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Spatiotemporal mode locking in quadratic nonlinear media

Mahmut Bağcı *
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A theoretical model is developed to characterize spatiotemporal mode locking (ML) in quadratic nonlinear
media. The model is based on the two-dimensional nonlinear Schrödinger equation with coupling to a mean term
(NLSM) and constructed as an extension of the master mode-locking model. It is numerically demonstrated that
there exists steady-state soliton solutions of the ML-NLSM model that are astigmatic in nature. A full stability
analysis and bifurcation study is performed for the ML-NLSM model, and it is manifest that spatiotemporal ML
of the astigmatic steady-state solutions is possible in quadratic nonlinear media.
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I. INTRODUCTION

Mode locking (ML) is a commonly observed phenomenon
in optical resonator cavities where nonlinear interactions in
the cavity synchronize different cavity modes to produce
localized and stable light pulses. Such nonlinear synchro-
nization processes where first observed shortly after the
invention of the laser [1–4]. Modern mode-locking lasers
[5,6] are now a mature, turn-key technology commonly used
in many branches of science and commercial applications
[7,8]. Traditionally, the key nonlinear process responsible for
synchronizing cavity modes is a cubic Kerr nonlinearity or
intensity-dependent index of refraction. Its interaction with
linear dispersion and the cavity gain-loss dynamics are the
basis of the canonical master mode-locking equation [9,10],
which characterizes the equilibration of the pulse energy,
and the consequent balance of nonlinearity and dispersion in
forming stable pulses [11–13]. More recently, spatiotemporal
ML has been considered for creating light-bullet structures
in Kerr media [14–17]. In this work, we develop a theory of
spatiotemporal ML in quadratic media and show that stable
ML can be achieved. This provides an important extension
of the mode-locking theoretical framework to a broader class
of problems whose quadratic nonlinearities can be leveraged
with orders of magnitude less power.

Spatiotemporal ML is difficult to achieve in practice due
to the physical balances that must be achieved in both the
spatial and temporal domains. Although ML has promoted a
great deal of work in synchronizing temporal cavity modes,
there has been relatively little work in understanding how to
coherently superimpose spatial modes or mode lock in the
spatial domain. If both can be simultaneously synchronized,
then spatiotemporal ML can be achieved. The work of Wright
et al. [17], for instance, uses spatial filtering to achieve a
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variety of spatiotemporal ML states. In many applications,
however, the leading nonlinear polarization effect in an optical
material is quadratic. Quadratic materials are referred to as
χ2 materials, where χ2 is the second-order susceptibility that
describes second harmonic generation first experimentally
observed by Franken et al. [18]. Indeed, until such observa-
tions [19], Maxwell’s equations were thought to be linear.
Pulse shaping in quadratic media was proposed early [20],
with optical solitons theoretically predicted by Karamzin and
Sukhorukov shortly after [21,22]. In Belashenkov et al. [23]
and DeSalvo et al. [24], experiments in a χ2 crystal demon-
strated modulational instability and the self-defocusing phe-
nomena typically observed in centro-symmetric χ3 materials.
In 1995, optical solitons in a quadratic bulk material were
observed by Torruellas et al. [25], and existence of the solitons
in a χ2 waveguide were observed experimentally by Schiek
et al. [26] in 1996. These original results have since been
corroborated and extended in many follow-up experiments
[27–32], demonstrating that quadratic solitons can exist in
both the spatial and the temporal domains in waveguides or
bulk materials [33–36]. One of the distinguished properties
of a quadratic nonlinear medum is that it provides stable
multidimensional pulse propagation without collapse in any
dimension [33,34,37].

It is well known that the pulse dynamics in multidimen-
sional nonresonant χ2 materials cannot be generally described
by nonlinear Schrödinger (NLS)-based equations [38–41].
Indeed, these dynamics are governed by generalized NLS
systems with coupling to a mean term (hereafter denoted as
NLSM systems, which are sometimes referred to as Benney-
Roskes or Davey-Stewartson type) [42,43].

