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Wealth distribution under the spread of infectious diseases
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We develop a mathematical framework to study the economic impact of infectious diseases by integrating
epidemiological dynamics with a kinetic model of wealth exchange. The multiagent description leads to the
study of the evolution over time of a system of kinetic equations for the wealth densities of susceptible, infectious,
and recovered individuals, whose proportions are driven by a classical compartmental model in epidemiology.
Explicit calculations show that the spread of the disease seriously affects the distribution of wealth, which,
unlike the situation in the absence of epidemics, can converge toward a stationary state with a bimodal form.
Furthermore, simulations confirm the ability of the model to describe different phenomenon characteristics of
economic trends in situations compromised by the rapid spread of an epidemic, such as the unequal impact on
the various wealth classes and the risk of a shrinking middle class.
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I. INTRODUCTION

The rapid spreading of the COVID-19 epidemic in western
countries and the consequent lockdown measures assumed by
the governments to control and limit its effects will unequiv-
ocally lead to important consequences for their economies.
Clearly, a precise quantification of the damages of the dis-
ease spreading in wealth distribution is an extremely difficult
problem which requires the knowledge of a large number
of unknown variables and relationships among them. In an
attempt to gain a better understanding of the mechanisms
underlying the possible consequences of this new epidemic
on Western economies, it is useful to rely on simplified
mathematical models which, although based on a few evident
universal characteristics, can be analyzed to provide answers
on possible scenarios.

Driven by this objective, in this paper we develop a math-
ematical framework to jointly model the wealth distribution
and spread of the infectious disease in a multiagent system,
by integrating the dynamics of a classical compartmental
model in epidemiology [1–3] with the kinetic model of trading
activity introduced in [4]. While this paper concentrates on
the classical SIR (susceptible, infected, recovered) dynamics,
it can be easily extended to incorporate other epidemiolog-
ical dynamics, like the classical endemic models [2], or to
couple the SIR dynamics with other social and economical
phenomena of multiagent systems [5]. Resorting to the SIR
model means that we abstract away from disease-related
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mortality. Clearly, this is a strong hypothesis, as it excludes
demographic interaction. However, it is currently believed that
the mortality rate of COVID-19 is low enough to justify this
assumption. In addition, the introduction of disease-related
mortality introduces an additional state variable, population
size, which makes the complete mathematical description of
the economy at the end of the epidemic more complex.

An easy way to understand epidemiology models is that
they specify movements of individuals between different
states based on some matching functions or laws of mo-
tion. According to the classical SIR models [2], agents in
the system are split into three classes, the susceptible, who
can contract the disease, the infectious, who have already
contracted the disease and can transmit it, and the recov-
ered, who are healed and immune or isolated. Consequently,
with respect to the modeling assumptions made in [4], the
forthcoming kinetic model is composed by a system of three
kinetic equations, each of one describing the time evolution
of the wealth distribution density in the class, and taking
into account both the movements of agents from one class to
others, and the trading activity between agents of the same
class or of different classes.

The elementary trading interactions are suitably modified
to take into account the personal response of agents in the dif-
ferent classes to the presence of the infectious disease. In par-
ticular, since the saving is expected to change in response to
disease incidence [6], we will assume that agents in each class
are represented by a different saving propensity. In addition,
to take into account the variation of the market in presence
of a reduced trading activity during the infectious disease, we
introduce a variable in time variance of the random effects
modeling the external market risks. This assumption is based
on the evidence of the market reactions to the daily number
of infectious individuals reported by governments. Thus the
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observed “endogenous effects” are a consequence of our
simplified modeling of more complex “exogenous effects,”
like lockdown policies and other restrictions. Although the
resulting model is particularly simplified compared to the
complexity of the problem, its foundations are based on
models that are currently references in their respective fields.
From the epidemic side, the SIR model is widely used in most
applications (cf. [2] and the references therein). Also, from
the side of statistical mechanics of multiagent systems, the
kinetic model introduced in [4] has been shown to be flexible
with respect to different problems coming from the economy.

Mathematical modeling of wealth distribution has seen in
recent years a marked development [7–21], mainly linked
to the understanding of the mechanisms responsible for the
formation of Pareto tails [22,23]. However, in most of the
models considered so far, the explicit form of the equilibrium
density, which represents one of the main aspects linked to the
validity of the model in its economic setting, is not explicitly
known, and only a few relatively simple models can be treated
analytically [24–26].

For this reason, the description of the evolution of the
personal wealth is revealed to be successful by resorting to
a description in terms of a Fokker-Planck-type equation that
allows for an explicit computation of the steady state distri-
bution. In [27] Bouchaud and Mezard introduced a simple
model of the economy, where the time evolution of wealth
is described by an equation capturing both exchange between
individuals and random speculative trading, in such a way that
the fundamental symmetry of the economy under an arbitrary
change of monetary units is insured. A Fokker-Planck-type
model was then derived through a mean field limit procedure,
with a solution becoming in time a Pareto (power-law) type
distribution.

The key feature of the steady state solution of the Fokker-
Planck equation is that it is given by the inverse Gamma
density,

f ∞(w) = (μ − 1)μ

�(μ)

exp
(−μ−1

w

)
w1+μ

, (1)

where μ > 1 is a positive constant which can be related to
the interaction parameters. In agreement with the observations
of the Italian economist V. Pareto [22] on the distribution of
wealth, the equilibrium density (1) exhibits a power-law tail
for large values of the wealth variable.

The Fokker-Planck equation in [27] appears as a limit of
different kinetic models. In particular, it was obtained in [4]
via an asymptotic procedure applied to a Boltzmann-type
kinetic model for binary trading in the presence of risks.
Also, the same equation with a modified drift term appears
when considering suitable asymptotics of Boltzmann-type
equations for binary trading in the presence of taxation, in the
case in which taxation is described by redistribution operators
introduced in [28,29]. Systems of Fokker-Planck equations
have been considered in [30] to model wealth distribution in
different countries which are coupled by mixed trading, and
to study the evolution of wealth in a society with agents using
personal knowledge to trade [31]. These results contributed
to retaining that the kinetic model in [4] and its Fokker-
Planck asymptotics represent a quite satisfactory description

of the time evolution of wealth density toward a Pareto-type
equilibrium in a trading society.

While in normal trading activity it is commonly assumed
that many agents behave in a similar way, in the presence of
an extraordinary situation like the one due to the epidemic,
it is highly reasonable to conjecture that the behavior of
individuals is strictly affected by their personal situation in
terms of health or wealth. In order to simplify the treatment,
in this work we focus on the assumption that it is the state of
health that changes people’s behavior in the economic field.
This assumption is justified by thinking both that susceptible
people understand that consuming and working less reduces
the probability of becoming infected and that the country
does not have a government-funded health care system. More
generally, the model can be clearly extended to consider more
realistic dependencies on the wealth of individuals. However,
this does not change the essential conclusion of our analysis,
namely, that the spread of the disease seriously affects the dis-
tribution of wealth, which, unlike the situation in the absence
of epidemics, can converge toward a stationary state with a
bimodal form [32,33].

