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Predicting properties of the stationary probability currents for two-species reaction systems without
solving the Fokker-Planck equation
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We derive methods for estimating the topology of the stationary probability current �js of the two-species
Fokker-Planck equation (FPE) without the need to solve the FPE. These methods are chosen such that they
become exact in certain limits, such as infinite system size or vanishing coupling between species in the diffusion
matrix. The methods make predictions about the fixed points of �js and their relation to extrema of the stationary
probability distribution and to fixed points of the convective field, which is related to the deterministic drift
of the system. Furthermore, they predict the rotation sense of �js around extrema of the stationary probability
distribution. Even though these methods cannot be proven to be valid away from extrema, the boundary lines
between regions with different rotation senses are obtained with surprising accuracy. We illustrate and test these
methods, using simple reaction systems with only one coupling term between the two species as well as a
few generic reaction networks taken from the literature. We use it also to investigate the shape of nonphysical
probability currents occurring in reaction systems with detailed balance due to the approximations involved in
deriving the Fokker-Planck equation.
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I. INTRODUCTION

Reaction networks of interacting species are used as mod-
els in chemistry, synthetic biology, epidemiology, ecology,
and even sociology. If the investigated system is large enough
and stochastic effects can be neglected, the dynamics of such
networks can be described by a set of ordinary differential
equations. The properties of these models can be investigated
with methods from the theory of dynamical systems [1].
However, these models become insufficient if the number
of particles (or individuals) of the involved species becomes
small. Then the stochastic change of particle numbers acts as
a source of intrinsic noise that can modify the behavior of the
deterministic model [2–4]. In order to account for such effects,
a stochastic modeling approach is needed.

One very general mathematical description of such
stochastic reaction networks is the so-called master equation.
The master equation is a continuous-time Markov model of
the system and yields a time-dependent probability distribu-
tion for the possible system states [5,6]. While the master
equation can be simulated on a computer using stochastic
simulation algorithms [7], solving it analytically is impossible
for most systems. If one does not want to rely solely on
computer simulations, it is necessary to use approximation
methods.

One particularly well-known approximation of the master
equation is the Fokker-Planck equation (FPE). The FPE is
derived through the Kramers-Moyal expansion, where the
integer particle numbers are replaced by continuous substrate
concentrations and an expansion for small step sizes is carried
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out. The first two terms of this expansion, deterministic drift
and diffusion, give the FPE [8]. Interestingly, the solution of
the FPE is a valid probability density, while for all higher-
order truncations of the Kramers-Moyal expansion nonphys-
ical probability densities can occur that can become negative
or are not normalizable [9].

Even though the assumptions used for deriving the FPE
becomes invalid for low particle concentrations, the FPE can
still describe many of such small systems quite accurately in
cases where the corresponding deterministic models already
break down [2,10–13]. As the FPE is, furthermore, much
easier to solve than the master equation, it is a very useful tool
to describe stochastic effects such as shifts of fixed points,
stochastic cycles, mean first-passage times, and stochastic p
bifurcations [2,8,13–15]. Furthermore, it can be utilized to
derive stochastic phase portraits that give information about
the extrema of the stationary probability distribution [16].

Despite these successes, there are several phenomena that
the FPE does not describe correctly. These include, among
others, a certain type of noise-induced multistability in gene
regulation networks with slow switching between the ON and
OFF states [17], some phenomenological bifurcations induced
by reducing the particle number [18], and other phenomena
where very small particle numbers are involved [5,10,19].

One particularly interesting flaw of the FPE is that there
are systems for which detailed balance holds for the mas-
ter equation, while the FPE shows nonvanishing probability
currents in its steady state [20]. Such probability currents
are nonphysical, as they are an artifact caused by the ap-
proximations involved in the FPE. The properties of such
nonphysical probability currents, such as their topology and
the circumstances under which they emerge, have not yet been
fully investigated.
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Even more importantly, stationary probability currents in
general have attracted an increasing attention of researchers
in recent years. The reason is that most reaction systems are
driven systems that approach a nonequilibrium steady state
with a nonvanishing energy throughput. Such systems include
metabolic networks, food webs, and economic models.

In order to calculate the stationary probability currents
that characterize the long-term behavior of these systems, it
is in general necessary to solve the Fokker-Planck equation
numerically. This makes these currents much less accessible
for a quick qualitative analysis than, e.g., the extrema of
the probability density, which can be calculated analytically
for one-dimensional (1D) systems and can often be obtained
approximately for 2D systems [6,13,16].

It is the goal of the present paper to provide tools for
estimating the topology of the stationary probability current
�js directly from the deterministic drift and diffusion matrix of
the system without the need to solve the FPE. An important
quantity in our calculations is the convective field, which is
the sum of the deterministic drift and systematic contributions
to the current due to the diffusion term.

We proceed in several steps. First, we derive an explicit
expression for �js and the stationary probability distribution
that is valid to leading order in the inverse system size 1/N .
This will allow us to obtain a relation between the fixed
points of �js, those of the convective field, and the extrema
of the stationary probability distribution, which is again valid
to leading order in 1/N . By considering artificial FPEs that
contain only one or a few of the possible interaction terms, we
demonstrate the usefulness of these methods and show that
when the leading-order terms in 1/N vanish, dipole currents
will emerge. We also discuss simple realistic reaction systems,
in particular, one that shows a limit cycle.

Finally, we utilize our method to investigate the mentioned
nonphysical stationary probability currents resulting from the
FPE. In one example, we find stationary currents that take the
shape of a quadrupole.

During all our investigations, we compare the results of
our method to the actual topology of �js obtained from the
numerical solution of the corresponding FPE.

II. METHODS

A. Chemical reactions with mass action kinetics

We consider M species Xi that undergo a set of R (chemi-
cal) reactions labeled by r,

M∑
i=1

σirXi
kr−→

M∑
j=1

τ jrXj, (1)

with stoichiometric constants σir and τir and reaction
constants kr .

We denote the number of individuals (or molecules) of
species Xi as ni. The state of the system is completely
determined by the state vector �n, which gives the number
of molecules of each species. To compactify notation, one
defines the stoichiometric matrix [5]

Sir = τir − σir (2)

and the propensity vector

νr (�n) = kr

M∏
i=1

N−σir
ni!

(ni − σir )!

≈ kr

M∏
i=1

(ni

N

)σir

for ni � σir . (3)

Here, N denotes the system size, which equals the total
number of particles inside the system, in reaction systems
where this number is conserved. In systems where the total
number of particles can change, N can be interpreted as a
dimensionless quantity proportional to the reactor volume [5].

Using this quantity we can define xi := ni
N as the concen-

tration of species Xi. As the propensity vector νr (�n) contains
the product of these concentrations, it is proportional to the
probability that the right molecules for reaction r meet at the
same time in the same small volume element.

