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Nordmark map and the problem of large-amplitude chaos in impact oscillators
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Physical experiments have long revealed that impact oscillators commonly exhibit large-amplitude chaos over
a narrow band of parameter values close to grazing bifurcations. This phenomenon is not explained by the square-
root singularity of the Nordmark map, which captures the local dynamics to leading order, because this map does
not exhibit such dynamics. In this paper, we compare a Poincaré map for a prototypical impact oscillator model
with the corresponding Nordmark map. Though the maps agree to leading order, the Poincaré map exhibits a
large-amplitude chaotic attractor while the Nordmark map does not because part of the attractor resides in a
region of phase space where the two maps differ significantly.
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I. INTRODUCTION

An impact oscillator is most simply a periodically forced
system that hits a barrier whenever its displacement reaches
a threshold value [1,2]. Recurring impacts arise when the
maximum displacement of regular oscillatory motion equals
this value. This event is known as a grazing bifurcation.

It has long been known that chaotic dynamics is prevalent
near grazing bifurcations [3,4]. A plausible explanation for
this is the presence of a square-root singularity in return
maps that captures the local dynamics. Such a map was first
obtained by Nordmark [5] and can be written as
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We can think of (1) as an approximation to a Poincaré map
between instances of zero velocity. The displacement x has
been translated so that the threshold is x = 0. One iteration
of (1) corresponds to an oscillation with no impact if x < 0,
one impact if x > 0, and a zero-velocity impact (grazing) if
x = 0. The parameters τ, δ, μ ∈ R and χ = ±1 are constants
determined by the physical properties of the system.

As the impact velocity tends to zero (i.e., x → 0+), one
entry in the Jacobian matrix of (1) tends to infinity in absolute
value. This results in an infinite stretching of phase space, and
it was understood that this phenomenon is responsible for the
onset of chaos at grazing (for a formal proof of chaos, see
[6,7]).
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However, a typical bifurcation diagram of the Nordmark
map [8] involving chaos is shown in Fig. 1(a); see also [9,10].
It may be noticed that although there is a direct transition from
a stable fixed point to chaos, the spread of the chaotic attractor
grows gradually from zero, at least in the parameter ranges
considered in most earlier work. Experimental observations
and numerical simulations of ODE models instead reveal
chaos of relatively large amplitude over a small interval of
parameter values near grazing [Fig. 1(b)]. This phenomenon
[11,12], referred to as narrow-band chaos [13], is evidently
not well captured by the Nordmark map.

Narrow-band chaos was studied for a prototypical model in
[11]. Numerical investigations of a stroboscopic map revealed
that a large-amplitude chaotic attractor is formed from the
unstable manifold of a saddle-type period-3 orbit (an orbit
involving three loops per period). It was further found that
the size of the basin of attraction of the periodic orbit that
undergoes grazing (a period-1 orbit) shrinks to zero at the
grazing bifurcation. This is analogous to “dangerous” border-
collision bifurcations for piecewise-smooth maps that do not
involve a square-root singularity [14,15].

But the following question remains: Why does the Nord-
mark map fail to capture the narrow-band chaos? To address
this question, we carefully construct a Poincaré map and
explicitly perform coordinate changes so that it matches the
Nordmark map (1) to leading order. In these coordinates,
the large-amplitude chaotic attractor is seen to explore parts
of phase space far from the point of grazing where the
Poincaré map differs significantly from the Nordmark map.
So the narrow-band chaos is a global phenomenon that occurs
beyond the domain of validity of the local approximation
provided by (1). For instance, the chaos involves high-velocity
impacts while the Nordmark map is derived for impacts of low
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FIG. 1. (a) A typical bifurcation diagram of the Nordmark map (1) showing the appearance of a chaotic attractor at the grazing bifurcation
(the parameter values are τ = 0.9, δ = 0.1, and χ = 1). (b) A typical bifurcation diagram of the impact oscillator (2) showing a narrow-band
of chaos [the parameter values are (3) and β = 29]. For both diagrams, each point in the upper (shaded) part corresponds to one oscillation
with an impact, while each point in the lower (unshaded) part corresponds to one oscillation without an impact.

velocity. The Nordmark map, however, correctly predicts the
absence of a local attractor immediately beyond the grazing
bifurcation.