Benney and Roskes [42] first obtained NLSM equations in
water of finite depth h and without surface tension in 1969. In
1974 Davey and Stewartson [43] reached an equivalent form
of the NLSM equations by investigating the evolution of a
3D wave packet in water of finite depth. The integrability
of NLSM systems was studied in 1975 by Ablowitz and
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Haberman [44] in the shallow water limit. In 1977 the re-
sults of Benney and Roskes were extended to include sur-
face tension by Djordevic and Reddekopp [45]. Ablowitz
et al. [38–40] derived from first-principles NLSM-type equa-
tions describing the evolution of the electromagnetic field in
quadratic nonlinear media. Recently it was demonstrated [46]
that optical wave collapse can be arrested in the NLSM system
by adding an external potential (lattice) to the model.

The NLSM system is physically derived from an expansion
of the slowly varying wave amplitude in the first and second
harmonics of the fundamental frequency and a mean term that
corresponds to the zeroth harmonic. This system describes the
nonlocal-nonlinear coupling between a dynamic field that is
related with the first harmonic and a static field that is related
with the zeroth harmonic [47]. The general NLSM system is
given by [39,40,48]

iut + ∇2u + |u|2u − ρuφ = 0, (1a)

φxx + νφyy = (|u|2)xx (1b)

where u(x, t ) is the normalized amplitude of the envelope
of the normalized static electric field (which is associated
with the first harmonic). The parameter ρ is a coupling
constant that comes from the combined optical rectification
and electro-optic effects modeled by the φ(x, y) field, and ν is
the coefficient that comes from the anisotropy of the material.

Given the long history of the NLSM model and its broad
applications to fluids and optics alike, we build on the pioneer-
ing optical work of Ablowitz and co-workers to characterize
ML in quadratic nonlinear media. Specifically, we modify
the model to include the critical gain-loss dynamics that are
a hallmark feature of mode-locking systems. Indeed, ML
is manifestation of a broader class of damp-driven systems
which are common across the sciences. For instance, ML is
also observed in rotating detonation engines [49,50], where
energy balances are similar to mode-locking laser cavities
[51,52]. Thus we develop a mode-locking theory for the
NLSM optical systems, denoted ML-NLSM, by including
bandwidth limited, saturating gain, and cavity losses to model
the overall mode-locking dynamics which is capable of pro-
ducing stable, 2D-soliton like solutions in the NLSM model.
A full stability analysis and bifurcation study is performed
for this new ML-NLSM model. Our ML-NLSM model is the
quadratic, 2D analog of the master mode-locking theory of
Haus.

The paper is outlined as follows: In Sec. II the ML-NLSM
is presented and steady-state solutions (fundamental solitons)
of the model are obtained numerically. In Sec. III the mode-
locking dynamics of the fundamental solitons are explored
by direct numerical simulations of our derived ML-NLSM
governing equations. Section IV provides a stability analysis
which details the linear stability of the fundamental spatiotem-
poral solitons. Results of the study are discussed in Sec. V.

II. (2 + 1)D NLSM SYSTEMS

Our theoretical considerations begin by considering the
NLSM model [39,40,48] in Eq. (1). The model is modified to
account for cavity losses and a bandwidth-limited, saturating

gain term which is canonical in ML models for lasers [11].
The ML-NLSM model in (2 + 1) dimensions is given by

iut + D

2
∇2u + β|u|2u − ρφu = iRu, (2a)

φxx + νφyy = (|u|2)xx, (2b)

where R is the gain-loss operator given by

R = g(t )(1 + τ∇2) − γ − p|u|4 + αφ (3)

with the time-depended gain saturation dynamics g(t ) given
by

g(t ) = 2g0

1 + ||u||2/e0
. (4)

