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Sparse identification of slow timescale dynamics
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Multiscale phenomena that evolve on multiple distinct timescales are prevalent throughout the sciences. It is
often the case that the governing equations of the persistent and approximately periodic fast scales are prescribed,
while the emergent slow scale evolution is unknown. Yet the course-grained, slow scale dynamics is often of
greatest interest in practice. In this work we present an accurate and efficient method for extracting the slow
timescale dynamics from signals exhibiting multiple timescales that are amenable to averaging. The method
relies on tracking the signal at evenly spaced intervals with length given by the period of the fast timescale,
which is discovered by using clustering techniques in conjunction with the dynamic mode decomposition. Sparse
regression techniques are then used to discover a mapping which describes iterations from one data point to the
next. We show that, for sufficiently disparate timescales, this discovered mapping can be used to discover the
continuous-time slow dynamics, thus providing a novel tool for extracting dynamics on multiple timescales.
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I. INTRODUCTION

Many physical phenomena exhibit multiscale dynamics
where the fastest timescale is relatively simple to both observe
and predict, while the emergent long timescale dynamics are
unknown. Examples abound in physics and range from tidal
amplitudes [1,2], to molecular-dynamics simulations [3,4], to
atmospheric dynamics [5], to the motion of the planets [6–8].
Mathematically, systems which exhibit multiscale dynamics
are expensive to simulate since the fastest scales must be accu-
rately resolved, and when the fast timescale is approximately
periodic, this expense is primarily used to simulate predictable
dynamics. In systems where the scale separation is explicit,
it is sometimes the case that one can average the system
to obtain the leading-order dynamics of the slow timescale
evolution [9–11], although many systems lack an obvious
separation of scales or even governing equations, meaning
that novel methods for extracting the slow timescale dynamics
must be developed.

In this work we present a computationally cheap and effi-
cient method that integrates machine learning and multiscale
modeling for extracting and forecasting slow timescale dy-
namics of a multiscale system. Unlike averaging techniques,
the proposed mathematical architecture learns a nonlinear
dynamical system characterizing the slow-scale behavior. The
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setting for the problem is that we are given a signal �(t, εt )
in Rd which contains terms dependent on t contributing to the
fast dynamics and terms dependent on εt , for some 0 < ε �
1, contributing to the slow dynamics. We assume that the fast
timescale terms are periodic, so � satisfies

�(t + T, ε(t + T )) = �(t, ε(t + T )) ≈ �(t, εt ), (1)

for all t and some T > 0. The timescales of � are assumed to
be sufficiently disparate so that the slow dynamics are nearly
constant on the interval [t, t + T ], coming from the size of
ε relative to the fast period T . It is through these assumptions
that we see that the signal exhibits a fast oscillation and a slow
drift, making it amenable to averaging.

Suppose the signal is given on some finite timescale
and we wish to understand the physics governing the slow
timescale evolution so that the signal can be reconstructed
and forecast far beyond the given time window. Since the
fast-scale dynamics are relatively simple, we would like to
“average” these dynamics out to forecast only the slow-scale
variable. Knowing the fast-scale period T > 0 naturally leads
to tracking the signal after each period,

xn = �(0, εnT ), n = 0, 1, 2, 3, . . . , (2)

since �(nT, ·) = �(0, ·) by periodicity. It follows that under-
standing the signal at t = nT requires an understanding of the
slow timescale dynamics. Our goal is to discover a mapping
F : Rd → Rd so that

xn+1 = F(xn) (3)
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for all n � 0. Beyond this, if we suppose there exists a
function G : Rd → Rd such that the slow timescale dynamics
of a signal satisfying Eq. (1) are governed by the ordinary
differential equation (ODE)

∂2�(0, t ) = G(�(0, t )), (4)

where ∂2 is the derivative with respect to the second compo-
nent, then expanding the left-hand side of Eq. (3) as a Taylor
series about t = nT using the definition of xn+1 from Eq. (2)
gives that

F(x) = x + εT G(x) + O(ε2). (5)

Hence, when ε is small, Eq. (5) represents an Euler step of
the slow physics. This demonstrates the duality between the
functions F and G, at least to O(ε2). Therefore, discovering
the mapping F from data presents a novel method to extract
the slow timescale physics of a given signal, something which
holds great potential for multiscale systems that are so com-
mon in the biological and medical sciences [12].