The rest of the paper is organized as follows. In Sec. II, we
shall introduce the system of three SIR-type kinetic equations
combining wealth dynamics and spread of infectious disease
in a multiagent interacting system. Then, the qualitative anal-
ysis of the system of kinetic equation is briefly presented
in Sec. II B. For a better reading, the mathematical details
leading to the main results of this section are postponed to the
Appendix. In Sec. III we will show that in a suitable asymp-
totic procedure the solution to the kinetic system tends toward
the solution of a system of three SIR-type Fokker-Planck-type
equations. Once the system of Fokker-Planck-type equations
has been derived, we recover in a simplified case the explicit
steady state of the wealth distribution, which is found to
have a bimodal shape. In Sec. IV we will investigate at a
numerical level the relationships between the solutions of
the kinetic system of Boltzmann type and its Fokker-Planck
asymptotics. Simulations confirm the ability of the model to
describe different phenomena characteristic of the economic
trend in situations compromised by the rapid spread of an
epidemic, like the unequal impact over the various wealth
classes and the risk of a shrinking middle class.

II. WEALTH DYNAMICS IN EPIDEMIOLOGIC MODELS

The goal of this section is to build a kinetic system suitable
to describe the evolution of wealth in a multiagent system
under the spread of an infectious disease. As in classical SIR
models [2], the entire population is divided into three classes
of agents: the susceptible, who can contract the disease; the
infectious, who have already contracted the disease and can
transmit it; and the recovered, who are healed and immune or
isolated.

Agents in the system are considered indistinguishable [5].
This means that an agent’s state at any instant of time t � 0
is completely characterized by the wealth w � 0, measured
in some unit. We denote by fS (w, t ), fI (w, t ), and fR(w, t ),
w ∈ R+, the wealth distributions at time t > 0 of susceptible,
infectious, and recovered individuals, respectively. The total
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wealth distribution is then recovered as

f (w, t ) = fS (w, t ) + fI (w, t ) + fR(w, t ).

As outlined in the introduction, we do not introduce disease-
related mortality. Therefore, we can fix the total wealth distri-
bution to be a probability density∫

R+
f (w, t )dw = 1, t > 0.

As a consequence

S(t ) =
∫
R+

fS (w, t )dw,

I (t ) =
∫
R+

fI (w, t )dw,

R(t ) =
∫
R+

fR(w, t )dw (2)

denote the fractions of the population that are susceptible,
infectious, and recovered, respectively. We also denote the
total mean wealth as

m(t ) =
∫
R+

w f (w, t )dw,

and the relative mean wealth as

mS (t ) =
∫
R+

w fS (w, t )dw,

mI (t ) =
∫
R+

w fI (w, t )dw,

mR(t ) =
∫
R+

w fR(w, t )dw. (3)

In what follows, we assume that the evolution of the densities
obeys the classical SIR model [2], and that the various popula-
tions in the model act differently in the economic process. The
kinetic model then follows combining the epidemic process
with the wealth dynamics, as modeled by [4]. This gives the
system

∂ fS (w, t )

∂t
= −K (w, t ) fS (w, t ) +

∑
J∈{S,I,R}

Q( fS, fJ )(w, t ),

(4)

∂ fI (w, t )

∂t
= K (w, t ) fS (w, t ) − γ (w) fI (w, t )

+
∑

J∈{S,I,R}
Q( fI , fJ )(w, t ), (5)

∂ fR(w, t )

∂t
= γ (w) fI (w, t ) +

∑
J∈{S,I,R}

Q( fR, fJ )(w, t ), (6)

where γ (w) is the recovery rate for people with wealth w, and
the transmission of the infection is governed by the function

K (w, t ) =
∫
R+

β(w,w∗) fI (w∗, t )dw∗, (7)

with β(w,w∗) denoting the contact rate between people with
wealths w and w∗.

The choice of a wealth-dependent recovery rate can be
easily motivated by considering that wealth can buy access to

better hospitals and better treatments, thus ensuring a higher
chance of recovery. Also, a wealth-dependent contact rate, in
the form of a decreasing function of the difference |w − w∗|,
can be introduced to express that individuals with different
degrees of wealth live in different environments, and this
limits contacts in the presence of a marked difference.

In Eqs. (4)–(6) the operator Q characterizes the wealth
evolution due to trading between agents of the same class, or
between agents of different classes, and is built according to
the model of Cordier, Pareschi, and Toscani [4]. We adopted
the notation fJ , J ∈ {S, I, R}, to denote the three different
classes of individuals. Clearly, the presence of the epidemic is
responsible for suitable modifications that will be enlightened
in detail in the following.

Let us consider the wealth interactions in Eq. (4) concern-
ing the susceptible part of the population. Denoting with w the
wealth of the susceptible individuals and with w∗ the wealth
of individuals belonging to the various classes of susceptible,
infectious, and recovered, the binary trades are characterized
by

w′ = (1 − λS )w + λJw∗ + ηSJw,

w′
∗ = (1 − λJ )w∗ + λSw + η̃SJw∗, (8)

where J ∈ {S, I, R} and λJ ∈ (0, 1) are transaction coeffi-
cients, while the market risk variables ηSJ � −λS and η̃SJ �
−λJ are independent and identically distributed random vari-
ables with zero mean and the same time-dependent variance
σ (t ) (since the risk in the market does not depend on the
particular class of trading agents) that will be discussed later.

Similarly we can consider interactions in Eq. (5) concern-
ing the infectious part of the population, which, denoting with
w the wealth of the infectious individuals, read

w′ = (1 − λI )w + λJw∗ + ηIJw,

w′
∗ = (1 − λJ )w∗ + λIw + η̃IJw∗, (9)

where J ∈ {S, I, R} and now ηIJ � −λI and η̃IJ � −λJ are
again random variables with zero mean and variance σ (t ).

Finally, concerning interactions in Eq. (6) if w is the wealth
of the recovered individuals we get

w′ = (1 − λR)w + λJw∗ + ηRJw,

w′
∗ = (1 − λJ )w∗ + λRw + η̃RJw∗, (10)

where J ∈ {S, I, R}, and ηRJ � −λR and η̃RJ � −λJ are ran-
dom variables with zero mean and variance σ (t ).

A. Inside the binary trades

To clarify the modeling assumptions that lead to the present
choice of trades, we recall the main consequences related to
the original choice made in [4]. The trade between agents has
been modeled to include the idea that wealth changes hands
for a specific reason: one agent intends to invest his wealth in
some asset, property, etc., in possession of his trade partner.
Typically, such investments bear some speculative risk, and
either provide the buyer with some additional wealth, or lead
to the loss of wealth in a nondeterministic way. An easy real-
ization of this idea consists of coupling the saving propensity
parameter [9,10] with some risky investment that yields an
immediate gain or loss proportional to the current wealth
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FIG. 1. Parameter ranges with different tail regimes for homoge-
neous interactions.

of the investing agent. Hence 0 < λJ < 1, j ∈ {S, I, R}, are
the parameters which identify the saving propensities 1 − λJ ,
namely the intuitive behavior which prevents the agent from
putting in a single trade the whole amount of his money. The
choice λR > λS , for example, reflects the fact that susceptible
individuals can be more cautious in the market and tend to
save their wealth, since they understand that consuming and
working less reduces the probability of infection [34]. On the
other hand, infectious individuals have limited possibilities to
act on the market and, as we will see, asymptotically disappear
from the wealth dynamics.