B. Chemical master equation

The master equation yields a stochastic description of the
time evolution of the state vectors �n of such chemical reac-
tions. It describes the probability flow between the different
system states and thus the change of probability P(�n, t ) of
these states,

dP(�n, t )

dt
=

∑
r

[νr (�n − �Sr )P(�n − �Sr, t ) − νr (�n)P(�n, t )]. (4)

The sum over all reactions can be transformed into a sum over
all system states,

dP(�n, t )

dt
=

∑
�m

μ(�n| �m)P( �m, t )

︸ ︷︷ ︸
Jin

−
∑

�m
μ( �m|�n)P(�n, t )

︸ ︷︷ ︸
Jout

. (5)

This expression contains the transition rates

μ(�n| �m) =
∑

r: �n− �m=�Sr

νr (�n − �Sr ) (6)

and is a more general form of the master equation since
it is not confined to systems where the transitions between
states occur via chemical reactions. The probability of being
in state �n changes due to the inflow Jin of probability from
neighboring states minus the outflow Jout of probability from
state �n.

A steady-state Ps(�n) is reached whenever Jin and Jout cancel
at every point �n in phase space. If, additionally, not only the
sums in (5) are equal, but also the terms for each value of �m
cancel separately, i.e., if

μ(�n| �m)P( �m, t ) = μ( �m|�n)P(�n, t ), (7)

the steady state satisfies detailed balance.

C. Fokker-Planck equation

A well-known approximation method for the master equa-
tion is the Fokker-Planck equation, where the discrete state
space of the reaction system is approximated as continuous.
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This approximation becomes more accurate when the system
size becomes larger.

The FPE is derived from the master equation by performing
the so-called Kramers-Moyal expansion [8]. To simplify the
notation, one introduces the deterministic drift �f = S · �ν and
the diffusion matrix D = S · diag(�ν) · ST . With these defini-
tions the FPE reads

∂ p(�x, t )

∂t
= −

∑
i

∂

∂xi
[ fi(�x)p(�x, t )]

+ 1

2N

∑
i j

∂2

∂xi∂x j
[Di j (�x)p(�x, t )], (8)

where xi again denotes the concentration of species Xi. Here p
is a probability density, in contrast to the probability P in the
master equation.

The FPE can also be written in the form of a continuity
equation, ∂ p

∂t = −�∇ · �j, with the probability current

�j = �α(�x)p(�x, t ) − 1

2N
D · �∇p(�x, t ) (9)

and the convective field �α(�x)

�α(�x) = �f (�x) − 1

2N

∑
ik

∂Dik

∂xk
�εi , (10)

where �εi = �xi/|xi| denotes the unit vector in direction xi [16].
In this notation it is obvious that the system size N determines
the strength of the intrinsic noise: with increasing N , the
diffusion (noise) term decreases. For N → ∞ the diffusion
term vanishes and the system becomes deterministic.

The stationary distribution of the FPE is calculated via
∂ ps (�x,t )

∂t = 0, which means �∇ · �js = 0. In a 1D closed system,
where �j must vanish at the boundaries, this implies �js = 0. In
higher-dimensional systems, stationary states can have �js �=
0, as the condition �∇ · �js = 0 can be satisfied with nonzero
currents. Such stationary solutions constitute nonequilibrium
steady states. For these states the steady-state condition �∇ ·
�js = 0 implies that �js = �∇ × �A with a suitable vector field
�A(�x), i.e., �js must be solenoidal.

D. Condition for�js = 0

Calculating the stationary probability current �js for a given
reaction system is a computationally costly task, as it requires
solving the stationary FPE. One can, however, easily deter-
mine whether the stationary state is an equilibrium state (i.e.,
�js = 0): Applying the equilibrium condition to definition (9),
we obtain

0 = �js = �αps − 1

2N
D �∇ps . (11)

This can be transformed to D−1 �α = �∇φs with φ = 1
2N ln(p),

which in turn implies �∇ × D−1 �α = 0. Therefore we arrive
at [8]

�js = 0 ⇔ �∇ × D−1 �α = 0. (12)

The reverse direction is obtained via explicit construction
of ps: From �∇ × D−1 �α = 0 we obtain D−1 �α = �∇φ with a
scalar function φ that is unique up to an additive constant.

By setting ps = Ceφ with the normalization constant C that
fixes unequivocally the additive constant of φ, we have found
the stationary solution of Eq. (11).

Relation (12) is often called the integrability condition.
Besides this relation, there is one simple case where we can
immediately see that �js vanishes: If the species are uncoupled,
we effectively deal with multiple 1D systems, which always
fulfill �js = 0.

It should be mentioned that �js = 0 is often associated with
detailed balance in the master equation [8]. However, the
stationary current js obtained from the FPE is only an approx-
imation to the full stationary current, as it is obtained by a
second-order truncation of the Kramers-Moyal expansion. As
Ceccato et al. have shown [20], there are systems that show
detailed balance for the stationary master equation but �js �= 0
in the Fokker-Planck description. Conversely it is possible to
construct reaction networks with �js = 0 but without detailed
balance, as, for example, the reaction system

∅ → X,

2X → ∅,
(13)

where �j = 0 must hold since the system is 1D, while detailed
balance can be ruled out using Kolmogorov’s criterion [21].

E. Deterministic rate equations and linear stability analysis

For very large systems, it is often sufficient to use the
deterministic description given by the rate equation

d�x
dt

= �f (�x) , (14)

with the deterministic drift �f (�x) defined in Sec. II C.
This ordinary differential equation is much easier to solve

than the Fokker-Planck equation. A very important technique
to analyze (14) is linear stability analysis, where the system
is linearized around the fixed points of �f , in order to evaluate
their stability.

Linearizing (14) around a fixed point �x0 yields

d�x
dt

= J �f (�x0) · (�x − �x0) + O(�x − �x0)2, (15)

with the Jacobian Ji j
�f (�x0) = ∂ fi

∂x j
(�x0). The general solution of

this linearized equation is a linear superposition of exponen-
tial functions, with the coefficients in the exponent being the
eigenvalues of J �f (�x0). If the real part of all eigenvalues is
negative, the fixed point is stable. If at least one eigenvalue
has a positive real part, the fixed point is unstable.

In two dimensions the eigenvalues are given by

λ1/2 = 1
2 (τ ±

√
τ 2 − 4
), (16)

with τ = tr(J �f ) = �∇ · �f = ∂ f1

∂x + ∂ f2

∂y and 
 = det(J �f ) =
∂ f1

∂x
∂ f2

∂y − ∂ f2

∂x
∂ f1

∂y . Complex eigenvalues occur if τ 2 < 4
 and
are associated with spirals or centers. They can occur only if
the derivatives ∂ f2

∂x and ∂ f1

∂y have opposite signs, which means,

in particular, that �∇ × �f = ∂ f2

∂x − ∂ f1

∂y must be nonzero. Later,

we make use of this insight that a fixed point of �f can only be
a spiral or center if �∇ × �f �= 0.
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Another important consequence of linear stability analysis
is that the fixed points of a solenoidal vector field �j with �∇ ·
�j = 0 must be saddle points or centers: For τ = �∇ · �j = 0, the
eigenvalues are

λ1/2 = ±√−
, (17)

which can either be two real numbers of opposite sign for

 > 0, indicating a saddle point, or two complex conjugate
numbers with vanishing real part, indicating a center.

III. RESULTS

In the following, we derive several analytical results con-
cerning the properties of the stationary current �js, supple-
mented by a numerical analysis of generic cases and specific
models.