The remainder of this paper is organized as follows. We
state the model equations for an oscillator with soft impacts
in Sec. II and calculate the grazing bifurcation in Sec. III.
We then briefly investigate a Poincaré map for this model and
find that the grazing bifurcation does not involve a square-root
singularity (Sec. IV). For this reason, we consider the hard
impact limit in Sec. V (which does not seem to significantly
affect the narrow-band chaos). A Poincaré map for the hard
(or instantaneous) impact system involves a square-root sin-
gularity and is constructed in Sec. VI. We then compare
the Poincaré and Nordmark maps in Sec. VII. We present
some hitherto unexplored characters of the Nordmark map in
Sec. VIII, including the occurrence of coexisting stable solu-
tions that become important at grazing. Finally, we provide
concluding remarks in Sec. IX.

II. THE IMPACT OSCILLATOR MODEL

We start our investigation with the typical “soft-impact”
oscillator shown in Fig. 2 on which experimental and numer-
ical investigations have been carried out in several previous
works [11,12,16]. This system is modeled by the nondimen-
sionalized equations

u̇ = v,
(2)

v̇ = −(u + e) − 2ξv − βuH (u) + aω2 sin(ωt ).

FIG. 2. A soft-impact oscillator modeled by (2), where u = 0 at
grazing.

Here u(t ) and v(t ) represent the displacement and velocity of
the oscillator that has damping ratio ξ > 0 and equilibrium
at u = −e < 0. The forcing is harmonic with frequency ω >

0 and scaled amplitude a > 0. The oscillator is assumed to
impact and detach from an elastic beam at u = 0 so that while
u > 0, the beam imparts a force of −βu, where β > 0; in (2)
H is the Heaviside function.

Below we use ω as the primary bifurcation parameter,
as this was a simple parameter to control in experiments
[16]. Typical values of β corresponding to experiments are
relatively large, in which case, as detailed in Sec. V, it is
reasonable to treat the impacts as instantaneous. Figure 1(b)
shows a bifurcation diagram of the soft-impact system with
β = 29 and

a = 0.7,

e = 1.26,

ξ = 0.02,

(3)

which are based on values used in [12]. This figure shows
large-amplitude chaos over a narrow band of ω-values close
to the grazing bifurcation, ω = ωgraz. Next we calculate the
value of ωgraz analytically.

III. A CALCULATION OF THE GRAZING BIFURCATION

If the forcing amplitude of (2) is sufficiently small, the sys-
tem has a stable periodic orbit that does not involve impacts
(i.e., its maximum value of u is negative). A grazing bifurca-
tion occurs when its maximum value of u equals 0. Here we
state the flow of the u < 0 part of (2) (which is available in
closed form because with u < 0 the system is a harmonically
forced linear oscillator). We then use this to obtain a formula
for the value of ω at which the grazing bifurcation occurs.
Similar calculations are performed in [17,18].

We can write (2) as[
u̇
v̇

]
=

{
f0(u, v, t ), u � 0,

fβ (u, v, t ), u � 0,
(4)

where

fs(u, v, t ) =
[

0
−e

]
+ As

[
u
v

]
+

[
0

aω2 sin(ωt )

]
(5)
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(a) (b)

FIG. 3. Numerically obtained plots of the Poincaré map of the soft impacting system (3) at ω = ωgraz using the parameters (3) and β = 29.
The left figure shows the u-component of the map; the right figure shows the t-component. Given a point (u, t ) on the Poincaré section v = 0,
the point (u′, t ′) is the next intersection of the corresponding forward orbit with v = 0 (and v̇ < 0; also points with u > 0 are virtual; see [18]
or Sec. VI for the case of instantaneous impacts).

