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Implementation of two causal methods based on predictions in reconstructed state spaces
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If deterministic dynamics is dominant in the data, then methods based on predictions in reconstructed state
spaces can serve to detect causal relationships between and within the systems. Here we introduce two algorithms
for such causal analysis. They are designed to detect causality from two time series but are potentially also
applicable in a multivariate context. The first method is based on cross-predictions, and the second one on the
so-called mixed predictions. In terms of performance, the cross-prediction method is considerably faster and less
prone to false negatives. The predictability improvement method is slower, but in addition to causal detection,
in a multivariate scenario, it also reveals which specific observables can help the most if we want to improve
prediction. The study also highlights cases where our methods and state-space approaches generally seem to
lose reliability. We propose a new perspective on these situations, namely that the variables under investigation
have weak observability due to the complex nonlinear information flow in the system. Thus, in such cases, the
failure of causality detection cannot be attributed to the methods themselves but to the use of data that do not
allow reliable reconstruction of the underlying dynamics.
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I. INTRODUCTION

The best-known method for the detection of coupling
between time series is the Granger’s test, which evaluates the
causal relations by a study of predictability in autoregressive
models [1]. However, due to the linear concept, the Granger’s
method is not suitable for the analysis of complex nonlinear
processes. Therefore, there is a growing body of work in the
area of causality detection in nonlinear dynamical systems.

Some of the new methods that are generalizations of the
Granger’s prediction-based approach have been studied by
Faes et al. in Ref. [2]. Although the results have been partially
promising, the authors have pointed out that inferring direc-
tionality from asymmetries observed from nonlinear interde-
pendence measures is often burdensome. It may be intricately
related to differences between the dynamical properties of the
systems and the strength of the coupling.

In 2018, a selection from the most promising causal
methods, namely the extended Granger’s test [3], the kernel
version of the Granger’s test [4], the conditional mutual
information [5] or transfer entropy [6], two variants of the
evaluation of cross mappings between state spaces [7,8],
and an assessment of predictability improvement due to the
use of mixed predictions [9], has been compared [10]. For
data from complex dynamical systems, the results have been
mixed. The method based on predictability improvement (PI)
in reconstructed state spaces has been the only one to produce
false-negative results on the tested data (16%). On the other
hand, PI was also the only one that did not give any false
positives, unlike some other methods, which saw causality in
68–94% of cases where none existed.
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As it becomes increasingly clear that prediction evaluation
has excellent potential in causal analysis, we will focus on
these types of methods here. Specifically, we will provide
detailed instructions for two implementations, both of which
will make use of predictions in reconstructed state spaces.

The first method will use cross-predictions—predictions of
the system based only on historical data from the other system.
As far as we know, this idea was first used in the context
of interconnection and synchronization in a 1995 article by
Rulkov et al. [11] and a 1996 article by Schiff et al. [12].

The second method will evaluate whether the prediction
of one series improves after using the so-called mixed pre-
diction, combining past information from both time series.
The ability of mixed forecasts to detect weak interactions
below the threshold of synchronization was demonstrated in
the example of two coupled Hénon maps by Wiesenfeldt et al.
in 2002 [13] and Feldman and Bhattacharya in 2004 [14]. We
will use the mixed predictions similarly as we proposed in
2016 [9].

In the following, we first explain the methodologies
through an example of interconnected Rössler oscillators [15].
Then detailed implementation guides for the two causality
detection methods are provided, and the results obtained by
testing the coupled Rössler systems are presented. A discus-
sion about observability related issues follows the results.
Finally, in Appendix A, pseudocodes are included, allowing
easy implementation of the methods in Matlab or other soft-
ware environments.

II. DATA

Rössler 1.015 → Rössler 0.985

As the test example, we consider the unidirectional cou-
pling of two Rössler systems, studied in detail by Paluš and
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Vejmelka [5]. The equations for the driving system X and the
driven system Y are as follows:

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + 0.15x2

ẋ3 = 0.2 + x3(x1 − 10)
(1)

ẏ1 = −ω2y2 − y3 + C(x1 − y1)

ẏ2 = ω2y1 + 0.15y2

ẏ3 = 0.2 + y3(y1 − 10).

In our example, the two Rössler systems are coupled
through a one-way driving relationship between variables x1

and y1. X drives Y through the coupling term C(x1 − y1) in
the right-hand side of the equation for the y1 variable. The
parameter C states the coupling strength.

We use ω1 = 1.015 and ω2 = 0.985 in our test example.
With this setting, the driver X is chaotic, while the driven
system Y does not seem so, as its largest Lyapunov exponent is
about 0 in the uncoupled case [5]. However, once the coupling
with the chaotic driver X is active, also Y becomes a part of
the overall chaotic dynamics.

With increasing coupling, the positive Lyapunov exponent
of the response system (also known as the conditional Lya-
punov exponent) can decrease and become negative at the
C value at which synchronization takes place. The plots of
the conditional Lyapunov exponents for the system given
by Eq. (1) can be found in Ref. [5]. The plots indicate,
similarly as the graph of the correlation dimensions presented
in Ref. [16], that synchronization takes place for a coupling
about C = 0.12.

As for the synchronization of coupled chaotic oscillators,
they are often studied in terms of phase synchronizations.
They occur when the coupled systems keep their phase dif-
ference bounded while their amplitudes are uncorrelated. If
the studied coupling can be reflected in the dynamics of in-
stantaneous phases, then the use of the phase synchronization
perspective can decrease the dimensionality of the causality
detection problem [5]. However, in this study, the term syn-
chronization refers to the so-called generalized synchroniza-
tion. This means that there is a one-to-one functional relation
between the states of the systems, so the dynamical state of
one system is completely determined by the state of the other.
If the function is an identity, then the synchronization is called
identical. It is essential to the causal methods that the direction
of coupling can be inferred from data only when the underly-
ing systems are coupled but not yet synchronized. Once the
systems are synchronized, the future states of the driver X
can be predicted from the past of X equally well as from the
response Y and vice versa, and it is not possible to decide
whether we are dealing with synchronized systems, highly
correlated systems, or strongly bidirectionally interconnected
systems [17].