A. Approximating�js for large N

For large system sizes the convective field �α deviates only
little from the deterministic drift �f , and the probability current
�j deviates only little from the deterministic case, where all
current flows to the attractors of �f , which are either stable
fixed points or limit cycles. This means, in particular, that for
a sufficiently large system size N fixed points of �js and those
of �α must be closely related. We perform in the following
an expansion to leading order in 1/N in order to obtain an
analytical expression for the stationary current in terms of �α
and D.

To this purpose, we split the convective field into two
contributions,

�α = D · �α‖ + �α⊥, (18)

with

�α⊥ ⊥ �α‖ (19)

and

�∇ × �α‖ = �0. (20)

In the case where D is proportional to the identity matrix,
the calculation of �α‖ and �α⊥ can be done straightforwardly in
Fourier space by requiring that conditions (19) and (20) are
satisfied for each Fourier component separately, which gives

�k × �α‖,�k = �0. (21)

This fixes the plane in which �α‖�k must lie, and this in turn
fixes the decomposition into the two perpendicular vectors
�α�k = �α⊥,�k + �α‖,�k .

We now use the decomposition, (18), to find explicit ex-
pressions for ps and �js. Let us first consider the special case
where �α⊥ = 0. Then relations (20) and (12) yield that �js
vanishes. Definition (9) then gives immediately the stationary
probability density

ps ≡ p‖
s = Ae2N

∫
�α‖d�x, (22)

and thus

�∇p‖
s = 2N �α‖ · p‖

s . (23)

Not surprisingly, the stationary distribution becomes narrower
and higher with increasing N , and the ratio of �∇p and p is
proportional to N . The N dependence of the two contributions
to �j is therefore of the same order,

�j = �αp︸︷︷︸
∼p

− 1

2N
D �∇p︸ ︷︷ ︸
∼p

, (24)

and the terms occurring in its divergence differ in their N
dependence,

0
!= �∇ · �j = �∇�α · p︸ ︷︷ ︸

∼p

+ �α · �∇p︸ ︷︷ ︸
∼N p

− 1

2N
�∇(D �∇p)︸ ︷︷ ︸
∼N p

. (25)

This means that at leading order we can neglect the first term.
Having dropped the first term, we now insert the partition of
�α defined above, obtaining

0 = �α⊥ · �∇p + D�α‖ · �∇p + 1

2N
�∇(D �∇p) . (26)

The solution of this partial differential equation is to lead-
ing order still given by (22):

0 = 2N p‖
s · �α⊥ · �α‖︸ ︷︷ ︸

0

+�∇
(

�α‖ p‖
s − 1

2N
D �∇p‖

s

)
︸ ︷︷ ︸

0

. (27)

This means that to leading order in 1/N , �α⊥ has no influence
on ps. Thus we can insert (18) and (23) in (24) and obtain

�js = �α⊥ ps (28)

at leading order in 1/N . This has interesting implications:
First, due to (19) and (23) �js is always perpendicular to �∇ps

and thus follows the height lines of ps. Consequently, �js must
have a fixed point at the location of maxima and minima of ps

if it does not vanish. Conversely, all maxima and minima of ps

will lie at the location of �js fixed points. The same is of course
also true for saddle points of ps and �js in this leading-order
approximation in 1/N .

Because of Eq. (9), the correspondence between �js fixed
points and ps extrema means that �α has fixed points at their
locations too. Therefore we obtain for large N the relation

�js(�x0) = 0 ⇔ �α(�x0) = 0 . (29)

Taken together, we have derived the three relations (22),
(28), and (29), which are valid to leading order in 1/N , which
means that they are a good approximation for sufficiently large
system sizes. For smaller system sizes, or when the leading-
order term vanishes, higher-order terms become important.

In the following, first we explore further consequences of
this approximation. Then we discuss phenomena that cannot
be explained based on this first-order approximation, such
as dipole currents in �js, slow transient states where ps has
a maximum but �js does not vanish, and saddle points in
ps where �js cannot form a saddle point due to topological
constraints.

B. Correspondence between �α and�j fixed points for large N

Next, we identify the type of �js fixed point associated with
each type of �α fixed point, based on the leading order in 1/N .
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We have already seen that in this approximation �js follows
the height lines of ps. This means that �js follows closed loops
around maxima and minima of ps, and consequently the fixed
point of �js at these extrema of ps is a center. On the other
hand, maxima of ps are associated with stable fixed points of
�α, since the drift term of the FPE must push all probability
from the neighborhood towards this maximum, as we know
from the deterministic limit. Conversely, minima of ps are
associated with completely unstable fixed points of �α. The
remaining stationary points of ps are saddles. Since �js must
also follow the height lines of ps near saddles, it follows that
the fixed point of �js at the saddle of ps is a saddle point,
which has one attractive and one repulsive eigendirection.
Concordantly, �α also has a saddle point at this position in
state space. The reason is that the direction in which ps

decreases (increases) must be a stable (unstable) direction of
�f so that probability is pushed away from that fixed point in

the direction in which ps increases and toward that fixed point
along the direction in which ps decreases.

To give an explicit example, we consider in the following
the case where D ∝ Id, and we linearize the convective field
around its fixed point, which we place, without loss of gener-
ality, at the origin:

�α =
(

ax + by
cx + ey

)
. (30)

The Jacobian reads

J�α =
(

a b
c e

)
(31)

and has the eigenvalues

λ± = 1
2 (−τ ±

√
τ 2 − 4
), (32)

with τ = tr(J�α ) = a + e and 
 = det(J�α ) = ae − bc.
Furthermore, we can calculate �α‖ and �α⊥, which yields

�α‖ =
(

a+e
η

(�y + (
 + a2 + c2)x)
a+e
η

(�x + (
 + b2 + e2)y)

)
, (33)

�α⊥ =
(

b−c
η

(�x + (
 + b2 + e2)y)
− b−c

η
(�y + (
 + a2 + c2)x)

)
, (34)

with η = (b − c)2 + (a + e)2, � = ab + ce, and 
 =
det(Jα ) = ae − bc.

Since at leading order �js = �α⊥ · ps, we can write the Ja-
cobian of �js as J (�js) = J (�α⊥) · p + R, where every entry of
the rest matrix R is proportional to a derivative of ps and thus
vanishes at the location of the fixed point. This means that the
type of a fixed point of �js is always identical to the type of the
corresponding fixed point of �α⊥.

The Jacobian of �α⊥ is given by

J�α⊥ = 1

η

(
(b − c)� (b − c)(
 + b2 + e2)

−(b − c)(
 + a2 + c2) − (b − c)�

)
(35)

and has the eigenvalues

μ± = ± (b − c)
√−
η
. (36)

Since η > 0, these eigenvalues are either two real values with
opposite signs or a complex conjugate pair with vanishing real

part. The first case occurs for 
 < 0 and implies a saddle
point in �α⊥ and therefore in �js, and from Eq. (32) we know
that this corresponds to a saddle point in �α. The second case
occurs for 
 > 0 and implies a center in �α⊥ and thus in �js.
All fixed points of �α that are not saddle points are associated
with centers of �js.