The model describes two main types of wealth interactions:
interactions between individuals with the same status (ho-
mogeneous interactions) and interactions between individuals
with different status (heterogeneous interactions). Consider
the first case, for example, the wealth interaction between
susceptible individuals. The role of the risk variables ηSS and
η̃SS , for J = S in (8), has been clarified in [35] resorting to a
specific choice. The easiest one leading to interesting results
is ηSS = ±ξ where each sign comes with probability 1/2. The
factor ξ ∈ (0, λS ) should be understood as the intrinsic risk
of the market: it quantifies the fraction of wealth agents are
willing to “gamble” on. Within this choice, one can display the
various regimes for the steady state of wealth in dependence
on λ = λS and ξ (see Fig. 1). In the zone corresponding to
low market risk, the wealth distribution shows a “socialistic”
behavior with slim tails. Increasing the risk, one falls into a
“capitalistic” zone, where the wealth distribution displays a
Pareto fat tail. A minimum of saving (λ > 1/2) is necessary
for this passage; this is expected since if wealth is spent too
quickly after earning, agents cannot accumulate enough to
become rich. Inside the capitalistic zone, the Pareto index
decreases from +∞ at the border with the socialist zone to
unity. Finally, one can obtain a steady wealth distribution
which is a Dirac delta located at zero. Both risk and saving
propensity are so high that a marginal number of individuals
manages to monopolize all of the society’s wealth.

On the other hand, the interaction between individuals
with different status presents similar dynamics but with an
important difference. The role of the risk variable, as we have

said, is the same, since it represents a common factor in the
economic system, but the different individual saving propensi-
ties lead to a different exchange of wealth between agents. Let
us consider, for example, the interaction between susceptible
and recovered individuals in (8) for J = R. Compared to the
previous dynamics between only susceptible agents, if we
assume λR = λS + δ, δ > 0, it is evident that the risk of loss
of the recovered becomes δ + η̃SR and has no longer zero
average. A similar but reversed argument shows that this
produces a systematic gain for the susceptible.

In view of the previous discussion, it is reasonable to
assume that in the presence of a significant spread of the
epidemic, the risk variance tends to increase. This is in agree-
ment, for example, with the market reactions we observed dur-
ing the COVID-19 spreading at the announcements of the new
numbers of infectious people in the various countries [36]. A
simple example is based on assuming that the value takes into
account the instantaneous number of infected people,

σ (t ) = σ (1 + αI (t )). (11)

Possible long-term memory effects of the infection-dependent
risk variance can be suitably introduced. We postpone a more
detailed comparison to the numerical examples presented in
the last section of the paper.

We are now ready to define the operator Q(·, ·) in the
various cases. As observed in [4,5] a convenient way to
express the operator is based on its weak form, namely the
way the operator acts on observables. Let φ(v) denote an
observable function and let us define with 〈·〉 the expected
value with respect to the pair ηi, η̃i in the interaction process.
Then, adopting the previous notations for the wealth of the
susceptible and recovered, in (4) the action of Q( fS, fJ )(w, t )
on φ(w) is given by∫

R+
Q( fS, fJ )φ(w)dw

=
〈∫

R2+
fS (w, t ) fJ (w∗, t )[φ(w′) − φ(w)]dw∗ dw

〉
,

(12)

where w′ is defined by (8). Similarly Q( fI , fJ )(w, t ) in (5) is
characterized by∫

R+
Q( fI , fJ )φ(w)dw

=
〈∫

R2+
fI (w, t ) fJ (w∗, t )[φ(w′) − φ(w)]dw∗ dw

〉
,

(13)

with w′ given by (9) and Q( fR, fJ )(w, t ) in (6) by∫
R+

Q( fR, fJ )φ(w)dw

=
〈∫

R2+
fR(w, t ) fJ (w∗, t )[φ(w′) − φ(w)]dw∗ dv

〉
, (14)

w′ being defined as in (10).
A couple of remarks are important before moving on to a

more detailed analysis of the model.
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Remark 1

(i) For simplicity, we assumed the parameters character-
izing the saving propensities constant. More generally it is
possible to consider λJ = λJ (w, I ) functions of the individual
wealth and the number of infected people as it is natural that
individuals take into account not only their condition but also
the epidemic as a whole—for example, by determining the
functions λJ (w, I ) on the basis of suitable utility functions
[34]. We are aware that this would make the model more real-
istic, but since the essential characteristics of the dynamics are
not altered and on the contrary the mathematical analysis of
the model would become extremely difficult, in the following
we will focus on mathematically treatable scenarios that allow
us to draw general conclusions.

(ii) A general criticism may concern the assumption that
total wealth is preserved in the exchange processes [37].
However, it has been observed, see [23], that nonconservative
models can be reformulated in conservative form under an
appropriate self-similar scaling that normalizes the overall
wealth. In this sense, the original wealth model [4] is not
conservative at the binary trade level since it allows the
random stochastic multiplicative process to produce wealth,
therefore taking into account not only exchanges but also
production. However, its asymptotic analysis in a conservative
context makes it possible to identify the observed stylized
facts of a real economy, such as the formation of power-law
tails in the wealth distribution [23,35].

(iii) In (12)–(14) we assumed an identical interaction
frequency (equal to unity). This is clearly a simplified but
reasonable choice, which is based on the assumption that the
agent entering a binary trade is generally not aware of the
health status of the other agent in relation to the epidemic.
However, both the quantitative and qualitative analysis of the
system can easily be generalized to operators with different
weights.

B. Properties of the kinetic model

This section deals with the mathematical analysis of the
Boltzmann-type system (4)–(6), with the principal objective
to describe the large-time behavior of the solution, its conver-
gence to a unique final state, as well as its main properties. We
will present only the main results, by postponing the details
of the computations to the Appendix. To avoid inessential
difficulties in the computations, we will limit ourselves to
consider a simplified version. We assume the interaction rate
of the infections β(w,w∗) = β constant in expression (7),
a constant function γ (w) = γ , and α = 0 in (11), so that
σ (t ) = σ . In this case, the system (4)–(6) SIR can be fruitfully
rewritten resorting to Fourier transforms. Note however that
we can resort to Fourier transform also in the more realistic
case in which the function K (w, t ) in (7) is given by a
convolution, that is,

K (w, t ) =
∫
R+

β(w − w∗) fI (w∗, t )dw∗, (15)

with β(w) ∈ L1(R+).

Given a function f (w) ∈ L1(R+), we define its Fourier
transform by

f̂ (ξ ) =
∫
R

e−iwξ f (w) dw.