Through our example of coupled Rössler systems, we can
test different types of causal relations: causally independent
time series (C = 0), unidirectional driving with increasing
coupling strengths (C between zero and 0.12), synchronized
states (C > 0.12), and bidirectional coupling (if investigating
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FIG. 1. Presentation of the test data. One hundred point samples
of variables of Rössler systems in Eq. (1) coupled with the strength of
C = 0.05. Followed by three-dimensional plots of 3600 points given
by variables from the driver X and variables from the driven Y . The
plots at the bottom are for the data with added noise (signal-to-noise
ratio of 10).

two variables from the driver X or two from the responding
subsystem Y ).

We got our test time series as solutions of ordinary dif-
ferential Eqs. (1) obtained by numerical integration using the
adaptive Runge-Kutta method in Matlab. An integration step
size of 0.1 and starting point [0,0,0.4,0,0,0.4] was used. We
dropped the first 1000 points and saved every 10th value
of the remaining data. This gave us about 6 points per one
average orbit around the attractor. We repeated the numerical
integration for coupling strengths C ranging from 0 to 0.18
with a step of 0.01. Figure 1 shows 100 points of each variable
of Eq. (1), for coupling C = 0.05.

To characterize the relations between variables and sub-
systems in Eq. (1) we can also use a so-called interaction or
fluence graph. We construct the fluence graph of our system in
Fig. 2 by drawing a directed link from variable x to y whenever
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FIG. 2. Fluence graph of the coupled Rössler systems given by
Eq. (1). The situation for interconnected systems with coupling
C below the synchronization threshold. Dashed arrows symbolize
nonlinearity in the connections.

x appears in the differential equation of y, that is, when the
corresponding element of the Jacobian matrix of Eq. (1) is
nonzero.

If we assume knowledge of one variable from X and one
from Y , then our test example imitates a common practical
problem of having two time series, representing two dynam-
ical systems, with the task of finding out if there is a causal
relationship between the systems.

X → Y denotes driving Y by X , and that is the causal link
we would like to recover here if C is between zero and 0.12.
Can we do this if we only know measurements of x3 and y3,
for example, or some other pair of variables?

Cummins et al. have introduced a comprehensive theory
showing that if we use causal methods requiring delay re-
construction techniques on deterministic systems, then the
methods have limited capability [17]. The best we can hope
for is finding the strongly connected components of the
graph (sets of mutually reachable vertices) which represent
distinct subsystems coupled through one-way driving links.
We cannot recover self-loops, and we cannot distinguish the
direct driving, indirect driving or correlate of a direct or
indirect driving.

Suppose for a moment that we have time-series data for all
six variables of our test example of coupled Rössler systems,
but we do not know the relationships between them. In that
case, complete pairwise causal testing should reveal all nine
links in Fig. 2. However, in addition to these, we will also
find 12 more links, since we cannot distinguish between direct
and indirect driving. For example, we will find a bidirectional
connection between x2 and x3 and between y2 and y3. We also
find any variable from X driving any variable from Y . So, in
summary, we would correctly determine that x1, x2, and x3

form one subsystem X , while y1, y2, and y3 form the second
subsystem Y , and X → Y . However, the exact position of the
direct driving link (x1 → y1) cannot be determined.

Another limitation concerns the possible presence of hid-
den variables. Most causal inference methods for time series
are grounded on the assumptions that all common drivers
are observed. If there are unmeasured common causes, then
they may be responsible, for example, for the presence of
correlated but causally unconnected variables. In the compar-
ative article [10] we have used data from a fishery model as
an example of two systems influenced by a common third,
hidden driver. Most of the test methods have falsely detected
bidirectional relation between the time series from the fishery

model. The method based on the predictability improvement,
on the other hand, (correctly) did not see any link. This
was actually expected since the fact that one time series is
correlated and causally unrelated to the other means that they
share some common information, but it does not mean that
there is any extra information needed to help predict the other
series. However, in the presence of noise in the data the
correlated observables might be able to help with each other’s
prediction and indicate a bidirectional link.

Although the main goal in this study is to explain how
to use state-space predictions for causal analysis, we must
emphasize that the danger of the above limitations must be
taken into account when interpreting the results.

III. METHODS

The typical problem we are interested in here concerns two
potentially coupled dynamical systems X and Y , of which we
have no a priori knowledge of either their dynamics or their
interdependence. Let each system, X and Y , be represented by
a single time series, x and y, respectively.

Both of the presented causal methods will be based on
predictions of the evolution of the systems in state spaces.
To make such predictions when a system is represented by
only one time series, the multidimensional state portrait of
the dynamics has to be reconstructed first. Specifically, a
dX -dimensional manifold MX is built from lags of observable
x so that the state of the system in time t is

(x(t ), x(t − τX ), x(t − 2τX ), . . . , x[t − (dX − 1)τX ]).

Using appropriate τY and dY , also the manifold MY is re-
constructed. According to Takens’s theorem, under certain
conditions, the reconstruction is equivalent, in the sense of
diffeomorphism, to the original manifold [18]. Consequently,
the reconstruction and the original share the same features
in many ways. The most important thing for us is that the
reconstruction is useful for predicting the system’s evolution.

