fastest particles do not
meet the stragglers.

The characteristic parameters of SFM interactions
[Eqs. (5)–(7)] have been taken from previous works [5,15],
specifically A = 2000 N, B = 0.08 m, k = 1.2 × 105 kg s−2,
and κ = 2.4 × 105 kg/(m s). These values correspond to a
typical crowd.

In every case studied, several tests have been performed to
assure the reliability of the data, that are not shown here for the
sake of space. We made sure that starting from different initial
conditions of particle distribution in position and direction of
motion, ϕ(t ) reached the same value in the stationary regime
(ϕstat). Also, the run-to-run fluctuations in the ϕ(t ) profile
were not drastic. To determine the number of reasonable runs
for the simulations, a first study was made observing how the
average value of ϕstat and its uncertainty varied according to
how many runs were taken in the average. As a conclusion,
we considered 50 runs for each set of simulation parameters.

As was mentioned, the VM is a simple model that does not
take into account short-range interactions such as excluded-
volume or friction between particles and with walls. More-
over, taking into account that the aim of this work is to
analyze the collective motion of individuals moving through
a corridor, we introduce a series of variations on the VM.
On the one hand, we relaxed the standard periodic boundary
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FIG. 1. Snapshots in the stationary-ordered state for N = 300,
Lx = 600, Ly = 4.5 (ρ = 1/9), η = 0.05, v0 = 0.5, and for different
cases studied: (a) VM with periodic boundary conditions in the y
direction (PBC); (b) VM with bouncing-back boundary condition in
the y direction (BbBC); (c) VM + BbBc with a desired direction of
motion (DD); (d) SFM + VM; and (e) SFM (in this case, the external
noise η is not defined in the model). In all cases, PBC were applied
in the x direction. (Color online: different colors link with data
of Fig. 4.)

conditions (PBC) to a bouncing-back condition (BbC) in the
y-direction. In this way, we simulate impenetrable walls at
y = 0 and y = Ly, where particles rebound without losing
energy.

On the other hand, we have introduced a desired-direction
(DD) of motion, in such a way that the direction of motion at
time t + �t given by Eq. (1) is modified by the addition of a
desired-angle θdes as

θ̃i(t + �t ) = θi(t + �t ) + θdes

2
, (13)

with θdes = 0 in our case, indicating that particles prefer to
move to the end of the corridor. This variation of the VM
allows to introduce the existence of a preferred direction of
motion, in the same sense as it is introduced in the SFM.

Finally, particles were inserted randomly in the first 0.5
Lx of the corridor with the intention to move toward the end
of the corridor. The speed was considered in the range v0 =
[0.5, 2] (m/s), consistent with normal evacuations in schools,
hospitals, cinemas, etc.

For this reason, we have explored the range of Ly ∈ [2.5, 6]
(m) to represent the typical widths of corridors.

IV. RESULTS AND DISCUSSION

A full set of simulations was performed by taking into
account the considerations mentioned above. In Fig. 1 we
show several snapshots of stationary configurations in the or-
dered phase for all models with the same external parameters
(η = 0.05—except for the SFM—and v0 = 0.5) and different
boundary conditions.

FIG. 2. Comparison of the stationary-state configurations for
both (a) SFM and (b–d) SFM + VM for different external noise
values η, as indicated. The snapshots correspond to N = 300, Lx =
600, Ly = 4.5 (ρ = 1/9), and v0 = 0.5.

As can be seen, in the VM [Figs. 1(a)–1(c)], stationary-
ordered-states correspond to the existence of bands perpendic-
ular to the direction of motion. This fact has been widely stud-
ied and reported in the literature (see Refs. [2,3], and reference
therein). However, it is worth to mention that different bound-
ary conditions seem to affect the local order within the band of
particles [e.g., PBC in Fig. 1(a) in comparison with BbBC in
Fig. 1(b)]. For the VM cases, the most ordered configuration
corresponds to the VM + BbBC + DD [Fig. 1(c)], as it is
expected. Here, the incorporation of a preferential direction
of motion can be interpreted as an external field applied in the
system promoting order. However, in both SFM + VM at low
noise [Fig. 1(d)] and SFM [Fig. 1(e)], particles are ordered
in a horizontal cluster configuration trying to keep a distance
between each other and with the walls.

The similarity in behavior observed in snapshot configu-
rations between low noise SFM + VM [Fig. 1(d)] and SFM
[Fig. 1(e)] is broken when the noise η increases. This is
explicitly observed in Fig. 2, where, as it is expected, disorder
increases with noise η. In fact, it seems that at η = 0.5
[Fig. 2(c)] disorder in the system is maximum, while at
η = 1 [Fig. 2(d)] particles block each other (this effect will
be analyzed in detail below).