In the formulation, u(x, y, t ) is a function of time t and the
transverse variables x and y. D denotes the average diffraction
coefficient. The evolution dynamics is coupled to the φ(x, y)
field. The parameter β represents the strength of the cubic
nonlinearity, and p represents the strength of the quintic self-
phase modulation term. The coupling parameter ρ describes
the combined optical rectification and electro-optic effects. In
the operator R, all parameters are positive. These include the
gain bandwidth τ and the linear attenuation parameter γ . The
dynamic gain g(t ) depends on the input pump strength g0 > 0,
cavity saturation energy e0, and the total cavity energy (L2

norm) ‖u‖2 = ∫∫ |u|2 dx dy where integration is performed
over the entire space of x and y [16].

The ML-NLSM equation (2) along with its solutions and
dynamics represents the primary contribution of this paper.
The model has a number of features of note. First, the model is
a (2 + 1)-dimensional model in electric field envelop u(x, t ).
For ρ = 0 and R = 0 the (2 + 1) NLS equation has solutions
that exhibit finite time blowup of solutions [53]. This behavior
is regularized by both the coupling to φ and the gain-loss
dynamics given by the operator R. Importantly, this model
includes the material anisotropy through the parameter ν. Of
primary interest is to determine if localized ML solutions
exist for this system, thus allowing the ML-NLSM to support
quadratic spatiotemporal solitons. Such soliton-like solutions
are considered in the following subsections using recently de-
veloped numerical methods for finding steady-state solutions
of partial differential equations.

A. Numerical solutions using the squared
operator method (SOM)

In order to obtain the fundamental soliton solutions of the
(2 + 1)D ML-NLSM, we use a modification of the computa-
tional algorithm called the squared operator method (SOM)
[54]. The method is based on iterating differential equations
whose linearization operators are squares of those of the
original equations, together with an acceleration technique.
The scheme of the method is outlined in what follows.

Substituting the ansatz u = U (x, y)exp(iμt ) into the model
(2), we get the operator

L0u = D

2
∇2U + β|U |2U + iγU − ig(t )(1 + τ∇2)

+ip|U |4U − ρφU − iαφU − μU,

φxx + νφyy = (|U |2)xx, (5)
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where μ is propagation constant. Separating the operator L0

into its real and imaginary parts gives the following suboper-
ators:

T 1 = Re

{
F−1

[F (L0u)

K2 + c

]}
,

T 2 = Im

{
F−1

[F (L0u)

K2 + c

]}
, (6)

where F symbolizes Fourier transformation, k = (kx, ky) are
wave numbers in the x and y directions, respectively, K2 =
k2

x + k2
y , and c is a parameter for parametrizing the numerical

scheme. Decomposing the amplitude into its real and imagi-
nary parts U = u(x, y) + iv(x, y) and inserting into L0u, we
get the two suboperators

LRe = D

2
∇2u + β(u3 + uv2) − γ v + g(t )(1 + τ∇2)v

− p(u4v + 2u2v3 + v5) − ρφu + αφv − μu,

LIm = D

2
∇2v + β(v3 + u2v) − γ u − g(t )(1 + τ∇2)u

+ p(u5 + 2u3v2 + uv4) − ρφv − αφu − μv. (7)

Taking partial derivatives of these new operators with respect
to both u and v gives the matrix components

R11 = ∂LRe

∂u
(T 1) , R12 = ∂LRe

∂v
(T 2),

R21 = ∂LIm

∂u
(T 1) , R22 = ∂LIm

∂v
(T 2). (8)

Using the elements of this matrix, the final operator is defined
as

L1u = R11 + R12 + i(R21 + R22). (9)

After the operator is defined, the iteration scheme is imple-
mented as follows:

Un+1 = Un −
{
F−1

[F (L1u)

K2 + c

]}
�t ,

μn+1 = μn + ‖u · T 1 + v · T 2‖�t,

φn+1 = F−1

[
k2

xF (|Un|2)

k2
x + νk2

y

]
. (10)

This numerical algorithm is iterated from an initial guess
until the error E =

√
‖Un+1 − Un‖2 + |μn+1 − μn| < 10−6.