There are potentially two unknowns that are required to
find G: the fast period T > 0 and the mapping F. Here we use
the method of sliding-window dynamic mode decomposition
(DMD) [13] to extract the fast period and the sparse identi-
fication of nonlinear dynamics (SINDy) algorithm [14,15] to
obtain the mapping F. We summarize the method visually in
Fig. 1 and explain the individual components in more detail
in the following section. The advantage our proposed method
presents is that it does not attempt to discover a dynamical
system for the multiscale signal, since as we show in Sec. III,
sparse identification procedures should be expected to fail
at this task in general. This is due in part to the numerical
approximation of the derivative of the signal, which in the
presence of a periodic fast timescale is rapidly changing.
Although the challenge of approximating the derivative can
be overcome by using instead integral terms [16,17], the
present method circumvents this difficulty altogether. Further-
more, the multiscale property of the data presents a unique
advantage in the implementation of a regression technique
which promotes sparsity by using thresholding: unsupervised
timescale separation is expected to introduce error at O(ε2),
whereas the sparsification procedure amounts to pruning
terms of order O(ε). As a result, the method by construction
recovers only the leading order slow timescale dynamics.

The sparse regression framework has been used previously
to discover multiscale physics [18], but with a much different
procedure for the model discovery process and sampling strat-
egy. Specifically, fast sampling of the dynamics was required
since both fast and slow timescale physics needed to be
discovered, whereas in this work, the fast scale is known and
only the slow dynamics needs to be discovered. Modification
to the basic SINDy [15] architecture allows for the discovery
of partial differential equations [19], equations of rational ex-
pressions [20], and conservation laws [21]. For each of these
modifications, one can imagine using the proposed method to
handle multiscale temporal dynamics in an efficient manner.

This paper is organized as follows: In Sec. II we present a
detailed overview of the method for extracting slow timescale
physics. This includes summaries of the two major compo-
nents of the method: the sliding window DMD technique
and the SINDy algorithm. In Sec. III we provide a simple

FIG. 1. An overview of the method presented in this work. We
first use the sliding window DMD technique [13] to identify the fast
period, then track the signal at integer multiples of the fast period,
resulting in the coarsened signal xn = �(0, εnT ). We then identify a
mapping xn �→ xn+1 by using the SINDy method [15], and finally use
the expansion (5) to extract the slow timescale physics.

example of a multiscale system where naive application of the
SINDy method fails to properly identify the full governing
equations. We further supplement this discussion by showing
that our methods accurately capture the slow evolution of this
system once the fast dynamics have been taken out of the
signal. Section IV is entirely dedicated to applications of the
method, where we present examples with the discovered slow
dynamics that are monotone, periodic, and chaotic. Finally,
we briefly summarize our findings in Sec. V.

II. METHODS

The method employed by this work has two major com-
ponents: scale separation using the sliding-window DMD
and sparse regression analysis using SINDy. In this section
we briefly summarize these methods and direct the reader

022204-2



SPARSE IDENTIFICATION OF SLOW TIMESCALE … PHYSICAL REVIEW E 102, 022204 (2020)

to Refs. [13] and [15], respectively, for a more complete
discussion of each component. In its totality, our method first
employs the sliding window DMD technique to identify the
fast period, then tracks the signal at integer multiples of the
fast period, resulting in the coarsened signal xn = �(0, εnT ).
We then identify a mapping F such that xn+1 = F(xn) using
the SINDy method. Finally, we use the duality (5) to extract
the slow timescale physics when ε is sufficiently small. We
summarize the method visually in Fig. 1 and proceed through
the following sections with a discussion of the individual
components of our method.

A. Scale separation using sliding-window
dynamic mode decomposition

The method presented in this work relies on foreknowl-
edge of the timescale disparity between components consti-
tuting a multiscale signal. For systems with known governing
equations, this can generally be determined by inspection of
the coefficients or by perturbation expansion. For systems
with unknown equations of motion, however, a data-driven
discovery method must suffice. This could be accomplished
by identifying peaks on the Fourier spectrum, for example.
For multiscale physics, windowed Fourier transforms can
help provide improved resolution of signals and their content.
Indeed, such windowing procedures are the basis of mul-
tiresolution analysis and wavelet decompositions [22]. Mul-
tiresolution DMD [23] provides a analogous decomposition
of multivariate data, identifying coherent spatial modes and
temporal frequencies in multiscale systems.