Then the system (4)–(6) takes the form

∂ f̂S (ξ, t )

∂t
= −βI (t ) f̂S (ξ, t ) +

∑
J∈{S,I,R}

Q̂( f̂S, f̂J )(ξ, t ), (16)

∂ f̂I (ξ, t )

∂t
= βI (t ) f̂S (ξ, t ) − γ f̂I (ξ, t )

+
∑

J∈{S,I,R}
Q̂( f̂I , f̂J )(ξ, t ), (17)

∂ f̂R(ξ, t )

∂t
= γ f̂I (ξ, t ) +

∑
J∈{S,I,R}

Q̂( f̂R, f̂J )(ξ, t ). (18)

The operators Q̂( f̂H , f̂J )(ξ, t ) are easily defined in terms of
the Fourier transforms of f̂J , with J ∈ {S, I, R}, by choosing in
(12)–(14) as observable function φ(w) = exp{−iwξ} [5,13].
One easily obtains

Q̂( f̂H , f̂J )(ξ, t ) = 〈 f̂H (AHJξ, t )〉 f̂J (λJξ, t ) − IJ (t ) f̂H (ξ, t ),

where IJ (t ) and AHJ , with H, J ∈ {S, I, R}, denote the mass
fractions at time t � 0 of the susceptible, infectious, and
recovered and, respectively, the random parameters

AHJ = 1 − λH + ηHJ . (19)

In what follows, let us suppose that these parameters satisfy
the condition

ν = max
H,J∈{S,I,R}

[
λ2

J + 〈
A2

JH

〉]
< 1. (20)

By evaluating the mean values of the random parameters A2
JH

it can be shown that this condition is verified at any time such
that

σ < 2 min
H∈{S,I,R}

λH (1 − λH ). (21)

Inequality (21) establishes a relationship between the saving
propensities and the risks of the market. The large-time be-
havior of solutions to systems like (16)–(18) can be studied
by resorting to a class of metrics which has been shown to
be particularly suitable for bilinear equations of Boltzmann
type with Maxwell interactions [5]. Let f and g be probability
densities. Then, for a given constant s > 0 we define

ds( f , g) = sup
ξ∈R

| f̂ (ξ ) − ĝ(ξ )|
|ξ |s . (22)

The metric ds is finite any time the densities f and g possess
equal moments up to [s], the entire part of s, and up to s − 1
if s ∈ N.

The following theorem will certify that the kinetic system
(4)–(6) is well posed from a mathematical point of view.

Theorem 1. Let fJ (w, t ) and gJ (w, t ), J ∈ {S, I, R},
be two solutions of the kinetic system (4)–(6), corre-
sponding to initial values fJ (w, 0) and gJ (w, 0) such that
d2( fJ (w, 0), gJ (w, 0)), J ∈ {S, I, R}, is finite. Then, pro-
vided condition (20) holds, the Fourier-based distance
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d2( fJ (w, t ), gJ (w, t )) decays exponentially in time to zero,
and the following holds:∑

J∈{S,I,R}
d2( fJ (w, t ), gJ (w, t ))

�
∑

J∈{S,I,R}
d2( fJ (w, 0), gJ (w, 0)) exp{−(1 − ν)t}. (23)

To simplify the presentation, even if the above result is
of fundamental relevance in our analytical treatment of the
model, we have postponed the details of the proof to the
Appendix.

In view of the completeness of the ds metrics for 1 < s <

2, see [38], and since convergence in the d2 metric implies
convergence in the ds metric for any s < 2, see [5], the
existence of the long-time limit f ∞

J (w), J ∈ {S, I, R}, can be
concluded directly from the contractivity of the system in the
d2 metric.

Theorem 1 allows us to further investigate properties of
the limit densities f ∞

J (w), J ∈ {S, I, R}. To this aim, we use
the fact that the relative mass densities of the Boltzmann-type
system (4)–(6) satisfy the classical SIR model:

dS(t )

dt
= −βI (t )S(t ),

dI (t )

dt
= +βI (t )S(t ) − γ I (t ),

dR(t )

dt
= γ I (t ). (24)

In this case (cf. [2]) it is known that I (t ) → 0, while S(t ) →
S∞ ∈ [0, γ /β] solution of

I (0) + S(0) − S∞ + γ

β
ln

(
S∞

S(0)

)
= 0.

Therefore, if the initial densities fJ (w, t = 0), J ∈ {S, I, R},
are such that

S(t = 0) = S∞, I (t = 0) = 0, R(t = 0) = 1 − S∞,

(25)
at any subsequent time t > 0 the masses of the functions
fJ (w, t ) still satisfy conditions (25). This implies that the
limit density f ∞

I (w) = 0, while f ∞
J (w), J ∈ {S, R} are steady

solutions of the Boltzmann system:∑
J∈{S,R}

Q( fS, fJ )(w, t ) = 0,
∑

J∈{S,R}
Q( fR, fJ )(w, t ) = 0.

Indeed, denote by f ∞
J (t ), J ∈ {S, I, R}, the solution to the

system (4)–(6) with initial datum f ∞
J J ∈ {S, I, R}, thus satis-

fying (25). Then, for any other density fJ (w, t ), J ∈ {S, I, R},
satisfying the same conditions (25), Theorem 1 implies

d1
(

f ∞
J (t ), f ∞

J

)
� d1

[
f ∞
J (t ), fJ (t + T )

]+d1
[

fJ (t + T ), f ∞
J

]
� 23/2 exp

{
− (1 − ν)t

2

}
d1

[
f ∞
J , fJ (T )

]
+ d1

[
fJ (t + T ), f ∞

J

]
.

The first bound follows from the interpolation property of the
metric ds (cf. Proposition 2.1 in [5]), and from the decay for-

mula (23). Moreover, since the existence of the long-time limit
f ∞
J , J ∈ {S, I, R}, is enough to conclude that fJ (t ) converges

to this limit in d1, the last expression can be made arbitrarily
small by choosing T large enough. This implies f ∞

J (t ) = f ∞
J

for all t � 0. Moreover, the functions f ∞
J , J ∈ {S, I, R}, are

the only steady state with values of the masses given by (25);
if g∞

J is another steady state with the same masses, then
d1[ f ∞

J , g∞
J ] is finite, and so, invoking Theorem 1 again,

d1
[

f ∞
J , g∞

J

]
� e−rd1

[
f ∞
J , g∞

J

]
,

which forces f ∞
J = g∞

J .

III. FOKKER-PLANCK SCALING AND STEADY STATES

To analyze the asymptotic behavior of the model it is useful
to resort to the so-called quasi-invariant trading limit which
permits us to derive the corresponding Fokker-Planck de-
scription from (4) and (5). A similar asymptotic analysis was
performed in [13,39] for a kinetic model for the distribution
of wealth in a simple market economy subject to microscopic
binary trades in the presence of risk, showing formation of
steady states with Pareto tails, in [40] on kinetic equations
for price formation, and in [41] in the context of opinion
formation in the presence of self-thinking. A general view
about this asymptotic passage from kinetic equations based
on general interactions toward Fokker-Planck-type equations
can be found in [42]. Other relationships of this asymptotic
procedure with the classical problem of the grazing collision
limit of the Boltzmann equation in kinetic theory of rarefied
gases have been recently enlightened in [43].

Let us consider the case in which the trading produces
only small modification of the wealth, and simultaneously the
frequency of trading is increased. Following [4,5,42], we scale
the binary trades accordingly to

λS → ελS, λI → ελI ,

λR → ελR, σ → εσ.
(26)

Furthermore, in order to keep track of the epidemic dynamics
we introduce similarly the scaled functions governing the
spread of the disease,

β(w,w∗) → εβ(w,w∗), γ (w) → εγ (w), (27)

and denote with Qε(·, ·) the corresponding scaled interaction
terms. We can observe how in the introduced scaling all the
dynamics are quasi-invariant, meaning that small values of
ε 	 1 correspond to small variations of the dynamics. Note
that in the scaling (26), condition (21) for ε → 0 reads

min
H∈{S,I,R}

2λH

σ
> 1, (28)

which is the natural condition, in the simpler case of only one
group of individuals, considered in [27,39].