For the special case b = c, which can also be expressed as
the more general condition �∇ × D−1 �α(�x0) = 0, both eigen-
values are 0. We see below that in this case the leading-order
contributions in 1/N vanish and the fixed points of �α and �js
no longer coincide. Instead, the stationary currents become
dipolelike.

C. The rotation sense of�js

The curl of any vector field �f (�x) at a location �x0 can always
be split into two distinct contributions. One contribution stems
from the circular flow of the vector field around �x0; the other
one, from the change of its absolute value in the vicinity of �x0.
For this purpose we write �f (�x) = | f | · �e f and calculate

�∇ × �f = �∇ × �e f · | f | + �∇| f | × �e f . (37)

At the location of a fixed point of �f (�x) the second term
vanishes and the curl is given alone by the circular flow around
the fixed point. We can then interpret the sign of this first term
as the rotation sense of �f around that fixed point.

Thus, in order to obtain information about the rotation
sense of �js, we first derive properties of its curl. From Eq. (9)
we obtain

�∇ × D−1 �js = �∇ ×
(

D−1 �αps − 1

2N
�∇ps

)
= �∇ × (D−1 �αps). (38)

At an extremum of ps, the gradient of ps vanishes, and this
relation simplifies to

sgn( �∇ × D−1 �js) = sgn( �∇ × D−1 �α) (39)

= sgn( �∇ × D−1 �α⊥). (40)

In the last step, we have used Eqs. (18) and (20). There is no
simple way to obtain from here sgn( �∇ × �js), which gives, at
an extremum of ps, the rotation sense of �js. In many cases,
however, we expect that sgn( �∇ × D−1 �js) = sgn( �∇ × �js).

In the following, we discuss two cases in which we can
obtain information directly about sgn( �∇ × �js): The first case
is that of large N , where we obtain from relation (28) at an
extremum of ps

sgn( �∇ × �js) = sgn( �∇ × �α⊥) . (41)

In this case, we need to find the component �α⊥ of the convec-
tive field and to evaluate the sign of its curl.

The second case is that of constant, isotropic diffusion,

D = d · Id . (42)

In this case, we obtain from Eqs. (39) and (10)

sgn( �∇ × �js) = sgn( �∇ × �α) = sgn( �∇ × �f ) , (43)

and we need not determine the two components of �α.
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Away from an extremum of ps, the sign of the curl is
not necessarily identical to the rotation sense of �js. This can
be seen most easily in the case, (42), of constant, isotropic
diffusion, for which Eq. (38) simplifies to

�∇ × �js = �∇ × �f · ps + �∇ps × �f . (44)

The sign of the first term gives the rotation sense of js around
the extremum of ps.

The second term in Eq. (44) does not vanish outside ex-
trema of ps. For negative �∇ps, i.e., in the vicinity of maxima of
ps, the second term points in the opposite direction of the first
term. Close to minima, it points in the same direction. This
second term can cause a difference in the sign of the curl of js
and the sense in which js circles around the extremum of ps.

In order to gain a deeper understanding of all this, let us
consider the example of a rotationally symmetric model with
constant, isotropic diffusion, (42), which we solve explicitly
in the limit of large N .

Example: Rotationally symmetric model

If the vector field �f (�x) obeys a rotational symmetry around
its fixed point, it has the form

�f (�x) = fr (r)�er + fϕ (r)�eϕ . (45)

Choosing (42) for the diffusion matrix, we have �f = �α and

fr (r)�er = d · �α‖ and fϕ (r)�eϕ = �α⊥. (46)

From relation (22), which is valid for large N , we obtain the
stationary probability distribution

ps = e
2N
d

∫
fr (r)dr . (47)

Furthermore, Eq. (28) gives

�js = fϕ (r)ps�eϕ, (48)

i.e., �js goes in circles around the fixed point of �f , and its radial
component vanishes. The curl of �js then reads

( �∇ × �js)z =
(

f ′
ϕ (r) + fϕ (r)

r

)
︸ ︷︷ ︸

�∇× �f

ps(r) + fϕ (r)p′
s(r)︸ ︷︷ ︸

�∇ps× �f

(49)

= 1

r
· fϕ (r)ps(r)︸ ︷︷ ︸

�∇×�e j ·| js|

+ ( f ′
ϕ (r)ps(r) + fϕ (r)p′

s(r))︸ ︷︷ ︸
�∇| js|×�e j

,

(50)

with the first term describing a circular flow around the fixed
point and the second term being a a less intuitive contribution
induced by the change in the absolute value of �js. At the
maximum of ps, we have only the first term, and the rotation
sense of �js is given directly by the sign of fϕ .

When N is large, most of the stationary probability density
is located close to the center, and one can simplify these
expressions further by approximating �f by linear terms in x

and y,

�f =
(−λx − ωy

−λy + ωx

)
. (51)

This means that we have set fr = −λr and fϕ = ωr.
The eigenvalues of the Jacobian at the fixed point read

{−λ − iω,−λ + iω}, i.e., the fixed point is a stable spiral for
λ > 0, ω �= 0, with the sign of ω determining the sense of the
spiral. For ω = 0 the fixed point is a stable node.

We obtain, furthermore,

�∇ × �f = 2ω, (52)

and using (47),

ps(x) = A exp

(
−λN

d
(x2 + y2)

)
. (53)

The stationary current, (48), is then

�js(x) = ps

(−ωy
ωx

)
, (54)

giving

( �∇ × �js(x))z = 2ωps︸ ︷︷ ︸
1st term

+−ωλN

d
ps(x

2 + y2)︸ ︷︷ ︸
2nd term

= ωλN

d
ps

(
2d

λN
− (x2 + y2)

)
. (55)

If we choose ω > 0, the curl of �js is positive inside a circle

of radius r =
√

2d
λN around the origin where the first term,

which gives the rotation sense of �js around its fixed point,
dominates and is negative for larger distances from the origin.
These different quantities are illustrated in Fig. 1.

D. The general topology of�js

Taking the previous results together, we have established
a method for finding the fixed points of �js at leading order
in 1/N and to calculate the sense in which js flows around
maxima of the stationary probability distribution from (41) or,
in the case of constant, isotropic diffusion, from the simpler
relation, (43).

In the following, we explore the usefulness and limits of
the large-N approximation for artificial models, where only
some of the simplest possible coupling terms between the
two chemical species are included. An uncoupled 2D reaction
system can be written in the form

�f u =
(

f u
1 (x)

f u
2 (y)

)
(56)

and

D =
(

D11(x) 0
0 D22(y)

)
. (57)

If we now were to introduce coupling reactions into this
system, we would obtain coupling terms inside both the drift
vector and the diffusion matrix. In order to understand the
effect of each of these terms separately, we first consider
artificial models where only the drift vector or the diffusion
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(a) (b)

(c) (d)

FIG. 1. The different contributions to �js for the rotationally sym-
metric system, (51), for the parameter values ω = λ = d = N = 1:
(a) stationary probability density ps(x, y); (b) stationary probability
current �js(x, y); (c) curl of the stationary probability current | �∇ ×
�js(x, y)| (as all vectors point along the positive z axis, only the
absolute value is shown); (d) cut along the x axes in (c).

matrix contains coupling terms. In the following step we then
consider realistic models.