Dynamic mode decomposition (DMD) is a model regres-
sion technique which seeks a best-fit linear representation for
observed dynamics [24,25]. Given a data matrix X consisting
of m sequential snapshots, DMD identifies a linear operator
A which in some optimal (least-squares) sense satisfies the
equation Ẋ = AX . This approximation is of course unlikely to
be accurate for highly nonlinear systems, but this problem can
be circumvented by subsampling X onto shorter time intervals
by sliding a window of width d (d � m) across the full time
series. Even when global dynamics are nonlinear, local linear
approximations are easily obtainable. Each local operator A
has eigenvalues which characterize the timescale content of
local dynamics.

In this work we use a technique introduced by Dylewsky
et al. (2019) which leverages DMD to separate the compo-
nents of multiscale data and learn local linear models for

the dynamics by clustering on their eigenspectra [13]. This
method has the advantages of sparsity, flexibility, and robust-
ness to overlapping or highly disparate dynamical timescales.
By gathering eigenspectra across all sliding-window iterations
of DMD, one can form a statistical picture of the global
spectral content of the data. A simple clustering algorithm
can identify the most prominently represented timescales
and offer a parsimonious estimate of the scale components
present. Even when timescales are separated by many orders
of magnitude, the algorithm can be applied recursively with
varied window width to properly identify them. These clusters
can be depicted visually by plotting the modulus squared of
the eigenvalues of the local operators A for each window. In
the present scenario of a signal satisfying Eq. (1), at least two
distinct clusters should be apparent: one bounded away from
0 representing the fast periodic dynamics and another near 0
representing the slow dynamics (which should appear nearly
static over the comparatively short span of a windowed sub-
sample). A cartoon of this clustering is presented in panel II
of Fig. 1, while an application of the method to real data is
presented in Fig. 4.

B. Sparse identification of nonlinear dynamics

The SINDy method, introduced by Brunton et al. (2016),
is an algorithm for discovery of a symbolic representation of
the governing equations of a system from time series measure-
ments [15]. Given a data matrix comprised of sequential state
measurement snapshots:

X 1 =

⎡
⎢⎢⎢⎣

· · · xT (t1) · · ·
· · · xT (t2) · · ·

...
· · · xT (tm) · · ·

⎤
⎥⎥⎥⎦, (6)

along with another data matrix of the same size, X 2, com-
prised of either the temporal derivative of the data at the same
measurement times or the successive iterates of the discrete
temporal data. A symbolic representation for the dynamics
ẋ(t ) = F(x(t )) or x(tn+1) = F(x(tn)) is constructed from a
library of candidate functions for terms of F(x). The chosen
functions are evaluated on the measurement data to construct a
library matrix � whose m rows represent the m measurement
snapshots of X 1 lifted into a space of all library observables.
For example, a library consisting of polynomials up to degree
two for x = (x1, x2) ∈ R2 would look like

�(X 1) =

⎡
⎢⎢⎢⎢⎣

1 x1(t1) x2(t1) [x1(t1)]2 x1(t1)x2(t1) [x2(t1)]2

1 x1(t2) x2(t2) [x1(t2)]2 x1(t2)x2(t2) [x2(t2)]2

...
...

...
...

...
...

1 x1(tm) x2(tm) [x1(tm)]2 x1(tm)x2(tm) [x2(tm)]2

⎤
⎥⎥⎥⎥⎦. (7)

The claim that the equation of motion F(x) is some linear
combination of the chosen library functions is equivalent to
the statement

X 2 = �(X 1)� (8)

for some coefficient matrix �. For many systems of interest,
the governing equations contain only a few terms, so a sparse-
ness requirement can be imposed on �. This can be carried
out by using any sparse regression algorithm on the over-
determined system of linear equations (8), e.g., elastic net
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methods such as LASSO or Ridge. The approach employed
in this paper, as in Ref. [15], is a sequentially thresholded
least squares method in which Eq. (8) is initially solved
simply by minimizing ‖X 2 − �(X 1)�‖2. Elements of � with
magnitude smaller than some chosen sparsity parameter λ >

0 are then thresholded to zero, and the process repeats. This
iteration is carried out until all remaining coefficients have
absolute values larger than λ. This process is a proxy for
�0 optimization [26]. It has convergence guarantees [27] and
performs comparably to LASSO in most cases at significantly
reduced computational expense. Moreover, the direct corre-
spondence between the sparsity parameter λ and the obtained
dynamical coefficients in � proves useful in the multiscale
case treated in this paper: we show that knowledge of the
timescale components present in a signal can be used to
determine a priori a suitable value for λ.