The limit procedure induced by the above scaling corre-
sponds to the situation in which are prevalent the exchanges
of wealth which produce an extremely small modification of
the preinteraction wealths (quasi-invariant interactions), but
we are waiting a long enough time to still see the effects.
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In fact, rescaling time as t → t/ε, for small values of ε, and avoiding the time dependence on mean values and variance, we
obtain (see [4,5,42] for details) for J ∈ {S, I, R}

1

ε

∫
R+

Qε( fS, fJ )φ(w)dw =
∫
R+

{
−φ′(w)(wλSJ − mJλJ ) + σ

2
φ′′(w)w2J

}
fS (w, t )dv + O(ε),

1

ε

∫
R+

Qε( fI , fJ )φ(w)dw =
∫
R+

{
−φ′(w)(wλI J − mJλJ ) + σ

2
φ′′(w)w2J

}
fI (w, t )dv + O(ε),

1

ε

∫
R+

Qε( fR, fJ )φ(w)dw =
∫
R+

{
−φ′(w)(wλRJ − mJλJ ) + σ

2
φ′′(w)w2J

}
fR(w, t )dv + O(ε).

Reverting back to the original notations for the wealth as in
(4)–(6), the above equations, as ε → 0, correspond to the
following Fokker-Planck system in strong form:

∂ fS (w, t )

∂t
= −K (w, t ) fS (w, t ) + ∂

∂w
{[wλS − m̄(t )] fS (w, t )}

+ σ (t )

2

∂2

∂2w
(w2 fS (w, t )), (29)

∂ fI (w, t )

∂t
= K (w, t ) fS (w, t ) − γ (w) fI (w, t )

+ ∂

∂w
{[wλI − m̄(t )] fI (w, t )}

+ σ (t )

2

∂2

∂2w
[w2 fI (w, t )], (30)

∂ fR(w, t )

∂t
= γ (w) fI (w, t ) + ∂

∂w
{[wλR − m̄(t )] fR(w, t )}

+ σ (t )

2

∂2

∂2w
[w2 fR(w, t )], (31)

where

m̄(t ) = λSmS (t ) + λI mI (t ) + λRmR(t ).

The above Fokker-Planck system is complemented with the
boundary conditions at w = 0 given by

∂

∂w
[w2 fJ (w, t )]|w=0 = 0, fJ (0, t ) = 0,

where J ∈ {S, I, R}. Clearly, the steady state wealth distribu-
tions satisfy the ordinary differential equations corresponding
to Eqs. (29)–(31) with the time derivatives set equal to zero.
We discuss in the next section a case where we can explicitly
solve the steady state equations.

An explicitly solvable case

We verify in a simplified case that the Fokker-Planck
system (29)–(31) possesses an explicitly computable steady
state, which can present a bimodal shape. Bimodal shapes are
typical of situations of high stress in the economy, and are
investigated starting from the Argentinian crisis of the first
year of the new century [32]. This example also shows that a
similar behavior can be expected in reasons of the epidemic
spreading.

Suppose that the interaction rate of infections β(w,w∗) =
β is constant, and α = 0 in (11), so that σ (t ) = σ . Then,
integrating with respect to the wealth variable, thanks to
conservation of the total wealth, we obtain that the relative

mass densities satisfy the classical SIR model introduced in
(24). In this case, it is known that I (t ) → 0, while S(t ) →
S∞ ∈ [0, γ /β] solution of [2]

I (0) + S(0) − S∞ + γ

β
ln

(
S∞

S(0)

)
= 0.

Likewise, the system for the mean values reads

dmS (t )

dt
= −βI (t )mS (t ) + S(t )m̄(t ) − λSmS (t ), (32)

dmI (t )

dt
= βI (t )mS (t ) − γ mI (t ) + I (t )m̄(t ) − λImI (t ), (33)

dmR(t )

dt
= γ mI (t ) + R(t )m̄(t ) − λRmR(t ). (34)

Since I (t ) → 0, mI (t ) → 0, mS (t ) → m∞
S , and mR(t ) → m∞

R ,
where the asymptotic values of the means satisfy

λR
m∞

R

R∞ = λS
m∞

S

S∞ ,

together with the constraint m∞
R + m∞

S = m by conservation
of the total mean wealth. This gives the asymptotic values

m∞
S = λRS∞

λRS∞ + λSR∞ m, m∞
R = λSR∞

λRS∞ + λSR∞ m. (35)

From the above computations, formally as t → ∞ in the
Fokker-Planck system (29)–(31) we get that the stationary
states f ∞

S (w) and f ∞
R (w) satisfy

λS
∂

∂w

[(
w − m∞

S

S∞

)
f ∞
S (w)

]
+ σ

2

∂2

∂2w

[
w2 f ∞

S (w)
] = 0,

λR
∂

∂w

[(
w − m∞

R

R∞

)
f ∞
R (w)

]
+ σ

2

∂2

∂2w

[
w2 f ∞

R (w)
] = 0.

Hence the steady states are explicitly computed as two inverse
Gamma densities [5],

f ∞
S (w) = S∞ κμS

�(μS )

e− κ
w

w1+μS
, f ∞

R (w) = R∞ κμR

�(μR)

e− κ
w

w1+μR
,

(36)

with

μS = 1 + 2
λS

σ
, μR = 1 + 2

λR

σ
,

κ = (μS − 1)
m∞

S

S∞ = (μR − 1)
m∞

R

R∞

= 2λRλS

σ (λRS∞ + λSR∞)
m. (37)
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The details of the trading activity at the basis of the
kinetic description allow us to characterize the tails of the
distributions from (37). Hence, a low value of the Pareto index
is obtained in the presence of small values of the parameter λS ,
λR (small saving propensity of agents), or to high values of the
parameter σ (highly risky market). Therefore, the asymptotic
wealth distribution is the mixture of two inverse Gamma
densities of mass S∞ and R∞, respectively,

f ∞(w) = f ∞
S (w) + f ∞

R (w), (38)

with asymptotic means (35) and variances given by

Var∞
S = κ2

(μS − 1)(μS − 2)
,

Var∞
R = κ2

(μR − 1)(μS − 2)
, μR, μS > 2.

As a consequence, the wealth distribution has a bimodal struc-
ture, since the maxima of f ∞

S (w) and f ∞
R (w) are achieved,

respectively, at the points

w̄S = κ

μS + 1
= λRλS

(λS + σ )(λRS∞ + λSR∞)
m,

w̄R = κ

μR + 1
= λRλS

(λR + σ )(λRS∞ + λSR∞)
m. (39)

The profile of a mixture of Gamma functions has been studied
in a detailed way in a recent paper [33], to characterize
the intensity of the bimodal profile. We report in Fig. 2 the
resulting profiles for various choices of μS < μR and S∞, R∞.
Note that the mixture of the two inverse Gamma densities (36)
does not always result in an evident bimodal shape. Indeed,
while the profile in the top panel of Fig. 2 is clearly bimodal,
a different choice of parameters in the bottom panel produces
a unimodal steady profile.