To appreciate in detail the influence of Vicsek interactions
on the spatial configuration in the SFM, we have studied the
evolution of particle clusters for several noise strengths. For
this purpose, we define the density profile in the x direction as

P(x, t ) = Number of particles between x and x + �x

N
, (14)

and consequently P(x, t ) can be interpreted as a histogram,
with bins of width �x. In our case, we have fixed �x = 5 �
d = 0.7 so that we have the chance to find many particles in
the bin. The size of the bin is such that it is not too small
to allow the cluster to be described as continuous (no empty
bins in the middle) but also not so large that it cannot be
appreciated how the size changes over time.

In this way, the width of the density profile at time t (w(t ))
can be defined as the distance between the maximum and
the minimum values of x for which P(x, t ) > 1/N , properly
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FIG. 3. (a) Density profile of the SFM + VM for η = 0.5.
(b) Log-log plot of the cluster width w(t ) versus time for different
noise strengths as indicated. The segmented lines represent the fits
to the points proposing a power-law behavior with exponent α. (c) α

as a function of noise η in the case of SFM + VM. α rises to ≈ 0.5
when the noise increases from η = 0.1 to η = 0.5, and then it decays
to zero. The data presented in the figures correspond to simulation
parameters N = 300, Lx = 600, Ly = 4.5 (ρ = 1/9), and v0 = 0.5.

normalized by considering the PBC applied in the x-direction.
With this idea, w(t ) is directly associated with the extension
of the cluster of particles as a function of time.

The obtained results show that at low noise the stationary
cluster keeps its form and w(t ) is constant in time. However,
when the noise increases particles spread and therefore the
cluster width grows with time. This effect is most relevant
for η = 0.5. The dynamic dependence of w(t ) [Fig. 3(b)]
suggests a power-law behavior of the form

w(t ) ∝ tα, (15)

where α has a strong dependence on noise. In fact, a
least-squares fit of the data gives α ≈ 0 for η = 0 and the
SFM, when external noise is increased α → 1

2 for
η = [0.2, 0.5], and it monotonously diminishes to zero for
η = 1. The alpha value observed in the η = [0.2, 0.5] range
is compatible with a diffusivelike spread of the particle front
with the typical Einstein exponent α = 1

2 . For higher noise
it seems that the competition between random movement
(given by the noise) and social-force interactions gives as a
result a subdiffusive behavior with 0 < α < 1

2 . The behavior
observed for η = 1 (see also Fig. 2(d)] is reminiscent of
the freezing by heating effect observed in the SFM in the
panic-regime [16,17]. In this case, the existence of increasing
fluctuations in the system, or nervousness of pedestrians,
produces a blocking effect and when they are in a disordered
state particles can not move in the desired direction of motion.

Let us now turn to the question of an underlying nonequi-
librium phase transition in the different models as a function
of the noise strength by evaluating the stationary state ϕstat and
its variance Var(ϕ) ≡ 〈ϕ2〉 − 〈ϕ〉2. Even in a d-dimensional
nonequilibrium system, it is possible to relate fluctuations of

FIG. 4. (a) Order Parameter ϕstat, and (b) variance Var(ϕ), as a
function of external noise η, for N = 300, Lx = 600, Ly = 4.5, v0 =
0.5, and different models studied, as indicated.

the order parameter with a finite-size susceptibility as χ ≡
Ld Var(ϕ) [18].

The dependence of both quantities (ϕstat and Var(ϕ)) as a
function of η for fixed speed (v0 = 0.5) and lattice size (Lx ×
Ly = 600 × 4.5) can be observed in Fig. 4. As a first com-
ment, it should be noted that the application of BbBC seems
to move the VM transition [maximum Var(ϕ) in Fig. 4(b)]
to higher values of η in comparison with the PBC. This is
in agreement with the snapshots of Figs. 1(a) and 1(b); at a
given noise (η < ηc) the PBC case is more disordered than
the BbBC one. Even when in both cases the stripe geometry
confines particle movement, the existence of impenetrable
walls in the BbBC increases significantly the confinement
effects, and therefore it is expected that VM-alignment should
be more relevant than for PBC.

The application of a desired direction of motion (DD) in
the VM has substantially different consequences. Unlike in
the standard VM (with both PBC and BbBC), VM + DD
prevents the existence of a disordered phase as it is expected.
This appears reflected in the fact that ϕstat � 0, and Var(ϕ) is
maximal when η → 1.