Theoretically, for noise-free data of unlimited length, the
existence of a diffeomorphism between the original attractor
and the reconstructed image is guaranteed for a sufficiently
high embedding dimension m and almost any choice of delay
τ . In practice, however, the data are of finite length and limited
accuracy, and it is worthwhile to pay some attention to the
selection of the embedding parameters d and τ . The essential
requirement is to unfold the reconstruction of the trajectories
sufficiently to avoid self-crossings and extreme closeness of
distinct points. The best combinations of dimension and time
delay are given by some optimum time window (d − 1)τ [19].
As demonstrated in Ref. [20] for the same one-point pre-
diction technique as will be used here, the size of the time
window should not exceed the mean orbital period. Cyclicity
in data can thus help with estimating the appropriate window.
However, data can be broadband and lacking indication of
any oscillatory pattern. Then, it is better to follow some
proper invariant that is expected to reach an extremum for
the appropriate embedding parameters. For example, we can
calculate the prediction errors for several combinations of τ

and m and choose the one that leads to the lowest error. Such
a search for the embedding parameters will be included as a
first step in the design of our causal algorithms.

022203-3



ANNA KRAKOVSKÁ AND JOZEF JAKUBÍK PHYSICAL REVIEW E 102, 022203 (2020)

Then, in the reconstructed state spaces, the self-predictions
and cross-predictions or mixed predictions will be computed.
To make predictions, we will use the method of analogs [21].
The method finds historical data similar to the current state
and assumes that the system will continue analogously to what
it did in the past. For example, to predict the follower of point
Yt in MY , we can find the time index i of its nearest neighbor
from past states on the reconstructed trajectory and declare the
follower’s estimate Ŷt+1 = Yi+1. This simple procedure can be
modified in various ways. In this study, we will average the
followers of several neighbors while considering exponential
weighting based on their distances from Yt . More precisely,
k nearest neighbors of point Yt will be determined with K
being a set of their time indices. For the neighbors Yi, i ∈ K ,
exponential weighting wi based on Euclidean distances from
Yt is considered:

wi = e
− ‖Yt −Yi‖

min j∈K ‖Yt −Yj ‖ .

The prediction is then given by

Ŷt+1 =
∑

i∈K wiYi+1
∑

i∈K wi
.

In this way, we obtain the self-prediction of y in MY

and, analogously, the self-prediction of x in MX , the mixed
prediction of x in MXY , and the mixed prediction of y in MY X .

The way of cross-predicting (predicting the first system
based on the history of the second system) is, of course, a
bit different. To get the cross-prediction of some variable y
for example, the indices of the neighbors of Yt are taken from
the neighbors of Xt found in M ′

X . Note that M ′
X is not the same

as the manifold MX , which was created to be optimal for self-
predictions. Instead, in order to ensure better performance, we
propose to find and use new reconstruction M ′

X , guaranteeing
minimal cross-prediction errors.

After all predictions are completed, the causality detection
itself, based on the prediction errors |yt+1 − ŷt+1|, will pro-
ceed in one of the two following ways.

A. Cross-prediction method (CP method)

In the case of the CP method, we evaluate the mean
absolute errors of the self-predictions of x in MX and y in MY

and the cross-predictions of x and y.
With this method, we use the next notation: ExX and EyY

for mean absolute errors of self-predictions of x in MX and y in
MY , respectively, and ExY and EyX for mean absolute errors
of cross-predictions of x and y, respectively.

To allow comparison of the predictability of two different
time series we also use normalized errors with the correspond-
ing notation being nExX , nEyY , nExY , and nEyX . Our choice
for normalization is the mean absolute deviation.

Overall, we get the next four possible causal relations be-
tween X and Y with corresponding options for the prediction
errors of the two self-predictions and two cross-predictions.

1. X ⊥⊥ Y (X and Y are causally independent)

In the case of uncoupled and uncorrelated systems, X
cannot be predicted from Y and vice versa. The normalized
errors nExY and nEyX are expected to be close to 1 as

the cross-predictions are not better than taking the mean
of the time series as the trivial estimate of the following
value. This can be subjected to statistical testing of the null
hypothesis H0 that the cross-prediction does not overcome
the trivial prediction against the alternative H1 that it achieves
lower errors.

2. X ↔ Y

For fully synchronized systems, as well as for bidirec-
tionally coupled systems, the driver and the response are
indistinguishable from each other. In such cases, due to cyclic
flow of information, the causes and effects are entangled,
which means that we can make predictions of x and y equally
well in MX as in MY . To decide whether this is the case, we can
use a statistical test of the null hypothesis H0 of the errors of
cross-predictions being not significantly lower than the errors
of the self-predictions against the alternative hypothesis H1 of
ExY < ExX or EyX < EyY , respectively.

3. X → Y

Provided that we ruled out the validity of either of the pre-
vious two cases, the remaining option is a one-way relation-
ship. nExY < nEyX means that Y contains more information
about X than vice versa, which, under the given conditions, is
a sign of a unidirectional link from X to Y .

4. Y → X

nEyX < nExY is the last option, corresponding to the
unidirectional coupling, opposite to the previous case.

These rules are presented in a schematic form in Table I.
Pseudocode of the CP algorithm can be found in Appendix A.

B. Predictability improvement method (PI method)

The second method is based on improving predictability
with mixed predictions. This time, to detect the type of
causality, we evaluate two self-predictions and two mixed
predictions in a similar way as in Ref. [9]. The basic idea
goes back to the so-called mixed-state analysis introduced in
Refs. [13,14].

Again, suppose that we have two systems, X and Y , and
each one is represented by one time series, x, and y, respec-
tively. Similarly, as in the case of Granger’s meaning, we say
that variable x causes variable y if a better prediction of y
can be obtained by using the information from both x and
y rather than only the information from y. However, unlike
the Granger’s method, this one operates in multidimensional
state spaces.

The original version of our PI method, introduced in
Ref. [9], has attributed special attention to the optimization
of the reconstructed manifolds based on the weighting of all
their time-delayed coordinates. Less useful coordinates of the
reconstructions were suppressed by assigning a lower weight.
However, the optimization problem related to the adjustments
of weights is a challenging and computationally expensive
task. To avoid this complication, we used a simpler variant
in this study.