and

As =
[

0 1
−(1 + s) −2ξ

]
. (6)

The flow of (u̇, v̇) = fs(u, v, t ) is

�s(t ; u0, v0; t0) = �part
s (t ) + �homog

s (t ; u0, v0; t0), (7)

with the particular solution

�part
s (t ) =

[ −e
1+s
0

]
+ aω2

(1 + s − ω2)2 + 4ξ 2ω2

×
[ −2ξω 1 + s − ω2

ω(1 + s − ω2) 2ξω2

][
cos(ωt )
sin(ωt )

]
,

(8)

and the homogeneous solution

�homog
s (t ; u0, v0; t0) = e(t−t0 )As

([
u0

v0

]
− �part

s (t0)

)
. (9)

The stable periodic orbit is �
part
0 (t ) and attains its max-

imum value of u when v = 0. By solving �
part
0 (t ) = (0, 0)

simultaneously for ω and t we obtain the values ωgraz and tgraz

given implicitly by

(1 − ω2)
2 + 4ξ 2ω2 = a2ω4

e2
,

tan(ωt ) = −1 − ω2

2ξω
.

With the parameter values (3) of Fig. 1(b), we have

ωgraz = 0.802 361 97, (10)

tgraz = 2.069 704 60, (11)

to eight decimal places.

IV. THE CHARACTER OF A POINCARé MAP
FOR SOFT IMPACTS

Figure 3 shows a Poincaré map of the soft impact oscil-
lator at the grazing bifurcation (i.e., ω = ωgraz). This map
was numerically constructed by using v = 0 as the Poincaré
section. We omit a precise definition of this map (see, for
instance, [18]) as below we focus our analysis on the case
of instantaneous impacts. Indeed, different Poincaré sections
yield topologically conjugate maps [19].

One iteration of the Poincaré map corresponds to one oscil-
lation of (2). For u < 0, the oscillation involves no impact; for
u > 0, the oscillation involves one impact. Consequently, the
map is piecewise-smooth with switching manifold u = 0. In
Fig. 3 we have plotted the map on a scale appropriate for the
large-amplitude attractor (which is also shown) and to match
later figures.

From a cursory inspection of Fig. 3 it appears that the
Poincaré map has a square-root singularity in the form of a

√
u

term for u > 0. However, (4) is continuous at the grazing point
(u, v) = (0, 0), hence the grazing bifurcation is an example
of a continuous grazing bifurcation [9]. Consequently the
Poincaré map is in fact differentiable on u = 0 and has a 3

2 -
type “singularity” [20]. This is not apparent in Fig. 3 because
the scale is relatively large.

V. DYNAMICS WITH INSTANTANEOUS IMPACTS

The Poincaré map of Fig. 3 has a strong square-root charac-
ter because the value β = 29 (chosen to match experiments) is
relatively large. This parameter represents the effective spring
constant of the elastic beam. In the limit β → ∞ the time that
the oscillator is in contact with the beam tends to zero, and the
model (2) becomes

(u̇, v̇) = f0(u, v, t ) while u < 0,

(u, v) �→ (u,−v) whenever u = 0.
(12)
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FIG. 4. A bifurcation diagram of the impact oscillator with in-
stantaneous impacts (12) for the parameter values (3). This corre-
sponds to (2) in the limit β → ∞ [in contrast to Fig. 1(b), which uses
β = 29]. Specifically this figure shows orbits of the Poincaré map P
(13) with transient dynamics removed [Fig. 1(b) was computed in a
similar fashion].

In this model, impacts are instantaneous with velocity reversal
and no energy loss (i.e., the restitution coefficient is 1). For
this system the grazing bifurcation occurs at the same value
ω = ωgraz but is now an impacting grazing bifurcation for
which the analogous Poincaré map has a square-root singu-
larity in the form of a

√
u-term for u > 0.