1. �js for coupling terms inside the deterministic drift

There are many ways to introduce coupling terms into the
deterministic drift of (56). However, not all types of coupling
terms can be produced by chemical reactions. For example,
a positive linear coupling in the form f1(x, y) = f u

1 (x) + ay

can occur due to a reaction Y
a−→ X + Y . But a negative

linear coupling like f1(x, y) = f u
1 (x) − ay is not possible, as

it would lead to negative numbers of X molecules.
Considering restrictions like this, the most general form

of the deterministic drift of a coupled two-species reaction
system with up to bimolecular interactions and mass-action
kinetics reads

�f =
(

f u
1 (x) + a1y + b1xy + c1y2

f u
2 (y) + a2x + b2xy + c2x2

)
, (58)

with ai, ci > 0 and bi ∈ R. The coupling constants can be
independent of each other, as it is possible to construct a
chemical reaction for any of these coupling terms that does
not alter the deterministic drift in any other way.

Using (57) and (58) we obtain the following explicit ex-
pression for (39), which is valid at an extremum of ps:

( �∇ × D−1 �js)z = ( �∇ × D−1 �f )z (59)

or, equivalently,

∂x jy
D22

− ∂y jx
D11

= ∂x fy

D22
− ∂y fx

D11
. (60)

Unfortunately, the sign of �∇ × �js at the considered extremum
of ps cannot be deduced with certainty from this expression.
To leading order in 1/N we have the alternative route via
calculation of sign( �∇ × D−1 �α⊥), but it is impossible to write
down a general analytical expression for �α⊥ for this system.
We therefore confine ourselves again to the case

D =
(

d 0
0 d

)
, (61)

for which D11 = D22 = d .
Setting (60) to 0 yields an implicit expression for the curve

that divides the two regions with opposite signs for the curl
of �f , which equals the curl of �j. We take it in the following
as an estimate for the rotation sense of �j around its fixed
point. Since both x and y occur only linearly in this equation,
this curve must be a line. For c1 �= b2 we can write it in the
explicit form

y = 2c2 − b1

2c1 − b2
x + a2 − a1

2c1 − b2
. (62)

Depending on the parameters of the system the distance of
this boundary line from the maximum of ps will be smaller
or larger.

Figure 2 shows some example systems where the estimated
rotation sense of �js according to (59) is plotted as a green
(positive) or red (negative) background color together with the
fixed points of �α (red) and overlaid with vector plots of �js
from numerical solutions of the Fokker-Planck equation. For
this figure, we used

�f u =
(

r1 − s1x
r2 − s2y

)
(63)

as the underlying uncoupled system and the diffusion
marix, (61).

Figure 2 shows that if the fixed point of �α is sufficiently far
away from the boundary line, the fixed points of �js match the
�α fixed points very well. For these systems the topology of �js
can be estimated based an these fixed points and the curl of �α
alone. Only for more detailed properties of �js, like the length
of the �j vectors or the elliptical deformation of the circular
currents around the fixed point, is it necessary to solve the
FPE and calculate �js explicitly.

The figure also shows one shortcoming of our method:
While we can predict the rotation sense and, at leading order
in 1/N , also the fixed points of �js, we have no information
about the strength of the stationary probability currents. For
example, we could not foresee how tiny the values of �js in the
region with negative rotation sense in Fig. 2(c) are.

The situation is qualitatively different in Fig. 2(d), for
which �∇ × D−1 �α = 0 at the fixed point of �α. The shape of �js
can therefore no longer be obtained by analyzing the sign of
�∇ × D−1 �α. As Fig. 2(d) shows, �js assumes a dipolelike shape
in this scenario.

While the discrepancy between the �α and the �js fixed points
in Fig. 2(d) is obvious, the maximum of ps and the fixed point
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(a) (b)

(c) (d)

FIG. 2. Stationary probability current �js for the coupled
system (58) with (63) and (61) for the parameter set r1 = r2 = 50,
s1 = s2 = 1, d = 100, N = 1, and different values for the
coupling terms: (a) a1 = 0.1, a2 = 0.2, bi = ci = 0; (b) ai = bi =
c2 = 0, c1 = 0.005; (c) ai = ci = 0, b1 = 0.001, b2 = 0.002;
(d) ai = ci = 0, b1 = b2 = 0.001. The green (red) background
color indicates the predicted positive (negative) rotation sense as of
Eq. (59), i.e., based on the sign of the curl of �α. Red dots indicate the
positions of the fixed points of �α; white rectangles, the fixed points
of �js.

of �α have also become different, even though their distance
is very small and not visible in the figure. Both these points
lie exactly on the �∇ × D−1 �α = 0 boundary line due to the
symmetry of the system.

In the following, we analyze the emergence of dipole
currents in more detail.

2. How higher-order terms create dipole currents

In (28) we have seen that the stationary probability current
at leading order in 1/N is given by

�js = �α⊥ ps .

In this approximation �α⊥ has no influence on ps, and fixed
points of �α and �js and extrema of ps coincide.

However, if this leading-order term vanishes in the neigh-
borhood V ( �x0) of a point �x0, higher-order terms in 1/N
determine the shape of �js. We can than write for �x ∈ V ( �x0)

�α⊥(�x) = 0

⇒ �α(�x) = D�α‖(�x)

⇒ �∇ × D−1 �α(�x) = 0,

(64)

which means that �x lies on the boundary line between positive
and negative rotation sense. Consequently, the significance of

higher-order terms in 1/N near a fixed point of �α is given by
the proximity of that fixed point to the boundary line.

The observation that the emerging higher-order currents
are dipole shaped is plausible, as a dipole current is the
simplest current with vanishing curl along a line. We can
understand this result better by using an example. Let us
assume a single stable fixed point of �f located at the origin.
Since we are interested in the current in the vicinity of this
fixed point, we choose a model linear in x and y:

�f =
(−x

−y

)
. (65)

For the diffusion matrix we choose one of the simplest possi-
ble forms that gives a nonzero stationary current:

D =
(

d 0
0 d + x

)
. (66)

For this simple model, we have �α = �f and

�∇ × D−1 �α = − y

(d + x)2 �ez , (67)

which is indeed 0 at the location of the fixed point.
We find the stationary probability density ps close to the

fixed point, i.e., for small x and y, by an educated guess,

ps = A(d − x) exp

(
−N

d
(x2 + y2)

)
. (68)

Indeed, this proves to be a stationary solution to leading order
of x and y:

�∇ · �j = ∂

∂x

(
−xps − d

2N

∂ ps

∂x

)
+ ∂

∂y

(
−yps − d − x

2N

∂ ps

∂y

)

= A

(
− d

2N

∂

∂x
− x

)
e− N

d (x2+y2 ) + O(x2, y2)

= 0 + O(x2, y2). (69)

Thus the stationary probability current close to the �f fixed
point is approximated by

�js =
(

−xp − d
2N

∂ p
∂x

−yp − d−x
2N

∂ p
∂y

)
≈

(
dA
2N

0

)
+ O(x, y). (70)

This constant vector pointing along the x axis is the first-order
term of a dipole field that points in the x direction.