This algorithm has been demonstrated to be efficient and
accurate in computing localized solutions for a wide range of
nonlinear PDEs [54]. It is also effective for the ML-NLSM
model proposed here in generating the desired mode-locked
spatiotemporal states of interest.

B. Numerical existence of the fundamental solitons

The SOM algorithm is used to compute a steady-state
solution (fundamental soliton) of the ML-NLSM (2). Once
the solution is obtained, it can be used for the linear stability
properties of the solitons. In what follows, the following set of

FIG. 1. Fundamental soliton that is obtained when ρ = 0.5, ν =
1.5, c = 5, and �t = 0.1.

base parameters are used. Unless otherwise specified, we set

(D, β, γ , g0, E0, τ, p, α, μ)

= (1, 1, 1, 4.88, 1, 0.08, 0.5, 1, 1), (11)

and we set the coupling constant to ρ = 0.5 and the asymme-
try parameter to ν = 1.5, typical values corresponding to the
propagation of focused beams in potassium niobate (KNbO3)
[48].

With these parameters, the numerical convergence to the
fundamental soliton (steady-state solution) is shown in Fig. 1
for the parameter values ρ = 0.5 and ν = 1.5 in the ML-
NLSM system when c = 5 and �t = 0.1 in the algorithm. In
addition, we have found that the fundamental soliton solution
can be obtained for 0 � ρ � 1.9 when ν = 1.5 with suitable
c and �t parameters.

It is noteworthy that, as demonstrated in previous studies
[46,47], due to the anisotropy of the ML-NLSM system,
steady-state solutions do not possess radial symmetry. In other
words, the ML-NLSM model generates astigmatic funda-
mental solitons. To explore the level of astigmatism in the
solitions, we define

e = radius along y axis

radius along x axis
(12)

as a measure of astigmatism. When e = 1, the solution corre-
sponds to a radially symmetric fundamental soliton, and e < 1
and e > 1 correspond to a soliton that is relatively wider along
the x and y axes, respectively. Thus it takes on an elliptical
shape for e �= 1.

Contour images of fundamental solitons are plotted in
Fig. 2 for ρ = 0, ρ = 0.5, and ρ = 1, respectively. It can
be seen from Fig. 2 that as ρ increases, the contours of
the fundamental soliton become more astigmatic along the
x axis. On the other hand, we observe that as the anisotropy
coefficient ν increases (for a fixed ρ), the fundamental soliton
become less astigmatic along the x axis, and after a threshold
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FIG. 2. Contour image of the fundamental soliton for (a) ρ = 0; (b) ρ = 0.5; (c) ρ = 1. All solitons are obtained when ν = 1.

value of ν (i.e., when ν � 1.3 and ρ = 0.5) the solitons
become relatively wider along the y axis.

III. DYNAMICS OF FUNDAMENTAL SOLITON

To investigate the dynamics of the ML-NLSM solitons, we
directly simulate Eq. (2) for long times. A finite-difference
discretization scheme is used in the spatial domain and the
solution is advanced in time with a fourth-order Runge-Kutta
method. We plot 3D views and profiles of the solitons versus
the propagation time during the evolution (from t = 0 to t =
tmax). Stable (mode-locked) soliton solutions should nearly
preserve their mode shape, profile, and peak amplitude over
time. Figure 3 shows the evolution of the fundamental soliton
(obtained in Fig. 1) from t ∈ [0, 200] with a numerical time
step of dt = 0.001. Snapshots of the evolution dynamics are
plotted for t = 0, t = 50, t = 100, t = 150, and t = 200.

As can be seen from the Fig. 3, the profile of the evolved
soliton (upper panels) is preserved, and the peak amplitude
of the fundamental soliton oscillates with relatively small am-
plitude during the evolution. At the end of the simulation for
t = 200, the mode shape of the evolved soliton (lower panels)
is shown to be preserved. These results demonstrate that the
considered soliton is mode-locked in this parameter regime.