Here the mixed prediction of y, i.e., the prediction using
information from both Y and X , will be the prediction
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TABLE I. Summary of the rules for deriving causal relationships between systems X and Y based on errors and normalized errors of self-
predictions and cross-predictions (ExX , EyY , ExY , EyX , nExY , nEyX ) in the CP method and errors of self-predictions and mixed predictions
(ExX , EyY , ExXY , EyY X ) in the PI method.

Causal relation CP method PI method

X ⊥⊥ Y nExY ≈ 1 nEyX ≈ 1 ExXY � ExX EyY X � EyY
X ↔ Y ExY � ExX ∨ EyX � EyY ExXY < ExX EyY X < EyY
X → Y nExY < nEyX EyY X < EyY ExXY � ExX
Y → X nEyX < nExY ExXY < ExX EyY X � EyY

in MY X , where MY X is made up of MY extended by the
weighted MX : MY X = [y(t ), y(t − τY ), . . . , y(t − (dY −
1)τY ),wX x(t ),wX x(t − τX ), . . . ,wX x(t − (dX − 1)τX )],
where the weight wX represents the impact of MX . The task
is to find out whether for some weight wX the predictions
of y in the mixed space MY X are more accurate than the
self-predictions in MY . Essential for the PI method is
that an improvement in predictability can only occur if
X affects Y . Otherwise, x coordinates will not help to
improve the reconstruction or the prediction of the underlying
dynamics.

After exchanging the roles of X and Y above we get
instructions to compute the mixed predictions of x needed
for the testing of causality in the opposite direction, i.e., from
Y to X .

For the prediction errors in the PI method, we will use the
following notation: ExX and EyY for mean absolute errors
of self-predictions of x in MX and y in MY , respectively,
and ExXY and EyY X for mean absolute errors of mixed
predictions of x in MXY and y in MY X , respectively.

The essence of the PI method is to determine if the
mixed prediction errors can be lower than the self-prediction
errors, meaning that one variable helps the other with the
prediction. For example, to assess whether adding information
from X improves the prediction of Y , the null hypothesis
of no predictability improvement, i.e., H0 : EyY X � EyY ,
is statistically tested against the alternative hypothesis H1 :
EyY X < EyY . If H0 is rejected on a 5% significance level,
then we accept that the inclusion of the knowledge of X
significantly improves the prediction of Y . Analogously, we
test the opposite direction (causal connection from Y to X ).

The test results lead us to the next four possible causal
connections between X and Y with corresponding relations
between the prediction errors of the self-predictions and
mixed predictions.

1. X ⊥⊥ Y

The first option is that prediction of neither observable
can be improved using information from the other system.
Therefore, we declare systems X and Y causally independent
when the null hypothesis H0 of no predictability improvement
is not rejected for either of them.

2. X ↔ Y

Once the systems are synchronized or bidirectionally con-
nected, we can understand the observables as part of the
same dynamic system with cyclic information flow. In such
a case, the mixed delayed reconstruction MXY may contain

more information about the underlying dynamics than MX

alone, resulting in a more accurate prediction of the x ob-
servable compared to its self-prediction. The same goes for
improving the predictability of y. In practice, however, despite
the bidirectional connection, we may see a predictability im-
provement in only one direction. Such cases are then confused
with unidirectional links. This asymmetry is related to the
phenomenon of the so-called observability of the variable,
which will be discussed later.

3. X → Y

If we ruled out the previous two cases, then a unidirectional
causal link is the remaining option. If we can accept the
alternative hypothesis that EyY X < EyY , then we conclude
that there is a unidirectional link from X to Y .

4. Y → X

After excluding all of the previous options, only ExXY <

ExX remains, corresponding to the unidirectional coupling
between the driver Y and response X .

The pseudocode of the PI algorithm can also be found in
Appendix A.

For both methods, the rules for inferring causal relations
from the prediction errors are summarized in Table I.

IV. RESULTS

Let us now demonstrate how the methods just presented
handle the detection of causal relationships in our test example
of interconnected Rössler oscillators.

For example, suppose that we have a few thousand data
points of variable x = x1 of the driving Rössler system X
and variable y = y1 of the driven system Y and we would
like to know whether there is a causal relationship between
the two systems. In fact, we tested all pairs of time series
selected from the six variables of the coupled systems, each
pair for 19 different coupling values C. We also tested the
noisy versions of all these time series, with a signal-to-noise
ratio of 10. White Gaussian noise was added to mimic the
effect of random processes typically present in real-world
data. Since the noise is additive, it is not dependent on the
state of the system.

As the first step, we found optimal embedding parameters
for the tested time series x and y to build the reconstructions of
the manifolds MX and MY . To do so, we made predictions in
manifolds given by several different combinations of parame-
ters m and τ and selected the one that led to the lowest errors.
For example, for variable x1, the reconstruction MX with time
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delay τX = 1 and dimension dX = 4 was optimal. For variable
y1 from the driven subsystem, manifold MY given by delay
τY = 1 and dimension dY = 4, 5, 6, or 7 (the stronger the
coupling, the higher the embedding dimension) proved to be
optimal. In the CP method, we set the embedding parameters
separately for self-predictions and cross-predictions. With the
PI method, in addition to m and τ , we also optimized the
impact wX of the system X , and the impact wY of the system
Y when creating the mixed manifolds MY X and MXY .

After reconstructing all the manifolds, we computed the
self-predictions and cross-predictions for the CP method and
the self-predictions and mixed predictions for the PI method.
In each case, 600 points were predicted, with the help of 3000
historical points of the reconstructed trajectory.

Figures 3, 4 and Table II demonstrate the performance of
the two methods. Let us review the results in more detail.