The fact that such a dipole field arises can also be seen from
ansatz (68), which is the leading-order result of the summation
of two equal Gaussian distributions which are 1/d apart from
each other.

3. �js for coupling terms inside the diffusion matrix

Let us now investigate models with coupling terms inside
the diffusion matrix. Again, in order to understand the in-
fluence of these coupling terms in greater detail, we do not
consider realistic coupling reactions but assume a completely
uncoupled drift vector �f u, as given in (56).

The general uncoupled diffusion matrix, (57), permits two
ways of introducing a coupling: Either the elements Dii(xi )
become dependent on the respective other species Xj or the
off-diagonal terms D12 = D21 become nonzero.
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Just like the coupling terms inside the deterministic drift,
couplings inside the diffusion matrix must obey certain re-
strictions when they should be producible by mass-action
kinetics. Especially, since the Dii(xi ) can never decrease due
to an additional interaction, all introduced coupling terms on
the diagonal of D must be positive.

The off-diagonal terms, on the other hand, may have either
positive or negative sign, except for the constant term, which
is always positive.

All in all we arrive at the following general coupled diffu-
sion matrix elements:

D11(x, y) = Du
11(x) + a1y + b1xy + c1y2,

D22(x, y) = Du
22(y) + a2x + b2xy + c2x2,

D12(x, y) = D21c(x, y) = e ± f1x ± f2y

± gxy ± h1x2 ± h2y2 (71)

for reaction systems with mass-action kinetics and up to
bimolecular reactions.

We focus now on a simplified example with only linear
diagonal coupling terms given by

D =
(

Du
11(x) + a1y 0

0 Du
22(y) + a2x

)
. (72)

With this expression for the diffusion matrix, we obtain

�∇ × D−1 �α = a1
( − 2 f1(x) − D′u

11(x)
)

2
(
a1y + Du

11(x)
)2

− a2
( − 2 f2(y) − D′u

22(y)
)

2
(
a2x + Du

22(y)
)2

= α1(x) a1 η2
1(x, y) − α2(y) a2 η2

2(x, y) (73)

with the abbreviation 1/ηi = (aix j + Du
ii(xi )) and the convec-

tive field �α. In contrast to (59) this expression depends now
explicitly on the drift �f as well as on the uncoupled diffusion
matrix entries Du

ii(xi ).
We can immediately see that this quantity is 0 at the

location of an �α fixed point. Therefore the leading-order terms
in 1/N vanish at this location, and we expect a dipole shape
for the resulting �js currents. To verify this prediction we have
plotted the sign of expression (73) together with the numerical
solution of the corresponding FPE in Fig. 3. For this figure, we
have used (63) for the drift vector, as well as Du = (d 0

0 d) for
the underlying uncoupled diffusion matrix.

Due to the fact that all terms in (73) are proportional to
a component of �α, dipole currents will emerge irrespective
of the chosen drift vector, coupling, or diffusion strengths of
the system.

4. More general conditions for dipole currents

So far we have seen that the leading-order term in 1/N
vanishes (and thus higher-order terms become important) if
the quantity �∇ × D−1 �α is 0 at the location of an �α fixed point.
It is straightforward to investigate for which types of reaction

(a) (b)

FIG. 3. Stationary probability current for the example system,
(63), with linear coupling in the diagonal terms of the diffusion, (72),
with Du

11(x) = Du
22(y) = d = 100 and different coupling strengths:

(a) a1 = 1, a2 = 0; (b) a1 = 1, a2 = 5. The green (red) background
color indicates the positive (negative) rotation sense predicted based
on the sign of Eq. (73). Red dots indicate the positions of the fixed
points of �α; white rectangles, the fixed points of �js.

networks this condition holds. To this purpose, we write

�∇ × D−1 �α =
(

α1
∂B12

∂x
+ B12

∂α1

∂x
+ B22

∂α2

∂x
+ α2

∂B22

∂x

)

−
(

α1
∂B11

∂y
+ B11

∂α1

∂y
+ B12

∂α2

∂y
+ α2

∂B12

∂y

)
,

(74)

with the abbreviation B = D−1, i.e., B12 = B21 = −D12



,
B11 = D22



, B22 = D11



, with 
 = det(D) = D11D22 − D2

12.
At the location of a fixed point �x0 of �α, half of these terms

vanish, and we can write

�∇ × D−1 �α(�x0) = B12

(
∂α1

∂x
− ∂α2

∂y

)

+
(

B22
∂α2

∂x
− B11

∂α1

∂y

)
. (75)

Whenever this quantity vanishes, the leading-order term in
1/N is 0 and higher-order terms need to be considered.

This is, for instance, the case when certain symmetries are
present: Whenever the system includes an x ↔ y symmetry
in �α, the first term in (75) does not contribute. However,
this term will also be 0 whenever the off-diagonal diffusion
matrix elements D12 vanish. Similarly, the second term will
vanish if we choose the parameters of the system in a way
that the symmetry condition D11

∂α2
∂x = D22

∂α1
∂y is fulfilled at

the location of an �α fixed point, but also if the drift vector is
completely uncoupled and ∂α2

∂x = ∂α1
∂y = 0 holds.

This means that in a system without any drift coupling and
with vanishing off-diagonal diffusion elements, the leading-
order terms in 1/N will always be 0 and the system will show
dipole (or other higher-order multipole) currents, irrespective
of the chosen parameters. The system shown in Fig. 3 clearly
falls into this category.
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E. Stationary probability currents in model reaction systems

Having investigated how different coupling terms inside
the drift or diffusion matrix affect the stationary probability
currents �js, we now return to reaction systems. Any reaction
that couples the two molecular species will introduce coupling
terms at multiple locations inside the drift and diffusion terms
simultaneously. For example, the reaction

X
k→ Y (76)

yields −kx in f1(�x), +kx in f2(�x), and +kx in D11(�x) and
D22(�x).

In the following, we investigate two generic example sys-
tems: one of which displays bistability, the other a limit cycle.

1. Positive feedback loop

Positive feedback loops occur, for instance, in gene ex-
pression when a protein produced from one gene activates the
expression of another gene, and vice versa [22]. One possible
implementation reads

∅
bx

�
dx

X,

∅
by

�
dy

Y,

X
Fx (y)→ ∅,

Y
Fy (x)→ ∅,

(77)

with the Hill function

Fy(x) = xnx · my

xnx + θ
nx
x

. (78)

This leads to the drift vector

�f =
(

−dxx + bxN + myxny N
xny +(θyN )ny

−dyy + byN + mxxnx N
xnx +(θxN )nx

)
(79)

and the diffusion matrix

D =
(

dxx + bxN + myxny N
xny +(θyN )ny 0

0 dyy + byN + mxxnx N
xnx +(θxN )nx

)
. (80)

Depending on the parameters, this system can possess
none, one, or two stable �α fixed points in the positive quadrant.
Figure 4 shows two examples of a bistable system, with
symmetric [Fig. 4(a)] and asymmetric [Fig. 4(b)] parameter
choices.

In Fig. 4(a) �js comprises essentially two opposing dipole
fields. A shape like this could be guessed based on the location
of the �α fixed points and the sign of �∇ × D−1 �α. Even though
there is a �j fixed point between the two dipoles, its location is
displaced from the �α saddle point.