Similar to the fundamental steady-state solutions, mode-
locked evolution of the pulses can be achieved starting from
seeded white noise. In Fig. 4 evolution of the very low-
amplitude initial solutions from t ∈ [0, 200] is depicted, the
parameters used are identical to those of Fig. 3.

Both the fundamental solitons and white-noise initial so-
lutions are mode-locked when 0 � ρ < 0.9, ν = 1.5, and
α = 1 in the ML-NLSM model. When ρ � 0.9, the peak
amplitude of the fundamental solitons decreases after a short
time of evolution and the solitons decay into radiation modes
and is not self-supporting. Decay of the fundamental soliton

FIG. 3. Nonlinear evolution of the fundamental soliton from t = 0 to t = 200. Five snapshots of the soliton captured at different
propagation times. Profile of the evolved soliton along the x axis is plotted (upper panels) (a) when t = 0, (b) when t = 50, (c) when t = 100,
(d) when t = 150, (e) when t = 200; and the corresponding 3D view of the evolved soliton is plotted (lower panels) (f) when t = 0, (g) when
t = 50, (h) when t = 100, (i) when t = 150, and (j) when t = 200. The fundamental soliton is obtained when ρ = 0.5, ν = 1.5, and α = 1.
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FIG. 4. Nonlinear evolution of the mode-locked pulses starting from seeded white noise. Five snapshots of the solution captured at different
propagation times. Profile of the evolved pulse along the x axis is plotted (upper panels) (a) when t = 0, (b) when t = 50, (c) when t = 100,
(d) when t = 150, (e) when t = 200; and the corresponding 3D view of the evolved pulse is plotted (lower panels) (f) when t = 0, (g) when
t = 50, (h) when t = 100, (i) when t = 150, and (j) when t = 200 when ρ = 0.5, ν = 1.5, and α = 1.

computed for ρ = 1, ν = 1.5, and α = 1 is plotted in Fig. 5.
It is obvious that the soliton can not stay mode-locked during
the evolution since the amplitude of the soliton decreases
significantly during the evolution (see Fig. 5, upper panels)
and the mode shape is no longer preserved during evolution
(see Fig. 5, lower panels).

In addition, it has seen that the α parameter (which shows
a quadratic polarization effect) plays an important role in ML
of the fundamental solitons. Fundamental solitons that are

obtained when ρ = 0.5 and ν = 1.5 are stable for 0.7 � α <

2.1, while for α = 0 and ρ > 0 in the ML-NLSM model,
the fundamental solitons decay into radiation modes and no
ML occurs. Decay of the fundamental soliton for ρ = 0.5,
ν = 1.5, and α = 0 is showed in Fig. 6. One can easily see
that peak amplitude of the soliton decreases sharply after a
short propagation distance (see Fig. 6, upper panels), and the
soliton is dispersed away entirely during the evolution (see
Fig. 6, lower panels).

FIG. 5. Decay of the fundamental soliton, that is obtained when ρ = 1, ν = 1.5, and α = 1, is demonstrated with five snapshots of the
soliton captured at different propagation times. Profile of the evolved soliton along the x axis is plotted (upper panels) (a) when t = 0, (b) when
t = 50, (c) when t = 100, (d) when t = 150, (e) when t = 200; and the corresponding 3D view of the evolved soliton is plotted (lower panels)
(f) when t = 0, (g) when t = 50, (h) when t = 100, (i) when t = 150, and (j) when t = 200.
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FIG. 6. Decay of the fundamental soliton, which is obtained when ρ = 0.5, ν = 1.5, and α = 0, is demonstrated with five snapshots of
the soliton captured at different propagation times. Profile of the evolved soliton along the x axis is plotted (upper panels) (a) when t = 0, (b)
when t = 50, (c) when t = 100, (d) when t = 150, (e) when t = 200; and the corresponding 3D view of the evolved soliton is plotted (lower
panels) (f) when t = 0, (g) when t = 50, (h) when t = 100, (i) when t = 150, and (j) when t = 200.