Figure 4 shows a bifurcation diagram of (12), and from
this we see that the narrow-band chaos is retained in the hard
impact limit. Figure 5 shows the Poincaré map and chaotic
attractor at the grazing bifurcation. Although the size of the
attractor has increased somewhat, on the scale shown the
qualitative features of the map are essentially unchanged. For
this reason, an analysis of the Poincaré map for instantaneous
impacts is expected to be insightful for understanding the
chaotic attractor of the system with soft impacts. Certainly
the subject of our investigation is the square-root character
of the map, and so we proceed by analyzing the model with
instantaneous impacts.

VI. CONSTRUCTION OF THE POINCARé MAP FOR
INSTANTANEOUS IMPACTS

Here we construct the Poincaré map, let us call it P, for
(12) using the method of Nordmark [5], which is now quite
standard. For simplicity, we use v = 0 as the Poincaré section
and write the map as (u′, t ′) = P(u, t ), where t ′ is taken
modulo 2π

ω
. Whenever an impact occurs, the orbit jumps over

v = 0; see Fig. 6. For this reason, we evolve the preimpact
point (on the positive v-axis) forward via f0 to obtain a point
on v = 0 (with u > 0). This point is virtual in the sense that it
does not represent an achievable state of the impacting system.

We express P as

P = Psmooth ◦ Pdisc, (13)

where Psmooth is a smooth map corresponding to one excursion
from v = 0 back to v = 0 as governed by the left-half system
f0, and Pdisc is the discontinuity map that provides the neces-
sary correction to account for an impact. If u � 0, no correc-
tion is needed, so Pdisc is the identity map. If u > 0, then, as
illustrated in Fig. 6, Pdisc maps the forward extension to v = 0
of a preimpact point to the backward extension to v = 0 of a
postimpact point (where extension refers to evolution under
f0). Via lengthy calculations based on matching terms of a
Taylor expansion of the flow �0(t ) [given by (7) with s = 0],
we obtain for u > 0

Pdisc(u, t ; ω) =
[

u + Õ(3)
t − c

√
u + Õ(2)

]
, (14)

where

c = 2
3
2

ωgraz
√

e
, (15)

and Õ(k) denotes terms that are order k in
√

u, t − tgraz, and
ω − ωgraz. Such calculations are detailed in [9,21].

Next we calculate the leading-order contribution of
Psmooth in terms of the parameters of (12). First observe
that at the grazing bifurcation (ω = ωgraz) the periodic or-
bit �

part
0 (t ) intersects v = 0 at (u, t ) = (0, tgraz). Therefore,

(a) (b)

FIG. 5. Numerically obtained plots of the Poincaré map P of the system with instantaneous impacts (12) at the grazing bifurcation ω = ωgraz

using parameters (3). This figure corresponds to the limit β → ∞ (Fig. 3 uses β = 29). Given a point (u, t ) on the Poincaré section v = 0, the
point (u′, t ′) = P(x, t ) is defined by (13); see Fig. 6.
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FIG. 6. An illustration of the Poincaré map P as the
composition (13). The t-axis is omitted for simplicity.

Psmooth(0, tgraz; ωgraz) = (0, tgraz). To first order the Taylor ex-
pansion of Psmooth about (u, t ; ω) = (0, tgraz; ωgraz) can be
written as

Psmooth(u, t ; ω) =
[

0
tgraz

]
+ J

[
u

t − tgraz

]
+ K (ω − ωgraz) + O(2), (16)

where J is a 2 × 2 matrix and K ∈ R2. From the expressions
(7)–(9) for the flow �0(t ) with ω = ωgraz, we obtain

J = Q−1e
2π

ωgraz
A0 Q, (17)

where

Q =
[

1
eωgraz

0

0 ωgraz

]
. (18)

Also by differentiating �0(t ) with respect to ω, we obtain
(after much simplification)

K = 2

a2ω4
graz

Q−1
(
I − e

2π
ωgraz

A0
)

×
[

a2ω2
graz + e2

(
1 − ω2

graz − 2ξ 2
)