The asymmetric system in Fig. 4(b), on the other hand,
possesses two centers of opposite rotation sense in �js, which
can also be guessed based on the fixed points of �α and on the
sign of �∇ × D−1 �α. In this figure, the saddle point in �α has no
visible counterpart in �js.

However, since the shape of �js must change continuously
as the parameters are changed from Fig. 4(a) to Fig. 4(b),

(a) (b)

FIG. 4. Stationary probability current (blue arrows) for sys-
tem (77) with (a) symmetric and (b) asymmetric parameter val-
ues. The green (red) background color indicates the predicted
positive (negative) sense of rotation according to Eq. (39).
Red dots indicate the positions of the fixed points of �α;
white rectangles, the fixed points of �js. Parameter values:
(a) mx = my = 1, nx = ny = 4, �x = �y = 4, dx = dy = 0.2, bx =
by = 0.34, N = 20; (b) mx = my = 1, nx = 4, ny = 3, �x = �y =
4, dx = 0.12, dy = 0.22, bx = 0.22, by = 0.15, N = 20.

the second pair of swirls must still be present but has moved
to a region where ps is very small, so that the numerical
calculation cannot resolve it. This means that there is still a
saddle point of �js, but it cannot be resolved either, and it does
not coincide with the saddle of �α.

This is in contrast to Sec. III A, where we have established
that at leading order in 1/N �js follows the height lines of ps,
which means that maxima, minima, and saddle points of ps

lead to the formation of �js fixed points at the same locations.
Figure 4(b) implies that the expectation that is based purely on
the leading order in 1/N is not correct and that higher-order
terms cannot be neglected for the parameter values used in this
analysis.

We can find instances of saddles of �α without visible
saddles of �js also in a much broader context: Depending on the
rotation sense of �js to the left and the right of a ps saddle, there
are in general two options for the flow of �js in the vicinity of
a ps saddle. Both are shown in Fig. 5.

FIG. 5. Color gradient: height profile of ps. Arrows: direction of
�js. (a) A saddle point in ps between two maxima with equal rotation
sense in �js leads to the formation of a saddle in �js at the location of the
ps saddle. (b) If a ps saddle lies between two maxima with opposing
rotation senses in �js, the formation of a �js saddle is prevented.
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In Fig. 5(a), the ps saddle lies between two maxima with
the same rotation sense of �js. In this case there is a matching
�js saddle. In Fig. 5(b), however, the formation of a �js saddle
is impossible due the topology of the system: The two �js
centers with opposing rotation sense dictate that a constant �js
flow must be present between them, where the ps saddle lies.
As this constant flow contradicts the calculated leading-order
behavior, it must be caused by higher-order terms in 1/N .

2. Rosenzweig-MacArthur model

Our second example is a system that contains a limit cycle
in its ODE description. We use the following variant of the
Rosenzweig-MacArthur model, written as a set of chemical
reactions [16,23]:

X
β−→ 2X,

X + X
δ−→ X,

X + Y
d

1+Ax−→ 2Y,

X + Y
b−d

1+Ax−→ Y,

Y
c−→ ∅,

∅ q−→ X,

∅ q−→ Y.

(81)

The drift vector and diffusion matrix for this system read

�f =
(

q − R · b
d + x

(
β − δ

(
x − 1

N

))
q + R − cy

)
(82)

and

D =
(

q + R · b
d + x

(
x − 1

N

)
δ + xβ −R

−R q + R + cy

)
,

with the abbreviation R = dxy
1+Ax .

In the following, we focus on two different parameter
sets: a system with a single, stable fixed point as well as a
system with an unstable fixed point enclosed by a limit cycle.
Evaluating (39) for this system yields a positive rotation sense
of �js around the respective fixed points for both parameter
sets. Thus we expect a circular flow of �js around these points.
As �∇ × D−1 �α remains finite in the deterministic limit N →
∞, we expect a good agreement between the fixed points of �α
and the respective extrema of ps.

The numerical solutions of the FPE for both parameter sets
are shown in Fig. 6, where we can see that the extremum of ps

agrees well with the fixed point of �α and of �js in both cases.
Furthermore, in Fig. 6(b) the probability density resembles a
ridge that coincides with the location of the limit cycle in �α.
Along this ridge the probability density is nonconstant, which
leads to the formation of maxima and saddle points of ps along
the ridge.

As such maxima (saddle points) do not correspond to
fixed points of �α, but form when the probability flow along
the ridge slows down (accelerates), we call them slow (fast)
transient states.

FIG. 6. Stationary probability density (density plot in blue and
yellow) and current (vector/streamline plot in red) for system (81)
with parameter sets that (a) create a stable fixed point or (b) lead to an
unstable fixed point enclosed by a limit cycle. The darker-red vectors
in (b) indicate the direction and strength of the vector field �j, whereas
the lighter-red streamlines indicate only its direction in places where
its magnitude is too weak to use the former visualization. Further-
more, the red dots in both panels indicate the fixed point in �α, the
white rectangle in (b) marks the minimum of the probability density,
and the black line in (b) shows the location of the limit cycle in �α. Pa-
rameters: (a) A = 2/3, β = 0.8, d = 0.65, c = 0.65, b = 1, δ =
0.2, q = 0.01, � = 1000; (b) A = 2/3, β = 0.9, d = 0.65, c =
0.65, b = 1, δ = 0.1, q = 0.01, � = 1000.

These findings are in contrast to Sec. III A, where we have
found that at leading order in 1/N , �js follows the height lines
of ps. In fact, the results in this section cannot be fully applied
for limit cycles. The reason is that Eq. (22) for the stationary
probability distribution is not well defined in this case. This
is because �α‖ points essentially in the radial direction (when
viewed from the minimum of the crater), resulting in a ring
of fixed points and, concordantly, in a ring of 1D dynamical
systems with no connection between them. The integral in the
exponent in Eq. (22) is therefore not well defined, as it needs
a separate integration constant for each radial direction. This
means that ps cannot be specified based on �α‖ alone.

To see this explicitly, let us return to the rotationally
symmetric model, (45), and consider the modification

fr (r) = ar − br3,

fϕ (r, ϕ) = (ω + ε cos(ϕ))r,
(83)

with positive a, b, ω, ε. For ε < ω, this system has a limit
cycle at r = √

a/b. Since fϕ now depends on φ, it is no
longer rotationally symmetric. Nevertheless, expression (46)
is still valid, and so is (47) for the stationary probability
distribution. It contains an integral in the radial direction and
leads to a maximum at r = √

a/b. Based on �α‖ alone, different
values of ϕ are decoupled in solution (47). Only by taking
into account �α⊥ can we connect these different independent
solutions, giving us the angular dependence of A = A(ϕ). This
can be done by starting from the stationarity condition, (25).
We write it in the following way, keeping only leading-order
terms in each of the two components of �α, i.e., order N in
terms with �α‖ and order 1 in terms with �α⊥:

0 = D�α‖ · �∇ps − 1

2N
�∇(D �∇ps)

+ ( �∇ · �α⊥)ps + �α⊥ · �∇ps. (84)
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The terms in the first line are of order N ; those in the second
line, of order 1. If we want to find �α⊥ = �αϕ along the ridge
of the crater of ps, we cannot neglect them, as we had done
before, but we must keep them. In contrast to systems with an
isolated fixed point, ps does not decay with a slope ∝N in all
directions, but it changes with a slope of the order of 1 in the
angular direction. This change can be found from evaluating
the last line of (84), giving A(ϕ) ∝ 1/(ω + ε cos(ϕ). This
means that ps has a maximum at ϕ = π and a saddle at ϕ = 0.