IV. NUMERICAL SIMULATIONS

In this section, we present some numerical examples to
demonstrate the model’s ability to describe different situa-
tions of wealth distribution in the presence of an epidemic
phenomenon. We start from a validation of the Fokker-Planck
limit by integrating the Boltzmann equations through a Monte
Carlo method for the wealth distribution (see [5,44] for an
introduction). In the second example we show how the model
is able to describe the increase in inequality in an economic
system due to the advance of the epidemic. Among the
observed effects we have a reduction (sometimes defined as
“shrinking”) of the so-called middle class. Finally, in the
last example, we consider the case where social interactions
depend on wealth and thus the spread of the epidemic impacts
differently on different social classes. The disproportionate
impact on the less wealthy social classes clearly emerges.

A. Test 1: Asymptotic steady states

In this first test we show that the asymptotic behavior of
the Boltzmann-type model (4)–(6) under the quasi-invariant
scaling (26) and (27) is consistently approximated for ε 	 1
by the stationary distribution of the system of Fokker-Planck
equations (29)–(31). The system of kinetic equations has been

FIG. 2. Exact solutions for wealth distributions at the end of
the epidemic (36) in the Fokker-Planck approximation (29)–(31) for
μS = 2.5, μR = 7.0, S∞ = 0.4, and R∞ = 0.6 (top) and μS = 2.5,
μR = 11.0, S∞ = 0.8, and R∞ = 0.2 (bottom).

solved using a direct simulation Monte Carlo approach with
N = 105 particles.

Given f (w) = 1
2χ (w ∈ [0, 2]), where χ (·) is the indicator

function, a uniform distribution of wealth, we consider the
following initial conditions for the initial densities of the
wealth of susceptible, infected, and recovered individuals:

fS (w, 0) = ρS f (w), fI (w, 0) = ρI f (w),

fR(w, 0) = ρR f (w), (40)

where ρI = 10−2, ρR = 0, and ρS = 1 − ρI are such that
ρS + ρI + ρR = 1. In order to compare our results with the
analytic solutions of the Fokker-Planck model (36) we assume
constant interaction rates β = 0.2, γ = 0.1 and a constant
market variance σ = 0.1.

In Fig. 3, we show the computed solution at time T = 300
of (4)–(6) in the scaling regimes ε = 10−1, 10−3. The other
computational parameters are consistent with the ones used
to produce Fig. 2. In the top image, we considered μS = 2.5,
μR = 7 and an epidemic dynamics such that S∞ = 0.4, R∞ =
0.6, whereas the bottom plot considers a more amplified
situation with μS = 2.5 and μR = 11 but a lighter epidemic
spreading, which translates into S∞ = 0.8 and R∞ = 0.2.

A direct comparison with the equilibrium density of the
Fokker-Planck model confirms that if ε is small enough,
Fokker-Planck asymptotics provide a consistent approxima-
tion of the steady states of the Boltzmann dynamics. The
emerging bimodal form of the asymptotic state is present in
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FIG. 3. Test 1. Comparison of the wealth distributions at the
end of the epidemic for the kinetic system (4)–(6) with the explicit
Fokker-Planck solution (38) with scaling parameters ε = 10−1, 10−3.
We considered μS = 2.5 and μR = 7 (top) or μR = 11 (bottom). The
asymptotic values of the epidemic dynamics are S∞ = 0.4, R∞ = 0.6
(top) and S∞ = 0.8, R∞ = 0.2 (bottom).

both cases represented, even if a greater discrepancy of the
Pareto coefficients (bottom plot in Fig. 3) produces a more
marked effect on the final distribution. To underline this we
have drawn the maximum points of the distributions f ∞

S , f ∞
R

which are at w̄S , w̄R defined in (39); see dotted and dashed
lines, respectively.

B. Test 2: Formation of wealth inequalities

Next, we compare the evolution of the wealth distribu-
tion of the system under more realistic hypotheses on the
dependence of the risk coefficient σ from the epidemic spread
as discussed in Sec. II A. Hence, we consider the Boltzmann-
type model (4)–(6) in the case of the following two infectious-
dependent market risk coefficients:

σ1(t ) = σ0(1 + αI (t )), σ2(t ) = σ0

(
1 + α

∫ t

0
I (τ )dτ

)
,

(41)

where α > 0, σ0 > 0. In detail, σ1(t ) characterizes the in-
stantaneous influence of the epidemic based on the observed
number of the infected, whereas σ2(t ) takes into account
possible long-time memory effects on the market based on the
epidemic impact.

FIG. 4. Test 2. Time evolution of the wealth distribution for the
kinetic model (4)–(6) in the scaling ε = 5 × 10−3 with infectious-
dependent market risk of the form (41) with α = 5, σ0 = 0.1. We
considered λS = λR = 0.1 (top panels) and λR = 2λS = 0.1 (bottom
panels).

As far as the epidemiological parameters are concerned,
we consider a constant infection rate β = 0.2 and a constant
recovery rate γ = 0.1. In the following, we will analyze the
emerging inequalities assuming (41) and two possible scenar-
ios: the first considers a homogeneous population, λS = λR,
which means that both populations share the same saving
propensity, and the second considers λS > λR so that the
saving propensity of the susceptible is lower than that of the
recovered ones.

We consider, as initial distribution, an inverse Gamma
distribution

f (w) = (μ − 1)μ

�(μ)

exp
(−μ−1

w

)
w1+μ

(42)

with μ = 3, representing an initial economic equilibrium
state. Hence, we define, as before, the initial density of the
wealth of susceptible, infected, and recovered individuals
as in (40), where ρI = 10−2, ρR = 0, and ρS = 1 − ρI such
that ρS + ρI + ρR = 1. The total number of particles in the
Monte Carlo method is N = 105. In Fig. 4 we represent the
evolution of the total wealth distribution for both cases in (41)
starting from the initial distributions in (40). In detail, the
top row shows the case λS = λR = 0.1 and the bottom row
λR = 0.1 = 2λS .

We can see that in both cases the pandemic can also
strongly change the transitional wealth distribution regimes.
In particular, in the case σ1(t ) the solution of the kinetic
model shows a nonmonotonic dynamics such that, if λR = λS ,
the equilibrium distribution coincides with the initial state
f (w, 0) = fS (w, 0) + fR(w, 0) + fI (w, 0); see (40). On the
contrary, if λR > λS , we expect a different final state to occur
as shown in the right images of Fig. 4. In particular, in the
case σ2(t ), that is, when the epidemic memory is present,
the dynamics both for λR = λS and for λR > λS highlight the
trend toward an equilibrium centered on lower wealth values.
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FIG. 5. Test 2. Behavior of the Gini index (top) and of the middle
class fraction (bottom) defined in (44) during the outbreak of the
epidemic for the different risk measures in (41) with α = 5, σ0 = 0.1.

To get a more detailed view of the emerging equilibria,
we resort to the Gini index calculation; see [29,45]. This
value should be understood as a measure of a country’s
wealth inequality and varies in [0,1], where 0 indicates perfect
equality and 1 perfect inequality. In modern economies, a Gini
index between [0.2,0.5] is often observed. The Gini index can
be computed from the Lorenz curve,

L(F (w)) =
∫ w

0
f ∞(w∗)w∗dw∗,

where F (w) = ∫ w

0 f ∞(w∗)dw∗, as follows:

G1 = 1 − 2
∫ 1

0
L(x)dx.

In Fig. 5 we represent the evolution of the Gini index G1 for
the tests considered in Fig. 4. We clearly observe an inequality
of wealth that grows with the epidemiological dynamics.
Moreover, even in the case of σ1 with λS = λR, where these
effects are absorbed in the long-lasting trends, the recovery of
the economy occurs at a much lower rate than the worsening
rate.