ξe2
(
1 + ω2

graz

) − a2ω4
graztgraz

2

]
. (19)

We note that the analogous linear approximation to Psmooth

given in [18] has a significantly simpler dependency on the
parameters of the system. This is because the nondimension-
alization used in [18] caused the values of e and ω to be scaled
to 1 (at the cost of a nonunit spring constant and scaling time)
so the matrix Q was not needed. Also here we have used
the forcing frequency as the primary bifurcation parameter
to align with the physical experiments. By instead using the
forcing amplitude as the primary bifurcation parameter, K
admits a simpler expression because it is easier to differentiate
(8) with respect to a than with respect to ω.

Finally from (14) and (16) the composition (13) is given by

P(u, t ; ω) =
[

0
tgraz

]
+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J

[
u

t − tgraz

]
+ K (ω − ωgraz), u � 0,

J

[
u

t − tgraz − c
√

u

]
+ K (ω − ωgraz), u � 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ h.o.t., (20)

where h.o.t. denotes higher-order terms.

VII. A COMPARISON OF THE POINCARé MAP WITH THE
NORDMARK MAP

To convert the Poincaré map P into the form of the Nord-
mark map (1), we omit the higher-order terms in (20) and
apply the affine coordinate change,⎡

⎣x
y
μ

⎤
⎦ = 1

J2
12c2

⎡
⎣ 1 0 0

−J22 J12 K1

0 0 (1 − J22)K1 + J12K2

⎤
⎦

×
⎡
⎣ u

t − tgraz

ω − ωgraz

⎤
⎦, (21)

where Ji j and Ki denote the elements of J and K .
The Poincaré map then becomes (1) with

τ = trace(J ), δ = det(J ), χ = sgn(J12c). (22)

For instance, with the parameter values (3) we have

τ = 0.0422, δ = 0.7311, χ = 1, (23)

to four decimal places.

Figure 7 shows a bifurcation diagram of the Nordmark map
with these values. The stable fixed point with x < 0 that exists
for μ < 0 represents the stable nonimpacting periodic orbit,
and μ = 0 represents the grazing bifurcation. At the grazing
bifurcation many unstable periodic solutions are created (see
[10] for calculations of periodic solutions), but there is no

FIG. 7. A bifurcation diagram of the Nordmark map (1) with
parameter values (23) (to four decimal places). Stable solutions are
shown with thick curves; unstable solutions are shown with thin
curves. Curves in the shaded part correspond to oscillations with an
impact.
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(a) (b)

FIG. 8. (a) A bifurcation diagram of (12) (using the same parameter values as Fig. 4) in the coordinates of the Nordmark map. (b) A
magnification of Fig. 7.

chaotic attractor at the grazing bifurcation. Instead there exists
a stable period-3 solution.

The stable period-3 solution is created at a smooth saddle-
node bifurcation at around μ ≈ −0.1 and disappears at a
nonsmooth saddle-node bifurcation at μ ≈ 0.58. The unsta-
ble branches created at these bifurcations converge on the
period-1 solution at the grazing parameter value, thus creating

a situation akin to a dangerous border collision bifurcation
[15,22] where the basin of attraction of the main attractor
reduces to zero size. Beyond the grazing bifurcation, orbits
converge to the stable period-3 solution.

A chaotic attractor appears to exist for approximately
0.126 < μ < 0.143. We now show that this interval is signifi-
cantly far beyond the grazing bifurcation and thus is almost

(a) (b)

(c) (d)

FIG. 9. Panels (a) and (b) show the Nordmark map (1) with (23) (to four decimal places) and μ = 0. Panels (c) and (d) show the Poincaré
map P in the coordinates (21) with parameters (3) and ω = ωgraz.
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(a) (b)

FIG. 10. Slices of Fig. 9 at y = 0 (dashed: Nordmark map; solid: Poincaré map).

certainly unrelated to the narrow-band chaos we wish to
understand.