We note that there are many variants of sparse regression,
all of which typically attempt to approximate a solution to an
NP-hard, �0-norm penalized regression. Sparsity-promoting
methods like the LASSO [28,29] use the �1-norm as a
proxy for sparsity since tractable computations can be per-
formed. The iterative least-squares thresholding algorithm of
the SINDy algorithm promotes sparsity through a sequential
procedure. Recently, Zhang and Schaeffer [27] provided a
number of rigorous theoretical results on the behavior and
convergence of the SINDy algorithm. Specifically, they prove
that the algorithm approximates local minimizers of an un-
constrained �0-penalized least-squares problem. This allows
them to provide sufficient conditions for general convergence,
the rate of convergence, and conditions for one-step recovery.
As shown in Champion et al. [30], the SINDy regression
framework does not readily accommodate extensions, addi-
tional constraints, or improvements in performance. Thus the
optimization formulation is extended to include additional
structure, robustness to outliers, and nonlinear parameter
estimation using the sparse relaxed regularized regression
(SR3) approach that uses relaxation and partial minimization
[26]. Rigorous theoretical bounds are provided for the relaxed
formulation which has three advantages over the state-of-the-
art sparsity-promoting algorithms: (1) solutions of the relaxed
problem are superior with respect to errors, false positives, and
conditioning; (2) relaxation allows extremely fast algorithms
for both convex and nonconvex formulations; and (3) the
methods apply to composite regularizers, essential for total
variation (TV) as well as sparsity-promoting formulations
using tight frames. Indeed, the SR3 formulation was shown to
have superior performance (computational efficiency, higher
accuracy, faster convergence rates, and greater flexibility)
across a range of regularized regression problems with syn-
thetic and real data, including applications in compressed
sensing, LASSO, matrix completion, TV regularization, and
group sparsity. Between the three recent papers [26,27,30],
rigorous estimates can be established for this model-discovery
paradigm.

III. SPARSE IDENTIFICATION OF NONLINEAR
DYNAMICS AND MULTISCALE SYSTEMS

In this section we briefly demonstrate how naively applying
the SINDy method to a signal in the form of (1) to discover
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FIG. 2. The first component of the signal x(t ) in Eq. (10). There
are two distinct timescales and the signal is plotted for slightly
more than two periods of the slow timescale. The fast period is
approximately π/5.

both the fast and slow timescales simultaneously should be
expected to fail, thus necessitating the method described in
this paper. Alternatively, one can us fast sampling strategies to
resolve the discovery process [18], but here sampling on the
slow scale is all that is needed. In Ref. [13] a simple toy model
was created to extract the periods of oscillation for signals
formed as linear combinations of periodic phenomena. The
model is given by

v̇1 = v2,

v̇2 = −w2
1v

3
1,

ẇ1 = w2,

ẇ2 = −100w1 − 4w3
1,

(9)

where constants are chosen to appropriately separate the
timescales. The (w1,w2) variables are governed by an un-
forced Duffing equation, for which almost all initial condi-
tions fall into steady periodic motion. The (v1, v2) variables
form a cubic oscillator with a coefficient w2

1 dependent on
the state of w1. The signal (1) is produced by integrating
system (9) using MATLAB’s ode23 function with a maximal
time step of 10−4 and initial conditions (v1, v2,w1,w2) =
(0, 0.5, 0, 0.5). We then take a randomly generated orthogonal
matrix Q ∈ R4×4 to define

x(t ) = Q · [v1(t ) , v2(t ), w1(t ), w2(t )]T , (10)

in an effort to sufficiently mix the disparate temporal dynam-
ics. We direct the reader to Fig. 2 for a visual depiction of
the first component of x(t ) = (x1(t ), x2(t ), x3(t ), x4(t )), and
note that the rest look similar in that we can clearly see the
two timescales present in the signal x(t ).