In the case of the SFM + VM the presence of an external
noise clearly modifies the behavior of motion in comparison
with the SFM in a nonpanic regime in a corridor (when
trivially one expects ϕstat = 1). Because in the SFM + VM re-
pulsive interactions between particles make the formation of a
condensed cluster more difficult, it is observed that ϕVM+DD

stat >

ϕSFM+VM
stat for every η. The existence of a maximum in Var(ϕ)

[Fig. 4(b)] suggests to analyze the dependence of this behavior
on external noise upon a variation of speed v0 and system size
Lx × Ly. To check the reliability of the SFM + VM outcomes,
we have performed the same analysis for the VM cases, where
the Var(ϕ) maximum is related to the existence of a phase
transition.

Our results are shown in Fig. 5. As can be seen, in the
VM [Figs. 5(a) and 5(b)] the peak of the susceptibility χ =
(LxLy)Var(ϕ) becomes narrower and higher as both N and
system size are increased. This behavior is not observed in
the case of VM + DD [Fig. 5(c)], as expected. In the case of
the SFM + VM the—rounded—peak of χ as a function of η

increases in height as N and the system size grow; however, it
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FIG. 5. χ = (LxLy )Var(ϕ) as a function of noise η for fixed
density ρ = 1/9, v0 = 0.5, and different system size Lx × Ly and
number of particles N , as indicated for (a) VM with PBC, (b) VM
with BbBC, (c) VM with BbBC and desired direction of motion
(DD), and (d) SFM + VM.

sharpens only very slowly. This could indicate an underlying
phase transition but to clearly establish its existence it would
be necessary to study much larger system sizes at fixed
density than is possible within the scope of the present work.
However, it is noteworthy that although the effect of external
noise η in the model is less important than in the VM, it seems
enough to break the symmetry imposed by SFM interactions.

Similar behavior is observed for the dependence of χ on
speed v0 (see Fig. 6). The susceptibility maximum diminishes
as the speed increases, and its position seems to move to η = 1
for larger v0. As can also be seen in this figure, for a given
speed v0 the maximum values of χ are higher in the case of
the VM + BbBC than the SFM + VM.

Additionally, substantial information can be gleaned from
level plots of ϕstat for several Ly values and noise values
in the range 0–0.6 (Fig. 7). Because in these plots we are
keeping N and Lx fixed, the vertical axis Ly is an indirect

FIG. 6. χ = Var(ϕ)(LxLy ) as a function of noise η for N = 300,
Lx = 600, Ly = 4.5 and different speeds v0 as indicated. Cases are
(a) VM with BbBC and (b) SFM + VM.

FIG. 7. Level plots of ϕstat for N = 300, Lx = 600 as a function
of noise η (x axis). Left panel: for different densities (Ly variable and
Lx fixed) for fixed speed v0 = 0.5. Right panel: for different speeds
v0 at fixed Ly = 4.5 (ρ = 1/9).

representation of the density ρ. From these plots it can be
appreciated that although the previous analysis was presented
for a given value of ρ and v0, similar behavior is observed for
ρε[ 1

12 , 1
5 ] and v0ε[0.5, 2] (Fig. 7). In this way, our conclusions

can be extended to a wide range of densities and speeds within
the nonpanic regime.

V. COMPARISON WITH EXPERIMENTS

A great variety of experiments and real-life analysis have
been carried out on pedestrian motion in corridor geometries
(see, e.g., Refs. [19–21]). However, to quote from the intro-
duction of [21]: “Despite the obvious importance of empirical
data, it is surprising that no consensus about the correct quan-
titative description exists even for the simplest scenarios.”
The fundamental diagram (FD) of pedestrian flow—a relation
between flux and density–has emerged as the most impor-
tant tool to analyze pedestrian motion. We have therefore
determined the FD for our model as the standard measure
to compare model results with real data. To obtain the FD it
is necessary to define the pedestrian flow rate Js = �N/�t ,
where �N is the number of pedestrian crossing a fixed loca-
tion in a discrete-time interval �t , and ρ�V is the local density
measured as the total number of pedestrians in a volume
�V = Ly�x close to the flow measurement point (�x = 12
in our case). We have built the FD considering that in our case
the speed v = v0 is constant. In Fig. 8 we show the results
obtained for the SFM + VM in the stationary regime for η =
0 and different values of corridor width (Ly) and speed (v0).
Additionally, in the Inset of Fig. 8 we present the outcomes
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FIG. 8. Js as a function of local density ρV , for different corridor
widths Ly and number of particles N , as indicated, for the SFM +
VM at η = 0. Black symbols correspond to v0 = 0.5 and red ones to
v0 = 2. Dashed lines have slope v0ρ�V . Inset: fundamental diagram
for fixed Ly = 4.5, v0 = 0.5, N = 300, and different noise values η

as indicated. Full lines are to guide the eye.