Figure 8(a) shows a bifurcation diagram of the system rep-
resented by the differential equations (12) in the coordinates
of the Nordmark map. This was produced by applying the
coordinate change to Fig. 4. Additional numerical continua-
tion was employed to identify selected low-period solutions.
Figure 8(b) shows a bifurcation diagram of the Nordmark map
on the same scale. Clearly the chaotic attractor shown in Fig. 7
occurs at values of μ that are too large to be connected to the
narrow-band chaos.

It is instructive to compare the two bifurcation diagrams of
Fig. 8. For the impact oscillator (12) (left figure), the stable
fixed point coexists with the chaotic attractor as the value of
μ approaches 0 from below. An unstable period-2 solution is
created at the grazing bifurcation and then becomes stable
very shortly afterward (in a period-doubling bifurcation at
μ ≈ 0.000 178).

For the Nordmark map (right figure), the stable fixed point
coexists with a stable period-3 solution. An unstable period-2
solution is created at the grazing bifurcation but does not
become stable until a period-doubling bifurcation at μ ≈
0.1438. In fact, the chaotic attractor in this case occurs close
to this period-doubling bifurcation.

In both cases, the size of the basin of attraction of the
fixed point appears to shrink to zero at the grazing bifurcation
immediately beyond which there is no local attractor and so
typical iterates of the map converge to a global object. This
is characteristic of a dangerous border-collision bifurcation.
Bifurcations responsible for the creation of the chaotic attrac-
tor in Fig. 8(a) were identified for similar parameter values
in [11]. It was found that two unstable period-3 solutions are
born at a grazing-induced saddle-node bifurcation, and when
the period-1 solution becomes unstable at grazing, nearby
orbits converge to the unstable manifold of one of the period-3
solutions, creating a chaotic attractor.

The global shapes of the Nordmark map, call it N , and
Poincaré map P differ quite significantly. The upper panels
of Fig. 9 show N evaluated at the grazing bifurcation; the
lower panels show P in the coordinates of N and for the same
parameter values. We observe that on the scale of the chaotic
attractor (shown in the lower panels), P differs wildly from N
in some places. In particular, P has a “hump” in the lower right
corner while N does not. For this reason, it is not surprising
that the global dynamics of P and N differs significantly, and

we feel that these differences explain why N does not exhibit
a chaotic attractor at the grazing bifurcation.

The Nordmark map N does provide a reasonable ap-
proximation to P in a small neighborhood of the switching
manifold. This is evident in Fig. 10, which shows N and P at
a fixed value of y. By construction, N has the same

√
x-term

as P in panel (a) and no
√

x-term like P in panel (b). However,
N does not capture the higher-order x-term of x > 0, as can be
seen in panel (b) (see [17] for a calculation of this term).

We also remark that in general Poincaré maps can be
difficult to define globally. Generically there are points on
the Poincaré section for which the return trajectory has a
tangency to the Poincaré section resulting in a discontinuity
in the Poincaré map [23]. To produce Fig. 9, this issue was
circumvented by choosing subsequent intersections with the
Poincaré section in a way that yields a continuous map.

FIG. 11. A two-parameter bifurcation diagram of the Nordmark
map (1) with χ = 1. Regions are labeled by the period of stable
periodic solutions that exist at μ = 0 in addition to the fixed point
undergoing grazing bifurcation. The period-3 region is shaded and
we use plus signs to indicate where regions overlap. Parameter values
corresponding to Fig. 7 are indicated by the point A.
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FIG. 12. Basins of attraction of the Nordmark map (1). In panel (a) τ = 0.0422, δ = 0.7311, χ = 1, and μ = −0.07 (before the grazing
bifurcation shown in Fig. 7). The basin of the period-3 solution is yellow; the basin of the period-1 solution is black. In panel (b) τ = 0.5,
δ = 0.97, χ = 1, and μ = 0. Shown are the basins of period-3 (yellow), period-4 (cyan), period-7 (blue), period-11 (green), and period-15
(red) solutions.