If we use the SINDy method for discovery of a continuous-
time dynamical systems using Eq. (10) as the training data and
a sparsity parameter λ = 10−3, we discover the differential
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FIG. 3. A comparison of the first component of the training
data against the evolution of the discovered continuous-time SINDy
model with the same initial data. Notice that the discovered data have
a significantly higher frequency of oscillation, as can be observed by
comparing the extent of the horizontal axis in this figure with that of
Fig. 2.

equation

ẋ1 = 0.1 − 788.8x1 + 788.0x4 + 3.3x3
4,

ẋ2 = −833.3x1 + 833.3x4,

ẋ3 = −0.1 − 877.8x1 + 878.7x4 − 3.3x3
4,

ẋ4 = −0.3 − 922.3x1 + 924.0x4 − 6.6x3
4 . (11)

Even without knowing the exact values in Q we immediately
note that this discovered system cannot exactly capture the
dynamics of the signal since it includes constant terms. In
Fig. 3 we plot the first component of the training data against
the dynamics of the discovered model (11) with the same
initial condition. We can see that the discovered model pro-
duces a signal with a faster frequency of oscillation than that
of the original signal. This can be observed by comparing
the extent of the horizontal axes of Figs. 2 and 3, where the
former displays the signal for t ∈ [0, 100] while the latter uses
t ∈ [0, 1]. This significantly shorter time window in Fig. 3 is
meant to emphasize the extremely fast frequency of oscillation
in the discovered continuous-time SINDy model, so it should
be noted that the slow dynamics of Eq. (10) are not yet visible
on such a short timescale. We further note that changing the
sparsity parameter λ has little effect on the discovered model,
always producing a dynamical system which fails to even
approximately reproduce the dynamics of the input signal
(10). The data repository [31] contains all code related to this
example to ensure the ability to reproduce these results and
perform further experiments.

This example is merely meant to illustrate what a naive
application of the continuous-time SINDy method can result
in when applied to multiscale training data. We suspect that
the discrepancy between the SINDy model and the training
data is due at least in part to the approximation of the deriva-
tive. The fast frequency of oscillation present in the multiscale
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FIG. 4. The result of the sliding window DMD method applied
to the signal (10). The horizontal axis represents the value of t at
which the window is centered, while the vertical axis plots the square
modulus of the purely imaginary eigenvalues ω of the local operator
A for each window. Colors are used to delineate between the two
clusters, representing the fast and slow components of the signal.
The horizontal black line represents the centroid of the fast frequency
cluster, approximately |ω|2 = 100.

training data results in a rapidly oscillating derivative, which
requires finely spaced data. Hence, one way to improve the
performance of the SINDy model might be to take smaller
time steps in the training data, but we note that decreasing
the maximal step size down a full order of magnitude to 10−5

shows little improvement in the discovered continuous-time
SINDy model. Of course, in the case of real data it seems
unlikely that such a regeneration of the data could be per-
formed and is therefore not a practical method for improving
the performance of the discovery algorithm. Another method
would be to avoid taking numerical derivatives altogether and
instead use weak formulations which replace the derivative
with integral terms [16,17]. The strength of the method pre-
sented herein is that we are able to consider coarse-grained
data which experiences little variation from one data point to
the next (representing the slow dynamics), thus avoiding this
difficulty altogether.

We now turn to coarsening the signal by tracking it at
integer multiples of the fast timescale period. The training
data in this case are exactly the same as that used to discovery
the continuous-time SINDy model (11). In Fig. 4 we plot the
resulting frequencies ω extracted from the sliding window
DMD method, where one can clearly see the separation
between fast and slow dynamics. The centroid of the fast
cluster gives that the fast component of the signal has period
given by T = π/5, and hence we can track the full signal at
integer multiples of this fast period. We comment that the
frequencies showing the largest variation from the clusters
are localized to windows near the extreme points of the slow
dynamics, representing regions where the slow dynamics are
not approximately constant in the relatively small windows. It
is exactly this problem that necessitates the sliding window
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FIG. 5. Iterates of the discovered mapping for the slow timescale
dynamics of the first component of (10), seeded with the initial value
of the training data. Training data are provided in blue along with the
iterates of the discovered mapping in black.

method in the first place, as looking at the whole signal
will inevitably introduce large discrepancies since the slow
dynamics show large variation on long timescales.

Having now obtained the fast period of oscillation, we are
able to apply the sparse identification procedure to obtain
a mapping over the slow dynamics. The training data for
the SINDy method uses 200 fast periods—long enough to
observe at least two full slow periods. The iterates of the
component x1(nT ) to the discovered mapping F are presented
in Fig. 5 against the training data, while we note that the
other components look similar. The cumulative error over
all components is 1%, a significant improvement from the
model (11). Hence, we see that in the absence of the fast
oscillations the SINDy method is able to effectively track the
slow evolution of the signal.