Furthermore, we have seen that decaying of the fundamen-
tal solitons can be arrested (or delayed) by increasing the value
of the anisotropy coefficient ν. As a special case we have
increased the value of ν from 1 to 4 and plot the evolution
of the fundamental soliton that is obtained for ρ = 1 and
α = 1 in Fig. 7. It is clearly seen that although the soliton,
which is obtained for ν = 1, does not blow up in finite time,
it cannot be considered as robust since the amplitude of the
soliton decreases significantly after t = 10 [see Fig. 7(a)]
and finally (at t = 200) it decays to radiation modes [see
Fig. 7(b)]. To improve the stability of the considered soliton,
we increase the value of ν to ν = 2 and ν = 4 and depict the
nonlinear evolution of the soliton for each case in Figs. 7(c)
and 7(e), respectively. We observe that the decay of the soliton
is delayed when ν = 2 [see Figs. 7(c) and 7(d)] and decay of
the soliton is prevented when ν = 4 [see Fig. 7(e) and 7(f)].

It should be pointed out that, in real optical systems,
increasing the anisotropy parameter ν may not be used to
arrest solitons’ decay in some cases, since ρ and ν parameters
are fixed values depending on the type of material that is
considered. However, the anisotropy ν can be applied to
improve the stability of solitons in the range of real physical
parameter regime.

IV. LINEAR STABILITY ANALYSIS

A standard way for determining stability is to calculate the
spectrum of linearization of the model (2) about the funda-
mental soliton solutions computed with the SOM technique.
By denoting

u = e−iθt [u0(x, y) + ũ(x, y, t )], (13)

where u0(x, y) is the fundamental soliton, θ is propagation
constant and ũ � 1 is the infinitesimal perturbation. If the
perturbation ũ decays to zero, then the fundamental soliton
is considered to be linearly stable. Inserting the perturbed
solution into Eq. (2), we get the linearized system for ũ by
neglecting small terms of the second order O(ũ2):

ũt = iθ ũ + i
D

2
∇2ũ + iβ

(
2|u0|2ũ+u2

0ũ∗) − γ ũ

+ g(t )(1+τ∇2)ũ − p
(
3|u0|4ũ + 2|u0|2u2

0ũ∗)
− iρφũ + αφũ. (14)

Separating the fundamental soliton and the perturbations into
real and imaginary parts as

u0 = a0 + ib0, ũ = R0eλt + iI0eλt , (15)

we obtain ũt = λũ, and substituting u0, ũ into the system (14)
results in the eigenvalue problem

AV = λV, (16)

where

A =
(

FR GI

GR FI

)
, V =

(
R0

I0

)
.

If the real part of the λ is positive, the fundamental soliton is
unstable. The eigenvalues of A can be calculated numerically
with finite difference discretization of the spatial domain.
Note that the matrix coefficients of A are given by

FR = −2βa0b0 − γ +g(t )(1+τ∇2) − p
(
5a4

0 + b4
0+6a2

0b2
0

)
+αφ− 4g0

(1 + ||u||2)2
(1+τ∇2)a0 ∗ a0,

GI = −
[

D

2
∇2+β

(
a2

0+3b2
0

) + 4p
(
a3

0b0+a0b3
0

) + θ − ρφ

]
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FIG. 7. Nonlinear evolution of the fundamental soliton for larger anisotropy coefficients (a) when ν = 1, (c) when ν = 2, and (e) when
ν = 4. 3D view of the soliton after evolution at t = 200 (b) when ν = 1, (d) when ν = 2, and (f) when ν = 4. All fundamental solitons are
obtained for ρ = 1 and α = 1.