A. Results of the CP method in bivariate analysis

1. X ⊥⊥ Y

At zero coupling, we can take any variable from X and any
one from Y to get an example of a pair of mutually causally
independent time series. The errors for C = 0 in the top four
pictures in Fig. 3 show the results of the CP method for the
pair of x1 and y1 variables and the pair of x3 and y3. High cross-
prediction errors both for clean and noisy data unmistakably
show that there is no relationship between the systems.

2. X ↔ Y

As mentioned above, the systems become synchronized for
coupling around the value C = 0.12. Above this threshold, the
driven system is no longer distinguishable from the driver, and
the observable from Y can be predicted just as well as the
one from X in any of the reconstructed spaces MX , MY . See
the comparatively small self-prediction and cross-prediction
errors for C > 0.12 in Figs. 3(a)–3(d). These enabled the CP
method to detect the threshold of synchronization reliably.

As mentioned, in our context, the situation with synchro-
nized systems is essentially the same as cases of bidirectional
connections. Figure 3 presents two examples of bidirectional
coupling. In the first case, we pretended to know only the
historical data from x1 and x2. These variables form part of the
driving Rössler system with a cyclical flow of information. As
a result, the equal success of all types of predictions allowed
the CP method easy detection of bidirectional causality in this
case. See Figs. 3(e) and 3(f).

The second example of a two-way causality looks a bit
more complicated. We used variables y2 and y3 that interact
bidirectionally within the driven subsystem Y . The prediction
errors are significantly higher than in the case of x1 and x2.
This is partly due to the higher complexity of the driven
system Y compared to the driving system X alone and, in the
case of y3, the predictability is further reduced due to poor
observability of this particular variable (to be discussed later).
Nevertheless, the CP method was able to detect bidirectional
causality even in this case. In Figs. 3(g) and 3(h) we can
see that the errors of cross-predictions of y3 are lower than
the errors of its self-predictions, which is only possible with
bidirectional coupling.
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FIG. 3. Results of the CP method. Normalized mean absolute
errors of self-predictions and cross-predictions for four pairs of
variables of coupled Rössler systems given by Eq. (1). In each
case, the results are given for 19 increasing values of the coupling
strength C. Pictures on the left are for clean data, while pictures on
the right are for data with a signal-to-noise ratio of 10. The figures
also show concrete conclusions of the method about the type of
causality, detected in individual cases. Red is used for symbols of
incorrect detection results. Black is for correct detections.

3. X → Y

In Figs. 3(a)–3(d), for coupling values higher than zero
but lower than the synchronization threshold, we can see that
nExY < nEyX . Based on this, and after excluding X ⊥⊥ Y
and X ↔ Y , the CP method correctly concludes that system
X causes system Y . We expected the same results when
subjecting any one observable from the driving system X
and one from the driven system Y to a causal test. However,
the pictures for x3 and y3 in Figs. 3(c) and 3(d) show that
with these problematic variables, causality detection was very
unreliable.

To summarize, the CP method revealed the presence and
direction of causal links in the case of x1 and y1 flawlessly. It
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TABLE II. Summary of false-negative and false-positive results in the CP method and the PI method when applied to clean and noisy
(signal-to-noise ratio of 10) data from coupled Rössler oscillators given by Eq. (1). In both clear and noisy cases, 570 causal links were tested.
Good observability means that variables with high observability index (x1, x2, y1, y2) were used. Weak observability means that variable with
low observability index (x3 or y3) was involved in the analysis.

CP CP PI PI
clean data noisy data clean data noisy data

Good observability False negatives 0% 0% 14% 5%
False positives 0% 10% 3% 19%

Weak observability False negatives 4% 6% 39% 15%
False positives 7% 37% 0% 31%

was equally successful when any of the pairs (x1, y2), (x2, y1),
or (x2, y2) were used for testing. However, if one of the time
series tested was x3 or y3, or if we added noise to the data,
revealing the one-way causality was no longer error free. On
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FIG. 4. Results of the PI method. Mean absolute errors of self-
predictions and mixed predictions for four pairs of variables of
coupled Rössler systems given by Eq. (1). As with the previous
figure, red is used for symbols of incorrect detection results and black
for correct detections.

the other hand, the detection of bidirectional causality was
without problems for any pair of variables and even at the
signal-to-noise ratio of 10.

B. Results of the PI method in bivariate analysis

1. X ⊥⊥ Y

The errors for C = 0 in Figs. 4(a)–4(d) show the situation
for the pair of x1 and y1 variables and the pair of x3 and y3. In
most cases, the inability to improve the predictions using the
information from the other variable correctly indicated mutual
independence.

2. X ↔ Y

The PI method relatively reliably revealed the onset of
synchronization after the coupling strength C rose above 0.12.
See the self-prediction and mixed prediction errors for high
coupling values in the top four pictures of Fig. 4. For most
cases, x could help significantly with the prediction of the
observable y and vice versa.

The same was expected for a pair of variables from the
same system with a cyclic flow of information. Figure 4
presents two such examples of bidirectional coupling, namely
the pair of x1 and x2 and the pair of y2 and y3. For clean x1

and x2 variables, the self-prediction errors are tiny, and yet
the mixed-prediction errors are often even smaller, indicating
a bidirectional connection. In the case of the second pair, we
can see that prediction of the problematic third variable y3 can
be greatly improved using the mixed state space, indicating
the causal link y2 → y3. However, as Figs. 4(g) and 4(h) show,
the opposite direction of y3 → y2 is more difficult to prove for
some couplings.

3. X → Y

When testing x1 and y1 for 0 < C < 0.12 [Fig. 4(a)], we
mostly observed a significant improvement in the predictabil-
ity of the y1 variable using mixed predictions, so that the PI
method correctly identified the unidirectional causality. On
the other hand, pictures for x3 and y3 in Figs. 4(c) and 4(d)
show that when testing these problematic variables, causality
detection was not reliable. The PI method failed even more
often than the CP method. For most coupling values, x3 was
unable to improve the predictability of y3, and therefore the
presence of a causal link could not be identified.