IV. APPLICATIONS

In this section we discuss applications of the method to
three different systems whose slow timescale dynamics ex-
hibit steady-state, periodic, and chaotic dynamics. All model
discovery is performed by using the SINDy method for maps
[14,15] with a library of functions containing monomials up to
degree five, unless otherwise stated. All code related to these
examples can be found in the data repository [31].

A. Singular perturbations and averaging

Let us consider a simple and motivating example. Consider
the scalar ODE

ẋ = εx[1 − x + sin (2πt )], x(0) = x0 ∈ R+, (12)

with 0 < ε � 1. Since the ODE is 1-periodic in the indepen-
dent variable t , the theory of averaging for dynamical systems
[9,11] dictates that there exists a constant C > 0 such that the

solution x(t ) satisfies |x(t ) − y(t )| � Cε for all t � 0,1 where
y(t ) is a solution of the autonomous ODE

ẏ = εy(1 − y), y(0) = x0. (13)

The solution y(t ) is explicitly given by

y(t ) = x0

x0 + (1 − x0) exp (−εt )
,

where we can therefore see that y(t ) evolves on a slow
timescale, εt . Hence, y(t ) makes up the slow dynamics to at
least O(ε) and, by using Eq. (5), we expect the mapping (3) to
be of the form F(x) = x + εx(1 − x) + O(ε2).

To illustrate the performance of our method, we take ε =
10−2 and a sparsity parameter λ = ε2 to truncate at order ε2.
We discover the mapping (3) here to be

F(x) = 1.001x − 0.009778x2

≈ x + εx(1 − x) + O(ε2), (14)

conforming with our expectation from the above analysis.
Furthermore, the leading-order terms in Eq. (14) represent
a forward Euler discretization of Eq. (13) with step size ε,
implying that standard error bounding arguments based on the
initial condition and the value of ε can be applied to bound
the difference between the solutions of (12) at integer values
of n � 0 and the iterates of the map (14).

This example illustrates how the method performs against
a benchmark ODE where the slow dynamics can be explicitly
determined via analysis. In reality, few systems which exhibit
multiscale dynamics take the form of singularly perturbed
dynamical systems and therefore even determining the fast
timescale period to average over is a nontrivial task.

B. Planetary dynamics

As in the toy model example of Sec. III, multiscale phe-
nomena can often be observed when there are two periodic
components of the signal with a vast separation between their
periods. That is, consider a signal which can approximately be
written as

x(t ) = P0(t ) + P1(t ), (15)

where P0 is periodic with period T0 > 0 and P1 is periodic with
period T1 > 0. Assuming that T0 � T1, naturally leads to the
scale separation parameter

ε := T0

T1
� 1.

We may rescale t = T0τ so that P̃0(τ ) := P0(T0τ ) is now 1-
periodic and P1(T0τ ) is ε−1-periodic. Setting

P̃1(s) := P1(ε−1s)

makes P̃1 1-periodic as well. Hence, the full signal x(τ ) can
equivalently be written

x̃(τ ) := x(T0τ ) = P̃0(τ ) + P̃1(ετ ),

1Technically, the theory dictates that this bound only holds for t on
a timescale of length 1/ε, but since all positive initial conditions of
Eq. (12) evolve towards a global attractor, the bound can be shown
to hold for all t � 0 so long as the bound C > 0 depends on x0.
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FIG. 6. The procession of Jupiter (red) and Saturn (blue) about
the Sun (black dot) in their orbital plane in nondimensionalized
coordinates. The fast timescale for each planet constitutes simple
procession about the Sun: 11.86 years for Jupiter and 28.5 years for
Saturn. Beyond this fast procession are a number of slow scales that
drive the eccentricity of the orbit, giving the appearance that they
trace out thick circles in the orbital plane over thousands of years.

for which both functions P̃0 and P̃1 are 1-periodic and clearly
demonstrate the separation of timescales of interest in this
work. The mapping (3) tracks x̃(n) for integers n � 0, or,
equivalently, x(nT0).

Such a phenomenon was exemplified in the model (9) and
can further be found in the motion of the planets Saturn and
Jupiter around the Sun, as described by a three-body planetary
model. For this test case we generate data by constructing
a system of three objects subject to pairwise gravitational
attraction (using the nonrelativistic Newtonian formulation).
The masses and initial conditions of these objects are assigned
based on measurements of the true Jupiter-Saturn-Sun system
in its center-of-mass reference frame. Time series trajectories
in R3 are obtained via symplectic numerical integration over
a period of 106 years.