The stroboscopic map studied in [12] does not have this
problem, so it is advantageous in this respect. In this paper, we
have used a Poincaré map in order to produce a quantitative
comparison to the Nordmark map.

VIII. COEXISTING STABLE SOLUTIONS IN THE
NORDMARK MAP

While the Nordmark map does not exhibit narrow-band
chaos, it does predict the excursion to large amplitude oscilla-
tions when the period-1 solution undergoes grazing.

Figure 11 shows a two-parameter bifurcation diagram
of the Nordmark map with μ = 0. It shows a period-
incrementing structure issuing from the codimension-2 point
δ = τ = 0 and formed by pairwise overlapping regions corre-
sponding to periods 2, 3, 4, and so on. Parameter values corre-
sponding to Fig. 7 belong to the period-3 region (shaded), as
described above.

Basins of attraction for two examples are shown in Fig. 12.
Panel (a) pertains to the parameters used in Fig. 7 at a value
of μ < 0 slightly before the grazing, and it shows the basin
of attraction of the period-1 solution (black) and that of the
period-3 solution (yellow). As μ → 0, the strips forming the
basin of the period-1 solution become more narrow, vanishing
at μ = 0. For other values of the parameters, this phenomenon
can involve a period-n solution, where n is not necessarily 3.
Past μ = 0, at which the basin of attraction of the period-
1 solution vanishes, nearby orbits converge to the period-n
solution.

Figure 12(b) shows basins of attraction for parameter
values at which the Nordmark map with μ = 0 has stable
period-n solutions for n = 3, 4, 7, 11, and 15. The basins have
a complex structure and are possibly “riddled” [24,25].

Since before the grazing bifurcation the basin of the period-
1 solution is embedded in the basin of the period-3 solution
(similar to the previous example), after the grazing bifurcation

nearby orbits are likely to converge to the period-3 solution
instead of one of the stable higher period solutions. But
certainly the presence of coexisting attractors with intermin-
gled basins is a source of additional unpredictability in the
system.

IX. CONCLUSIONS

We have shown that the Poincaré map P differs signifi-
cantly from the Nordmark map N on the scale of the narrow-
band chaotic attractor (Fig. 9). This manifests as a “hump”
in the shape of P that may be attributed to return trajectories
taking a substantially longer time to return to the Poincaré
section than the period of the forcing [Fig. 3(b)]. While the
dynamics of P may be quite complicated and fragile (in that
many types of attractors exist over relatively small parameter
regimes; see [12]), we believe that the shape of P is relatively
robust because small changes to the parameters do not alter
the qualitative properties of the vector field on a global scale
(and we have observed this numerically).

We conclude that N does not exhibit narrow-band chaos
because of its large deviations from P, and therefore the
narrow-band chaos is a truly global phenomenon. The rela-
tively large difference between N and P for small x > 0 shown
in Fig. 10 is typical for maps with a series expansion that
involves fractional powers because the error is of higher order
than if only integer powers are involved [9].

Both N and P exhibit a stable period-1 solution before the
grazing bifurcation but no local attractor immediately after
the grazing bifurcation. Thus if the bifurcation parameter is
slowly increased dynamically, we can expect the solution
to jump from the period-1 solution to a coexisting large-
amplitude attractor at the grazing bifurcation. As shown in
Sec. VIII, it is possible that multiple large-amplitude attractors
coexist, which adds significantly to the complexity of this
phenomenon.
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The quantitative comparison achieved here may prove use-
ful for other types of grazing bifurcations and discontinuity-
induced bifurcations more generally. Canonical forms (such
as the border-collision normal form [26] and the Nordmark
map N) adequately capture the dynamics in some neighbor-
hood of the bifurcation, but little is known about the typical
size of such a neighborhood. It also remains to be seen if a
simple and geometrically meaningful term can be added to N
to produce a better match to P, such as linear terms to account
for higher-order terms in the discontinuity map [17].
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