For interested readers, in Appendix B we also present the
results for two earlier methods working in state spaces [7,8].
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FIG. 5. Connections detected by the CP method in coupled
Rössler systems given by Eq. (1) for coupling value of C = 0.05.
The method found all the links it should have found.

C. Results in a multivariate scenario

Although the methods have so far been presented in the
context of bivariate analysis, they can also be useful for large
networks where we are interested in how many nodes we need
to measure in order to characterize relationships across the
studied network. In this sense, we can look at our test example
of the coupled Rössler oscillators as a network of six nodes.
Suppose that we know the measurements of all six variables
(nodes), and not just two as before, and assume we do not
know if there is any relationship between the nodes at all.
What will our pairwise causal analysis reveal? The results,
computed for one selected coupling value of C = 0.05, are
visualized by the fluence graphs in Figs. 5 and 6.

Figure 5 shows the results of the CP method. Bivariate
causal analyzes revealed all nine links of the original fluence
graph presented already in Fig. 2. In addition to these, we
correctly found 12 more links, which is consistent with the
fact that it is impossible to distinguish between direct and
indirect driving.

Figure 6 shows that the PI method did not find some
of the links. The higher incidence of false negatives is not
surprising since the CP method only determines whether, for
example, MY allows at least some prediction of x, while in
the PI method we ask if the mixed manifold MXY contains
enough extra information to improve the self-prediction of
x significantly. The second question is usually harder to
answer. However, in the presented case, the results of both
methods made it possible to correctly conclude that we are
dealing with a network that can be decomposed into two
unidirectionally connected blocks X and Y , each with a cyclic
flow of information. The results also allow us to declare that

FIG. 6. Connections detected by the PI method in coupled
Rössler systems given by Eq. (1) for coupling value of C = 0.05.
The dotted links remained undetected.

measuring any one variable of the X subsystem together with
any one variable of the Y subsystem should be sufficient to
characterize and model the dynamics behind the behavior of
all six nodes.

In the particular example shown in Figs. 5 and 6 (clean
data and coupling 0.05), the CP method did not produce any
false results and the PI method led to some false negatives
with x3 and y3 variables. However, Table II shows that for
different couplings, and especially after the addition of noise,
false-positive results can also occur.

At this point, we just wanted to indicate that having a
network of systems or dynamical observables, pairwise causal
analysis can help to identify the significantly reduced set
of nodes, providing sufficient information about the entire
network dynamics.

V. DISCUSSION

As demonstrated so far, our test data not only revealed
the strengths and weaknesses of the presented methods but
also drew attention to situations where the methods can run
into problems. It turns out that such situations occur when a
variable with weak observability is used for reconstruction of
the studied dynamics. To explain what we mean, let us take a
closer look at the notion of observability in this section.

In control theory, the observability of a linear system
means that the behavior of the entire system can be determined
from its outputs. The linear system is either fully observable
or not through a given set of measurements. The concepts of
observability extended to nonlinear systems have been studied
for more than two decades by Letellier et al. (see Refs. [22,23]
and references to earlier work therein). An important step
in the field was to recognize that the observability matrix
that has to be of full rank is, in fact, the Jacobian matrix
of the coordinate transformation between the original state
space and the reconstructed space. So there is an obvious
connection with the ability to reconstruct the dynamics of the
system from one measured variable declared by the Takens
theorem [18]. If the map is a global diffeomorphism, then
there is full observability. If there is a global singularity in the
observability matrix, then the system is nonobservable [23].

When considering the three-dimensional Rössler system,
we expect that a proper delay-time reconstruction from any
variable constitutes a diffeomorphism between the original
manifold and the reconstructed image. Moreover, the vari-
ables are to be equally useful for the state space recon-
struction. However, it has been shown that in the case of
the variable x2, derivative reconstruction is already globally
diffeomorphic to the original state portrait in three dimensions
[x2, ẋ2, ẍ2] [22]. Even the global model can be obtained quite
easily from the x2 observable. On the other hand, for x1 and
x3 at least a four-dimensional reconstruction space is needed.
Other than derivative reconstruction, such as delay-time em-
bedding, might even require an additional dimension to unfold
the attractor sufficiently. Ultimately, however, increasing the
dimension by adding additional coordinates should eliminate
the problem of singularities for observable systems. Despite
all these arguments, the third variable of the Rössler system
is known to be an almost unusable basis for reconstruction
and modeling [22]. Even if we used a large number of clean
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data and high embedding dimensions, the effort to predict the
reconstructed trajectories or to estimate the attractor’s fractal
complexity turned out poorly [20]. Similarly, in this study,
once x3 was among the variables examined, the causal analysis
was more susceptible to failure. The same was true for the
third variable of the driven Rössler system.

Obviously, even with global diffeomorphisms, one variable
could be preferable to the other. So, besides the question of
whether the system is observable or not, another exciting task
is to sort the variables of observable systems in terms of their
effectiveness in the reconstruction process and subsequent
analysis [23]. To contribute to solving this problem, several
measures (observability coefficients) have been introduced.
Some of them even do not involve knowing the governing
equations. We are not going into detail; the interested reader
is referred to Refs. [22,23] and the references therein for
additional information. What is important to recall for this
study is that whichever observability coefficient we use for
the Rössler system, the variables are ranked according to
observability as x2 > x1 > x3.