The signal for each planet contains multiple different
timescales, and the motion of each planet in its orbital plane
can be approximated by a signal of the form (15). The periodic
function P0 describes the primary orbit of the planets around
the Sun, for which upon applying the sliding window DMD
technique we find periods T0 = 11.86 years for Jupiter and
T0 = 29.5 years for Saturn. The function P1 describes the
eccentricity of these orbits, for which the sliding-window
DMD technique has shown that T1 ≈ 46 800 years2 for both
planets [13]. This periodic eccentricity of the orbits comes
from the interaction of the two planets orbiting the relatively
massive Sun and can be observed in Fig. 6 where we plot their
orbits around the Sun in their orbital plane.

2It was shown in Ref. [13] that Jupiter has a periodic component
with period between our T0 and T1, but this period is almost exactly
9T0 and is expected to be a numerical artifact.

Let us begin by considering our signal to be the motion
of Jupiter projected entirely into its orbital plane over time.
Here we have T0 = 11.86 with t measured in years and so
from the construction above we get ε ≈ 2.6 × 10−4. Denote
by xJ

n and yJ
n the x and y components of the position of Jupiter

in its orbital plane at time t = nT0 = 11.86n years. Taking a
sparsity parameter λ on the order of ε2 ∼ 10−8 is impractical
since numerical error present in either simulating the data or
implementing the SINDy method should be expected to show
up in the discovered mapping. To overcome this, we note
that T0ε ∼ 10−3, and so properly discovering G per Eq. (5)
is expected to succeed with 10−3 � λ < T0ε since the lower
bound should be large enough to eliminate numerical error
and O(ε2) terms, while the upper bound allows for discovery
of the O(ε) terms. With λ = 10−3 we discover the slow-scale
mapping[

xJ
n+1

yJ
n+1

]
=

[
0.0036

−0.0018

]
+

[
0.9999 0.0114

−0.0114 0.9999

]
·
[

xJ
n

yJ
n

]
(16)

by using training data comprised of 1500 fast timescale
periods—long enough to observe at least two full periods of
the first slow timescale. The mapping (16) can be used to find
that the slow timescale mapping G in this case is given by

G(x, y) =
[

0 1
−1 0

]
·
[

1.17 + 3.69x
0.57 + 3.69y

]
(17)

using Eq. (5). Hence, we see that the eccentricity dynamics of
Jupiter is given, to leading order, by an ellipse in the orbital
plane. We note that the conservative structure of the slow
dynamics is not necessarily guaranteed by the conservative
structure of the original three-body problem since it could
be the case that energy flows from one scale to the next.
Despite this, the resulting conservative structure of Eq. (17)
could potentially reflect that the training data is stable up to
O(ε2) perturbations on very long timescales. Hence, we do not
expect that Eq. (17) is valid for all time, but only long finite
timescales until evolution on even slower timescales begins to
influence the O(ε) dynamics of Jupiter’s orbit.

We may proceed in the same way for the procession of
Saturn around the Sun to find a similar result. In this case
we have T0 = 29.5 years, making up the fast scale period,
and therefore the scale separation parameter is given by ε ≈
6.3 × 10−4. Performing our mapping discovery procedure
again with λ = 10−3, for the same reasons as in the case of
Jupiter, results in the mapping[

xS
n+1

yS
n+1

]
=

[−0.0038
0.0025

]
+

[
1.0000 −0.0100
0.0100 1.0001

]
·
[

xS
n

yS
n

]
, (18)

where the variables (xS
n , yS

n ) represent the orthogonal compo-
nents of the position of Saturn in its orbital plane at t = 29.5n
years. We can similarly rearrange Eq. (18) via Eq. (5) to find
that the eccentricity dynamics of Saturn is confined to an
ellipse in the orbital plane.