Epidemiological dynamics may translate into additional
wealth inequalities; in particular we can measure the evolution
of the total number of individuals belonging to the middle
class. Although there are several ways to give a technical
definition of the middle class, it is often more of an idea or
estimate than a fixed number. Generally speaking, the middle
class is loosely defined as those who fall into the middle group
of workers compared to the bottom 20% or top 20%. We can

define it using an interval [wL,wR] such that∫ wL

0
f (w, 0) ≈ 0.2,

∫ ∞

wR

f (w, 0) ≈ 0.2, (43)

and computing the time evolution of

MC (t ) =
∫ wR

wL

f (w, t )dw (44)

gives us an estimate of the percentage of people living in
middle-income households. In Fig. 5 (bottom plot), we rep-
resent the evolution of MC (t ) corresponding to the considered
σ1(t ), σ2(t ). We can clearly see how the emerging inequalities
mainly affect the middle class, which is constantly decreasing
in the case of σ2 and undergoes a transitory decrease for σ1.
In particular, in this last scenario and in the λS < λR regime,
at the end of the epidemic dynamics only a partial recovery to
the original pre-epidemic level is observed.

C. Test 3: Impact of epidemic on wealth status

In the last example, we consider an interaction term depen-
dent on the wealth of the agents. The interaction function takes
into account the fact that interactions occur more frequently
between people of the same social status and are higher for
people belonging to the working class,

β(w,w∗) = b(w)b(w∗)�(|w − w∗| � �), (45)

where b(w) = β0/(1 + wα ), and �(·) is the indicator func-
tion. In the following we assume β0 = α = � = 2. In Fig. 6,
we show the course of the infection over time. The image on
the bottom shows the relative number of sensitive, recovered,
and infected subjects, while the image on the top shows the
number of infected by social class. These are divided into
three classes: working class, middle class, and upper class, as
defined by (43) and (44). The recovery rate is set equal for the
whole population to γ = 0.3. We see clearly how the infection
affects people with a lower level of wealth. As for wealth, we
choose constant transaction coefficients λS = λR as well as
constant market risk σ = 0.1. In Fig. 7, we report the Gini
index and the trend of the percentage of agents belonging
to the middle class for four different scenarios. These are in
addition to the one described above regarding the influence of
epidemics on market risk as in (41). First we consider the last
case when the agents behave differently based on whether they
belong to sensitive, infected, or recovered subjects with λS =
0.025 < λR = 0.1, and constant σ = 0.1. In this scenario, the
disease does not change Gini’s index. On the other hand, for
the other three cases the index shows a clear impoverishment
of the population. In particular, for the case in which the
market is affected by the instantaneous spread of the epidemic
in the absence of memory effect, the index trend shows that
after some time the level of wealth returns to the original
situation. This is not the case when the market maintains the
memory of the epidemic and when agents behave differently
according to their state of health. Looking at the number
of agents belonging to the middle class, we realize that the
number of people who can be considered as belonging to this
class decreases with time in only two situations, while it seems
to remain lower than before the epidemic only if the market
keeps the memory of the spread of the disease.

022303-10



WEALTH DISTRIBUTION UNDER THE SPREAD OF … PHYSICAL REVIEW E 102, 022303 (2020)

FIG. 6. Test 3. Evolution of the fraction of infectious individu-
als belonging to different social classes (top) and behavior of the
corresponding densities for susceptible, infectious, and recovered
individuals (bottom) in time.

V. CONCLUDING REMARKS

In this work we have introduced an example of an eco-
nomic model in the presence of an epidemic phenomenon.
The recent COVID-19 pandemic has in fact highlighted the
importance of having models capable of describing the social
and economic impact of the spread of the disease, albeit
in a simplified way. The increase in social inequalities, the
reduction of the middle class, and the diversified impact of the
epidemic on different social classes are phenomena typically
observed in these conditions and that we have shown the
model is able to describe. In addition to the modeling aspects,
in the present work we included a qualitative analysis which
shows that in a certain range of the parameters the kinetic
wealth distribution system is well posed, it has a unique
solution for a large class of initial data, and the large-time
behavior of this solution is found in a universal steady state.
Explicitly computable stationary solutions have been evalu-
ated by resorting to an asymptotic description of the kinetic
system, which is expressed by a system of Fokker-Planck-type
equations. Finally, we note that the modeling approach just
described can be adapted to more realistic compartmental
models in epidemiology such as SEIRD and/or MSEIRD,
including additional social effects, such as the age of agents
and the mortality effects [2]. Additionally, the effects of
lockdown policies and other restrictions can be included using
suitable optimal control formulations [46]. Nevertheless, the
fundamental aspects of the interaction between wealth and

FIG. 7. Test 3. Behavior of the Gini index (top) and of the middle
class fraction (bottom) defined in (44) during the outbreak of the
epidemic for different risk measures and values of λS and λR.

spread of infectious disease will not change. These general-
izations and related numerical simulations will be the subject
of future research.
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APPENDIX: PROOF OF THEOREM 1

We consider the system in the Fourier version (16)–(18) of
Sec. II B. Owing to mass conservation, for H ∈ {S, I, R} we
can write in a compact form

∑
J∈{S,I,R}

Q̂( f̂H , f̂J )(ξ, t ) = Q̂+( f̂H )(ξ, t ) − f̂H (ξ, t ). (A1)
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In (A1), the gain operators Q̂+, for H ∈ {S, I, R}, are defined
by

Q̂+( f̂H )(ξ, t ) =
∑

J∈{S,I,R}
〈 f̂H (AHJξ, t )〉 f̂J (λJξ, t ), (A2)

where AHJ has been defined in (19). Using notation (A2) into
system (16)–(18) allows us to write it in the form

∂ f̂S (ξ, t )

∂t
+ f̂S (ξ, t ) = −βI (t ) f̂S (ξ, t ) + Q̂+( f̂S )(ξ, t ),

∂ f̂I (ξ, t )

∂t
+ f̂I (ξ, t ) = βI (t ) f̂S (ξ, t ) − γ f̂I (ξ, t )

+ Q̂+( f̂I )(ξ, t ),

∂ f̂R(ξ, t )

∂t
+ f̂R(ξ, t ) = γ f̂I (ξ, t ) + Q̂+( f̂R)(ξ, t ). (A3)

Notice that not all the coefficients of the terms on the right-
hand sides are positive. However, since I (t ) � 1, and β, γ <

1, we can obtain positivity of coefficients by adding f̂S (ξ, t ) to
the first equation of (A3), and similarly f̂I (ξ, t ) and f̂R(ξ, t ) to
the second and third equations of (A3). This allows to obtain
the equivalent system,

∂ f̂S (ξ, t )

∂t
+ 2 f̂S (ξ, t ) = [1 − βI (t )] f̂S (ξ, t ) + Q̂+( f̂S )(ξ, t ),

∂ f̂I (ξ, t )

∂t
+ 2 f̂I (ξ, t ) = βI (t ) f̂S (ξ, t ) + (1 − γ ) f̂I (ξ, t )

+ Q̂+( f̂I )(ξ, t ),

∂ f̂R(ξ, t )

∂t
+ 2 f̂R(ξ, t ) = f̂R(ξ, t ) + γ f̂I (ξ, t ) + Q̂+( f̂R)(ξ, t ),

(A4)

in which all coefficients on the right-hand sides are positive.
Let f̂J (t ) and ĝJ (t ), t > 0 denote two solutions to the SIR

system corresponding to initial data with the same masses
J (t = 0) and moments mJ (t = 0), J ∈ {S, I, R}. Then, the
evolution of masses and mean values, as given by (24) [re-
spectively (32)–(34)] guarantee that both fJ (t ) and gJ (t ),
J ∈ {S, I, R}, have the same masses and mean values at any
subsequent time t > 0.