A closer look at the dynamical systems has revealed that
the problematic variables are those that receive information
about the rest of the system through a nonlinear function. As-
suming that nonlinear links are generally responsible for the
lack of local observability, Letellier et al. have proposed con-
structing a so-called pruned fluence graph considering only
linear links—corresponding to the constant nonzero terms of
the Jacobian matrix [24]. From this graph, we identify the
largest connected subgraphs in which there is a directed path
from each node to every other node and no outgoing links.
In each one of those subgraphs, at least one node should
be measured. The authors argue that such a selection is not
only minimal but also provides good observability, although
not necessarily the best one [23]. The technique was val-
idated by investigating large-dimensional reaction networks
for which the determinant of the observability matrix can be
rigorously computed.

Let us see what all this means for our test example. The
coupled Rössler oscillators form a six-dimensional system
which is theoretically fully observable from two variables—
one from X and one from Y . However, let us leave out
the two nonlinear links in the interaction graph in Fig. 2 to
get the prune fluence graph. In this new graph, the strongly
connected components are only composed of variables x1

and x2 or y1 and y2, respectively. Variables x3 and y3 be-
come disconnected from the rest of the system. The pruned
fluence graph thus correctly separates those variables that
have the worst observability indices. The same variables were
problematic also in the causal analysis. To get closer to the
complete picture of system dynamics, we should also measure
the excluded variables. So in our test example, to get the
most out of state-space-based causal methods, more variables
are recommended to be measured than we would expect
based on the Takens’s theorem. The recommended combi-
nations include (x1, x3, y1, y3), (x1, x3, y2, y3), (x2, x3, y1, y3),
and (x2, x3, y2, y3).

VI. CONCLUSIONS

In this study, we were facing an interesting problem of
causality detection, if the valid working hypothesis is that
the investigated time series x and y are manifestations of
dynamical systems X and Y , respectively.

Although it is not articulated often enough in the literature,
reconstruction of the state space from a variable with weak
observability can undermine the whole subsequent analysis.
This applies to any analysis of the reconstructed dynamics,
and as we demonstrated in this study, causal analysis is
no exception.

However, we point out that even with weak observables,
difficulties mainly occurred with detections of unidirectional
causal links. Bidirectional coupling, as well as the absence of
any interconnection, were detected quite reliably, especially
with the CP method. This could be true in general, but it needs
to be confirmed by more thorough research.

We also touched on the aspect of the noise level in data,
although it was not systematically studied here. As regards the
impact of additive noise on the results, we tested cases with a
signal-to-noise ratio of 10. We found that, in several cases, this
level of noise made it impossible to detect causality correctly.
The role of noise and possibilities of its reduction are among
the topics we want to address in more detail in the near future.

The main aim of this paper, however, was to present
a detailed guide to the implementation of two methods of
causality detection. Both methods work with signals, or time
series, from which they reconstruct the underlying dynamics
in multidimensional state spaces. In the reconstructed spaces,
one-point predictions are calculated, and based on the predic-
tion errors, the causal relationships are inferred.

If the measured data are good representatives of the
governing dynamics, then both the CP method and the PI
method work reliably, with the first method being significantly
faster and therefore preferable for large data sets. Compared
to cross-mapping techniques (see results in Appendix B),
the prediction-based methods are much less prone to false-
positive results.

The way we proposed to implement the idea of cross-
predictions leads to a robust methodology that can be suc-
cessfully used for routine causal analysis of real-world time-
series data. The PI method, although computationally more
demanding and more susceptible to false negatives, can be
beneficial if we are not only interested in causality detection
but also in the possibility of improving the prediction. More-
over, if multiple system measurements are available, then the
PI method can help sort out those variables that are most
suitable for predicting and modeling the underlying dynamics.

Of course, as we demonstrated in this study, poor observ-
ability of the variables tested, or too much noise in data can
reduce the credibility of the results. However, it is not the
methods themselves that are responsible for such a failure, but
the properties of data that do not allow a proper reconstruction
of dynamics. The more problematic the data, the more careful
we must be with interpreting the results.
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In addition to difficulties with observability, we must also
mention once again the problems with an unobserved con-
founder (a hidden common cause of two measured variables).
A basic assumption of most causal discovery methods from
observational data is that there exist no latent variables that
influence any pair of measured variables. The term causal is
then understood relative to the given set. As a first step, we
expect the methods to work in an ideal situation without hid-
den drivers. This is the main ambition of our prediction-based
methods as well. However, in the end, the causal methods will
also have to deal with unmeasured confounders, because they
are ubiquitous in real-world applications. In the presence of
confounders, the results may have more than one interpreta-
tion. A bidirected edge, for example, can indicate a causal
link or just a correlation due to the effect of a common hidden
driver or both. The problem of determining which of these
is the case is far from solved. Even popular methods do not
work, or they can handle only some special cases. The issue
of hidden drivers was beyond the scope of this article, but it is
a priority topic for future research. Readers who are interested
in the ongoing research and current progress in understanding
causal structures in the presence of confounders may refer to
Ref. [25] and references therein.

Despite some open questions, we believe that predictions
are extremely useful in finding causality in complex dynamic
systems and networks. We hope that the detailed implemen-
tation instructions given here will contribute to the broader
use of these state-space-based causal methods. They can be
useful in bivariate causal detection and also for studying
large dynamical networks whose nodes are characterized by
time series.
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APPENDIX A

In this section we present the pseudocodes of the pro-
posed causal methods. Codes of Matlab implementation are
available Ref. [26].