C. Chaotic slow dynamics

In this example we apply the method to systems for which
the slow timescale dynamics are chaotic. We consider a signal

x(t ) = εP(t ) + C(εt ), (19)
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FIG. 7. A signal of the form (19) with periodic fast dynamics given by Eq. (21) with randomly generated Fourier coefficients and slow
dynamics governed by the system (20). The top shows the signal over a long timescale so that the chaotic dynamics can be observed. The
bottom shows a smaller time window so that only the periodic fast scale can be observed.

where P(t ) is periodic with period T > 0 and C(t ) is a
trajectory of a chaotic dynamical system. For the purpose
of illustration we will take C(t ) to be a trajectory on the
circularly symmetric attractor of Thomas [32], given by the
three-dimensional dynamical system

Ċ1 = sin (C2) − 0.2C1,

Ċ2 = sin (C3) − 0.2C2,

Ċ3 = sin (C1) − 0.2C3,

(20)

with initial condition C(0) = (0.3, 0.2, 0.1)T . The damping
value 0.2 is chosen so that the system is indeed chaotic and the
initial condition was chosen arbitrarily to produce a trajectory
on the chaotic attractor. The periodic signal P(t ) will take the
form of a truncated Fourier series

P(t ) = a0 +
N∑

n=1

[
an cos

(
2πt

T

)
+ bn sin

(
2πt

T

)]
(21)

for some N > 1 fixed and coefficients a0, an, bn ∈ R3. For
our work here we will fix N = 10 and note that working
with larger or smaller N produces nearly identical results. We
further take the coefficients an and bn to be drawn from the
uniform distribution on the unit cube [−1, 1]3, fix ε = 0.1
and T = 1

4 , which efficiently separates the timescales. The
reader is referred to Fig. 7 for a characteristic illustration of
the signal.

As before we will fix λ = ε2 = 0.01 to ensure that only
O(ε) terms are present in the discovered equation. However,
since the discovered equation contains sinusoidal functions,
a library containing only monomials will never be able to
fully reproduce the dynamics of the slow scale. Hence, the
best one could hope for is to produce a monomial series
representation of the dynamics of system (20), but the trun-
cation at O(ε2) will inevitably truncate the series represen-

tation as well. Furthermore, the chaotic nature of system
(20) leads one to conjecture that SINDy will not necessarily
just return a truncated Taylor series representation for sin(x)
since the elements of C(t ) do not remain small on large
timescales. This is confirmed by implementing the discovery
method 100 different times, resulting in 100 different ran-
domized functions P(t ), and discovering F(x) = x + O(ε2)
in every case, meaning that the slow timescale dynamics
are unable to be picked up at all with such a monomial
basis. This emphasizes that the choice of basis functions
plays potentially an even more critical role in the case of
discovering the dynamics of the slow timescale system than
it potentially would for discovering systems with a single
timescale.

The inclusion of both sine and cosine terms into the library
immediately remedies the above problem. For example, one
implementation of this method resulted in the system

F(x) =
⎡
⎣0.02508 sin (x2) + 0.9949x1

0.02428 sin (x3) + 0.9947x2

0.02471 sin (x1) + 0.9951x3

⎤
⎦, (22)

which is characteristic of all implementations with random-
ized Fourier coefficients in Eq. (21). After rearranging, the
slow dynamical system G(x) is recovered as

G(x) =
⎡
⎣1.0032 sin (x2) − 0.2040x1

0.9712 sin (x3) − 0.2120x2

0.9884 sin (x1) − 0.1960x3

⎤
⎦,

which agrees with Eq. (20) up to O(ε2).

V. CONCLUSION

In this work we have seen a computationally cheap and
efficient method for discovering the slow timescale dynamical
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system of a multiscale signal that is amenable to averaging.
This method relies on tracking the signal not continuously, but
after each fast period, to produce a mapping which parsimo-
niously describes the slow physics. The resulting mapping can
also be related to the continuous-time dynamics of the slow
timescale via the Euler stepping scheme (5). Furthermore, the
fast period can be extracted accurately by using the recently
developed sliding window DMD technique with clustering of
eigenfrequencies [13], which can also be used to reconstruct
the fast component of the signal. The result is an algorithm
that reliably reproduces the slow evolution of a multiscale
signal using DMD for the fast timescale and SINDy for
the slow timescale. Given the difficulty in approximating
the emergent slow scale evolution dynamics of multiscale
systems, the method provides a viable architecture for coarse
graining to achieve accurate, interpretable, and parsimonious

dynamical models for slow-scale physics. Finally, we note
that, depending on the scaling, averaging can yield trivial
slow dynamics, in which case homogenization is the correct
procedure [33]. This potentially limits the class of signals for
which our techniques are applicable, although our work herein
provides an initial step towards data-driven discovery of the
slow timescale dynamics of multiscale signals.

The supporting data for this article are available from the
data repository [31].
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