− 4g0

(1 + ||u||2)2
(1 + τ∇2)a0 ∗ b0,

FI = 2βa0b0 − γ + g(t )(1 + τ∇2) − p
(
a4

0 + 5b4
0 + 6a2

0b2
0

)
+αφ − 4g0

(1 + ||u||2)2
(1 + τ∇2)b0 ∗ b0,

GR =
[

D

2
∇2 + β

(
3a2

0 + b2
0

) − 4p
(
a3

0b0 + a0b3
0

) + θ − ρφ

]

− 4g0

(1 + ||u||2)2
(1 + τ∇2)a0 ∗ b0. (17)

The ∗ notation denotes the integral a0 ∗ b0 =∫ ∞
−∞ a0(τ )b0(τ ) dτ , which results from the nonlocal behavior

given by the saturated gain dynamics [55].
The linear spectra of fundamental solitons can be com-

puted by evaluating the matrix A. In Fig. 8 the maximum
real part of the eigenvalue spectra versus parameters ρ, ν, and
α are plotted. In this analysis, we have changed parameters
ρ, ν, and α one by one, when other parameters are fixed (ρ =
0.5, ν = 1.5, and α = 1). Figure 8 shows that when 0 � ρ <

0.9, 0 � ν � 5, and 0.7 � α � 2.1, there is no eigenvalue
with a positive real part in the spectrum of the model, thus
showing these ML-NLSM solitons to be linearly stable. For
ρ � 0.9, α < 0.7, or α > 2.1 [see Figs. 8(a)–8(c)] the maxi-
mum real part of eigenvalues are positive, which indicates that
these fundamental solitons are linearly unstable. In addition,
we have seen that similarly to being nonlinearly unstable, the

fundamental soltions become linearly unstable when α = 0
and ρ > 0.

V. CONCLUSION

The proposed ML-NLSM model has been formulated as an
extension of the master mode-locking model by the addition
of higher-order dispersion and quadratic electro-optic effects.
This study reveals the potential of using quadratic nonlinear
media to generate spatiotemporal mode-locked soliton states
in a nonlinear optical system. Using modern computational
methods we have shown that there exist steady-state soliton
solutions of the ML-NLSM mode-locking model that are
astigmatic in nature. Stability of the ML-NLSM states has
been characterized by direct numerical simulation of the
model as well as by linear stability arguments and compu-
tation of the spectra of the linearized operator. Both show that
the soliton solutions of the ML-NSLM model have regions of
stable spatiotemporal ML.

Specifically, it has been shown that when the coupling
constant ρ (that comes from the combined optical rectifica-
tion and electro-optic effects) is smaller than 0.9, there is
no eigenvalue with a positive real part in the spectrum of
linearization of the ML-NLSM model, thus showing that the
fundamental solitons in this region are stable, mode-locking
states that act as attractors. The nonlinear stability of the fun-
damental solitons have been examined with direct simulations
of the ML-NLSM model, and the results demonstrate that for
ρ < 0.9, the fundamental solitons’ profile are preserved and
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FIG. 8. The maximum real part of the eigenvalue spectra versus parameters ρ, ν, and α (a) when ρ is varied, ν = 1.5, and α = 1; (b) when
ν is varied, ρ = 0.5, and α = 1; and (c) when α is varied, ρ = 0.5, and ν = 1.5.

the peak amplitude of the solitons oscillates relatively small
amplitude during the nonlinear evolution, which means stable
ML is achieved during the evolution.

In addition, it has seen that the α parameter (which shows
a quadratic polarization effect) has a critical importance for
mode-locking operation in the ML-NLSM model. Specifically
for α = 0 and ρ > 0, the fundamental solitons decay to radi-
ation modes, and none of the ML-NLSM soliton states stay
mode-locked. In conclusion, we have constructed the ML-

NLSM model as a modification of the master mode-locking
model and demonstrated the possibility of ML of astigmatic
steady-state solutions in the quadratic nonlinear media.
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