Algorithm 1: Nearest-neighbors prediction

Input:
y - time series for prediction
M - reconstructed manifold from historical values of y

Output:
predict ion_y

m = dimension(M )
for i ← m, length(y) do

point = [y(i − m + 1), . . . , y(i)]
[indices_knn, distances_knn] = knnSearch(point, M )
u = exp(−distances_knn/ min(distances_knn))
weights = u/sum(u)
predict ion_y(i + 1) = weights ∗ y(indices_knn + 1)

end for

Algorithm 2: Cross Prediction

Input:
x, y - time series for causality detection
values(d,τ,k) - values for selecting the embedding dimension,

time delay and number of nearest neighbors
Output:

(d, τ, k)(xX,xY,yY,yX ) - optimal values of d , τ , and k for predicting
time series a based on information from manifold B

nE (xX, xY, yY, yX ) - normalized mean absolute error of
prediction of a based on B

result - the type of causal relation between x and y detected

for a, B in [xX, xY, yY, yX ] do
a_hist, a_predict = split(a)
for d, τ, k in valuesd × valuesτ × valuesk do

for i ← d ∗ τ + 1, length(a_hist ) do
MB_append([B(i − d ∗ τ ), B(i − (d − 1) ∗ τ ), . . . , B(i)])

end for
z = nn_predict(a_predict, MB ) (ALGORITHM: 1)
E =mae(a_predict, z)
if E < EaB then

(d, τ, k)aB = d, τ, k
EaB = E

end if
end for

end for

Ex_baseline, Ey_baseline - errors of trivial baseline prediction

(taking the mean of the time series as the estimate of the

following value)

if ExY > Ex_baseline bf and EyX > Ey_baseline then
result = X ⊥⊥ Y

else if ExY � ExX or EyX � EyY then

result = X ↔ Y

else if nExY < nEyX then

result = X → Y

else if nExY > nEyX then

result = Y → X

end if

Algorithm 3: Predictability Improvement

Input:
x, y - time series for causality detection
values(d,τ,k) - values for selecting the embedding dimension,
time delay and number of nearest neighbors
valuesw - values for selecting the weight of the helping system

Output:
(d, τ, k)(X,Y ) - optimal values of d , τ , and k for predicting time
series a based on information from manifold B
w(xXY,yY X ) - optimal weight of helping system
E (xX, xXY, yY, yY X ) - mean absolute error of prediction of a
based on information from manifold A or mixed manifold AB
result - the type of causal relation between x and y detected
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for a, A in [xX, yY ] do
a_hist, a_predict = split(a)

for d, τ, k in valuesd × valuesτ × valuesk do
for i ← d ∗ τ + 1, length(a_hist ) do

MA_append([A(i − d ∗ τ ), A(i − (d − 1) ∗ τ ), . . . , A(i)])
end for

z = nn_predict(a_predict, MA)(ALGORITHM: 1)
E = mae(a_predict, z)

if E < EaA then
(d, τ, k)A = d, τ, k
EaA = E
end if

end for
end for

hel pτ = min(τX , τY )
for a, A, B in [xXY, yY X ] do
for w in valuesw do
for i ← d ∗ τ + 1, length(a_hist ) do

MAB_append([A(i − dA ∗ τA), A(i − (dA − 1) ∗ τA), . . . , A(i),
w ∗ B(i − dB ∗ hel pτ ),w ∗ B(i − (dB − 1) ∗ hel pτ ), . . . ,
w ∗ B(i)])

end for
z = nn_predict([a_predict, b_predict], MAB) (ALGORITHM: 1)
E = mae(a_predict, z)

if E < EaAB then
waAB = w

EaAB = E
end if

end for
end for
if ExXY � ExX and EyY X � EyY then

result = X ⊥⊥ Y
else if ExXY < ExX and EyY X < EyY then

result = X ↔ Y
else if EyY X < EyY then

result = X → Y
else if ExXY < ExX then

result = Y → X
end if

APPENDIX B

This Appendix is intended for readers interested in com-
paring the prediction-based methods with other related causal
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FIG. 7. Cross-map skill ρ for four pairs of variables of coupled
Rössler systems given by Eq. (1) for increasing coupling values.
The amount of 3700 data points was used for the computations.
Embedding dimension within the range of 4 to 11 and time delay
1 was used for the reconstruction. For each coupling, a boxplot
provides results for 100 surrogate time series. The line with dots (red)
shows the result for the causal effect of the first variable from the
title to the second. The line without markers represents the opposite
direction. Pictures on the left are for clean data, while pictures on the
right are for data with a signal-to-noise ratio of 10. The symbols at
the bottom of each figure indicate concrete conclusions of the method
about the type of causality. Red is used for symbols of incorrect
detection results. Black is for correct detections.

methods operating in state spaces. The methods for compar-
ison are based on the asymmetry of cross-mappings between
close neighbors in the reconstructed manifolds MX and MY .
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FIG. 8. Causal analysis for four pairs of variables of coupled
Rössler systems given by Eq. (1). The difference compared to the
previous figure is in the use of the L-measure [7] for the evaluation
of the cross-mapping.

To infer causality from this asymmetry, the first method
evaluates the rank-based measure L, proposed by Chicharro
and Andrzejak in 2009 [7], and the second method, called
convergent cross-mapping (CCM) and introduced by Sugi-
hara et al. in 2012, uses the Pearson correlation coefficient
between values estimated by cross-mapping and the actual
values [8].

The CCM method, as originally proposed, determines
causality based on the value of the correlation coefficient
compared to some heuristically selected threshold. For the
reliability of the results, we consider it more appropriate to
add some form of testing, such as the use of surrogates, as
we did in Ref. [10]. The skill ρ of cross-mapping higher then
the threshold given by the surrogates indicates that one system
drives the other.

Details on the implementation of the CCM and L-measure
can be found in Ref. [10] and the Matlab codes for the
methods are available at Ref. [27].

Figures 7 and 8 demonstrate the performance of the two
methods. The cross-mapping techniques CCM and L pro-
duced a large number of false-positive results. For example,
when we used variables of the system (1) having a high
observability index, the CP method made no error and the
PI method ended up with 14% false negatives and 3% false
positives (see Table II). In contrast, although the CCM and
the L-measure do not tend to give false-negative results,
they did lead to 64% and 89% false positives, respectively.
With additive noise or using the problematic variables x3

and y3, the results were even worse. This is also evident
from the specific cases of bivariate causal analysis shown in
Figs. 7 and 8).
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