considering several values of the external noise for fixed
corridor width Ly = 4.5 and speed v0 = 0.5. The results in
the η = 0 case (nonpanic evacuation) are in good qualitative
agreement with experimental data (see, e.g., Refs. [19–21]).
A first increasing behavior of Js as a function of local density
is observed, and for v0 = 0.5 a maximum is reached at ρ�V �
1.2 beyond which the flux decreases again. At v0 = 2 only
the growing behavior is observed because at this speed the
crowd is more extended, and therefore higher values of ρ�V

are unreachable in the stationary state at η = 0. Inclusion of
noise, as in the inset, does not change the qualitative form of
the FD but compressed it in the density direction and shifts the
maximum to lower values of ρ�V and a lower maximum flux.

VI. SUMMARY AND CONCLUSIONS

We have studied the role of interactions in the behavior of
pedestrians moving in a corridorlike system. For this purpose,
we have introduced a model that we have called SFM + VM,
as a combination of both the well-known Vicsek and social
force models. To check its performance, we have started our
analysis with the Vicsek model in a confined geometry with
different boundary conditions applied. In particular, we have
studied the effects of bouncing-back boundary conditions
that reproduce the effects of walls, and the existence of a
desired direction of motion—the end of the corridor. We have
compared these results to those obtained with the SFM and
the SFM + VM.

Particle configurations in the ordered-steady-state are qual-
itatively different between the models analyzed. While in
the VM, particles move in a more or less compact band
perpendicular to the direction of motion, in the SFM and the
SFM + VM particles exhibit some horizontal stripes parallel
to the direction of motion. This effect is a consequence of
the repulsive interactions between particles and with the walls

present in those two models (Figs. 1 and 2). To compare both
SFM and SFM + VM, we have analyzed the density-profile
in the direction of motion (x) and determined its width as a
function of time. Our results indicate that the width in the
SFM + VM case has a power-law behavior with a dynam-
ical exponent α, which depends on the external noise η. In
particular, we have determined that α ≈ 1/2 at η = [0.2, 0.5]
and it monotonously approaches α = 0 at η = 1 (Fig. 3). We
have associated this change from an expected diffusivelike to
a subdiffusive behavior to the competition between VM-like
interactions and social interactions. At high noise, fluctuations
have a freezing by heating effect, that has been reported
only in the panic-regime before [16,17]. In our case, this
effect appears in the system even at low-speed values, as a
consequence of the introduction of the external noise, which
therefore offers a means to introduce confusion or panic into
evacuation models even at small speed of motion.

We have analyzed the order parameter ϕ, defined as the
average velocity of the system, and its variance as function
of external noise η for the diverse models described above
(Figs. 4 and 5). In the VM, the application of different
boundary conditions (periodic and bouncing-back) moves the
critical value of the order-disorder phase transition to higher
values of η. In contrast, the existence of a desired direction of
motion in the VM promotes the order even at high values of
external noise, annihilating the phase transition as expected. In
the SFM + VM, the existence of an external noise that mod-
ulates the Vicsek-like interactions brakes the SFM symmetry
(Fig. 6). As a consequence, both the order parameter and its
variance are sensitive to this effect. Finally, we consider it im-
portant to remark that these outcomes can be observed in the
whole range of densities ρ ε [ 1

12 , 1
9 ] and speeds v0 ε [0.5, 2]

studied, which encompass reasonable values of evacuations in
a nonpanic regime (Fig. 7).

Based on these results and the comparison with real data
(Fig. 8), we can conclude that the SFM + VM is a viable
model to describe the pedestrian motion along a corridor
in a nonpanic regime. It allows us to elucidate the role of
the competition between social and alignment interactions,
characteristics of the SFM and the VM, respectively.

In the SFM + VM, alignment interactions are tuned by the
external noise η same as for the VM and this allows us to
address questions on the existence of a nonequilibrium order-
disorder transition controlled by this parameter. Our results
are qualitatively compatible with the existence of such a
transition, however, the approach to the thermodynamic limit
seems to be very slow putting a final quantitative conclusion
beyond the scope of this work.
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