Our objective is to investigate the time behavior of the d2

metric, as defined in (22). Let us fix s = 2, and let us define
for J ∈ {S, I, R}

hJ (ξ, t ) = f̂J (ξ ) − ĝJ (ξ )

|ξ |2 . (A5)

The functions hJ satisfy the system

∂hS (ξ, t )

∂t
+ 2hS (ξ, t ) = [1 − βI (t )]hS (ξ, t ) + L+( f̂S )(ξ, t ),

∂hI (ξ, t )

∂t
+ 2hI (ξ, t ) = βI (t )hS (ξ, t ) + (1 − γ )hI (ξ, t )

+ L+( f̂I )(ξ, t ),

∂hR(ξ, t )

∂t
+ 2hR(ξ, t ) = +hR(ξ, t ) + γ hI (ξ, t )

+ L+( f̂R)(ξ, t ). (A6)

In system (A6) the functions L+( f̂H )(ξ, t ), with H ∈ {S, I, R},
are expressed by

L+( f̂H )(ξ, t ) = Q̂+( f̂H )(ξ, t ) − Q̂+(ĝH )(ξ, t )

|ξ |2 . (A7)

Owing to the definition of Q̂+ we argue that L+( f̂H ) is the
sum of three similar terms, each one given by a product of
two Fourier transforms. For H, J ∈ {S, I, R} these terms read

〈 f̂H (AHJξ, t ) f̂J (λJξ, t ) − ĝH (AHJξ, t )ĝJ (λJξ, t )〉
|ξ |2 ,

where for convenience we put outside the mean value 〈·〉. For
products of this type we can handle the difference in a suitable
way [5,13,35] to obtain

∣∣∣∣ 〈 f̂H (AHJξ, t ) f̂J (λJξ, t ) − ĝH (AHJξ, t )ĝJ (λJξ, t )〉
|ξ |2

∣∣∣∣
� 〈| f̂H (AHJξ, t )|| f̂J (λJξ, t ) − ĝJ (λJξ, t )

|λJξ |2 |λ2
J〉

+ 〈|ĝJ (λJξ, t )|| f̂H (AHJξ, t ) − ĝH (AHJξ, t )

|AHJξ |2 |A2
HJ〉

� H (t ) sup
ξ

∣∣∣∣ f̂J (ξ, t ) − ĝJ (ξ, t )

|ξ |2
∣∣∣∣λ2

J

+ J (t ) sup
ξ

∣∣∣∣ f̂H (ξ, t ) − ĝH (ξ, t )

|ξ |2
∣∣∣∣〈A2

HJ

〉
= λ2

JH (t )‖hJ (t )‖∞ + 〈
A2

HJ

〉
J (t )‖hH (t )‖∞.

Hence, for H ∈ {S, I, R} we conclude with the bound

‖L+( f̂H )(t )‖∞ � H (t )
∑

J∈{S,I,R}
λ2

J‖hJ (t )‖∞

+‖hH (t )‖∞
∑

J∈{S,I,R}

〈
A2

HJ

〉
J (t ). (A8)

Let us multiply both sides of (A6) by e2t . Since the coefficients
on the right-hand sides are positive, we obtain

∂[hS (ξ, t )e2t ]

∂t
� [1 − βI (t )]‖hS (t )e2t‖∞

+ ‖L+( f̂S )(t )e2t‖∞,

∂[hI (ξ, t )e2t ]

∂t
� βI (t )‖hS (t )e2t‖∞

+ (1 − γ )‖hI (t )e2t‖∞ + ‖L+( f̂I )(t )e2t‖∞,

and

∂[hR(ξ, t )e2t ]

∂t
� +‖hR(t )e2t‖∞ + γ ‖hS (t )e2t‖∞

+ ‖L+( f̂R)(t )e2t‖∞.

Let us integrate both sides of the equations of the system
from 0 to t . By taking the supremum on both sides we
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finally get

‖hS (t )e2t‖∞ �‖hS (0)‖∞ +
∫ t

0

{
[1 − βI (s)]‖hS (s)e2s‖∞ + ‖L+( f̂S )(s)e2s‖∞

}
ds,

‖hI (t )e2t‖∞ �‖hI (0)‖∞ +
∫ t

0

[
βI (s)‖hS (s)e2s‖∞ + (1 − γ )‖hI (s)e2s‖∞ + ‖L+( f̂I )(s)e2s‖∞

]
ds,

‖hR(t )e2t‖∞ �‖hR(0)‖∞ +
∫ t

0

[‖hR(s)e2s‖∞(s) + γ ‖hS (s)e2s‖∞ + ‖L+( f̂R)(s)e2s‖∞
]
ds.

Now we define

D(t ) =
∑

J∈{S,I,R}
‖hJ (t )e2t‖∞.

Hence, summing up the three equations in the system we
obtain

D(t ) � D(0) +
∫ t

0

⎡
⎣D(s) +

∑
H∈{S,I,R}

‖L+( f̂H )(s)e2s‖∞

⎤
⎦ds.

(A9)

It is now clear that the large-time behavior of D(t ) in (A9)
depends heavily on the characteristics of the wealth operators,
here represented in the sum of the ‖L+( f̂H )(s)e2s‖∞. Making
use of (A8) and of mass conservation, for t > 0 we have∑

H∈{S,I,R}
‖L+( f̂H )(t )‖∞

=
∑

H,J∈{S,I,R}
λ2

JH (t )‖hJ (t )‖∞

+
∑

H,J∈{S,I,R}

〈
A2

HJ

〉
J (t )‖hH (t )‖∞

=
∑

H,J∈{S,I,R}

[
λ2

J + 〈
A2

JH

〉]
H (t )‖hJ (t )‖∞

� max
H,J∈{S,I,R}

[
λ2

J + 〈
A2

JH

〉] ∑
J∈{S,I,R}

‖hJ (t )‖∞.

Hence, if condition (20) holds,∑
H∈{S,I,R}

‖L+( f̂H )(t )e2t‖∞ � νD(t ), (A10)

with ν < 1. At this point, the Gronwall inequality applied to
(A9) implies

D(t ) � D(0) exp{(1 + ν)t},
and, consequently,∑

J∈{S,I,R}
‖hJ (t )‖∞ �

∑
J∈{S,I,R}

‖hJ (0)‖∞ exp{−(1 − ν)t}.

(A11)

Thus, since for J ∈ {S, I, R}
‖hJ (t )‖∞ = d2( fJ (t ), gJ (t )),

the d2 metrics (22) between the two solutions fJ (v, t ) and
gJ (v, t ), J ∈ {S, I, R}, which at time t = 0 have the same mass
and the same mean value, decay to zero exponentially at a rate
1 − ν. This concludes the proof of Theorem 1.
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