With increasing N the ridge of ps and the limit cycle of
�α will agree better and better, as both must converge towards
the behavior of the deterministic model. This means that Hopf
bifurcations induced by changing parameters of the vector
field �f are reflected by transitions from mounds to craters in
the stationary probability distribution when N is large enough.
In contrast, it was shown in [18] that Hopf bifurcations that are
induced by a decrease in the system size N are not reflected in
such a transition.

F. Nonphysical probability currents

As the last set of examples, we consider systems that show
nonphysical probability currents. Such currents emerge in
systems the master equation of which shows detailed balance
[20], and they must be due to the approximations involved in
deriving the FPE. Our approach allows us to investigate the
properties of these currents.

As we have shown in Sec. II D, stationary probability
currents will emerge whenever �∇ × D−1 �α �= 0, as has also
been noted by Ceccato and Frezzato [20]. Let us first consider
the example reaction system investigated in [20]:

2X
k1

�
k−1

X + Y,

X + Y
k2

�
k−2

Z, (85)

Z
k2

�
k−3

2X.

As the quantity n = nX + nY + 2nZ is conserved, this system
can be mapped onto a 2D system which we can investigate
with the methods described above.

Drift and diffusion for this system read

f1 = −(k1 + 2k−3)x(x − 1) + (k−1 − k2)xy

+(
k3 + 1

2 k−2
) · (1 − x − y),

f2 = k1x(x − 1) + 1
2 k−2(1 − x − y) − (k−1 + k2)xy;

(86)

D11 = (k1 + 4k−3)x(x − 1) + (
2k3 + (k−1 + k2)xy

+ 1
2 k−2

) · (1 − x − y),

D12 = k1x(x − 1) + 1
2 k−2(1 − x − y) − k2xy − k−1xy,

D22 = k1x(x − 1) + 1
2 k−2(1 − x − y) + (k−1 + k2)xy.

(87)

(a) (b)

FIG. 7. Estimated rotation sense of �js based on the sign of
�∇ × D−1 �α (background color: green, positive; red, negative) and
numerical results for �js (blue vectors). Red dots indicate the fixed
points of the convective field which coincide with the corresponding
maxima of the probability density. (a) Model (85), with parame-
ters chosen as in [20], i.e., in our notation k1 = 1, k−1 = 3, k2 =
2, k−2 = 500, k3 = 75, k−3 = 0.1, n = 2 × 104. (b) Model (90),
with parameters r = 50, s = λ = 1, N = 1.

The rotation sense of �js as estimated based on �∇ × D−1 �α,
as well as the numerical solution of the FPE, is shown in
Fig. 7(a).

One can see that the agreement on the topology of �js
between the simple prediction and the numerical result is
pretty good. The predicted rotation sense of �js in Fig. 7 can
be interpreted as a condensed version of Fig. 3 in [20] where
only the sign of R(η̃) is shown.

Another example for nonphysical currents in a system with
detailed balance is given by

�f =
(

(r − sx) + λ(y − x)
(r − sy) + λ(x − y)

)
, (88)

D =
(

r + sx + λ(x + y) −λ(x + y)
−λ(x + y) r + sy + λ(x + y)

)
, (89)

which corresponds to the reaction system

∅
r
�

s
X,

∅
r
�

s
Y,

X
λ

�
λ

Y,

(90)

which obeys detailed balance.
The nonphysical stationary currents are shown in Fig. 7(b).

At the location of the fixed point, we have �∇ × D−1 �α = 0.
Interestingly, the stationary probability current of this system
does not take the shape of a dipole, as we found in previous
examples with �∇ × D−1 �α = 0, but that of a quadrupole. Sim-
ilarly to the dipole, this pattern satisfies the symmetry under
exchange of X and Y in the reaction system, but in contrast to
the dipole it has a saddle of �js at the fixed point of �α.

It is, furthermore, interesting to observe that this system
satisfies �∇ × �α = 0. The nonphysical stationary probability
currents are therefore due to the concentration dependence of
the diffusion matrix, which leads to �∇ × D−1 �α �= 0. Therefore
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one might call this kind of nonphysical probability currents
diffusion induced. In contrast to this, the reaction system, (85),
shows already a preferred sense of rotation in its deterministic
drift alone ( �∇ × �f �= 0), which is (given detailed balance in
the master equation) sufficient for the occurrence of non-
physical currents even if the corresponding diffusion matrix
was a constant proportional to the identity matrix. Therefore
one could call this type of nonphysical probability currents
drift induced.

IV. CONCLUSION

We have developed a method to estimate the topology of �js
from the convective field �α and the diffusion matrix D alone
and without the need to solve the FPE numerically. Thereby
we were able to prove that fixed points of �js and �α and extrema
of the stationary probability density ps coincide at leading
order in the inverse system size 1/N .

This finding puts the suggestions made in [16] on a more
solid foundation: In that paper, a technique to obtain phase
portraits for 2D stochastic systems based on the Fokker-
Planck equation was developed. However, this technique re-
lies without any proof on the assumption that �js = 0 at the
location of an �α fixed point, so that fixed points of �α coincide
with extrema of ps. Even though this method works well
for various examples, until now it was unclear when this
assumption breaks down. In the light of the results in this
article, we can now specify that the stochastic phase portraits
suggested in [16] are useful whenever the leading-order terms
in 1/N suffice to describe the system.

Furthermore, we have seen that when the leading-order
term in 1/N is not sufficient, dipole currents in �js can emerge,
which means that �js �= 0 at the location of an �α fixed point.

Nevertheless, in the examples we have studied the distance
between this �α fixed point and the corresponding ps extremum
is still very small compared to the distance over which ps

decays, which means that stochastic phase portraits would
still be applicable even for theses cases. We were, however,
not able to identify the exact conditions under which this
proximity occurs.

Together with the rotation sense of �js, which we estimated
through the quantity sgn( �∇ × D−1 �α), we were able to predict
the topology of �js for arbitrary reaction systems. Using this
method, we did an analysis of the different js patterns that can
emerge in chemical reaction networks with isolated coupling
terms. The analysis of these simplified systems represents the
first step towards understanding all the possible js shapes that
may emerge in more complex systems. Indeed we were able
to identify a class of systems that only showed dipolelike
currents given certain symmetric parameter choices as well
as a class of systems that showed higher-order currents irre-
spective of the parameters of the system.

Throughout these investigations we saw that our simple
estimation formula for the rotation sense of �js, which is
technically correct only for systems with constant, isotropic
diffusion or for very large system sizes, gave quite accurate
results for all the examples investigated. This work has thus
laid a foundation on which further explorations of stationary
currents can build.
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