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Relationship between the Hamiltonian and non-Hamiltonian forms of a fourth-order
nonlinear Schrödinger equation
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We show the equivalence between the Hamiltonian and non-Hamiltonian forms of a fourth-order nonlinear
Schrödinger equation for a particular example of the physical system described by the nonlinear Klein-Gordon
equation with cubic nonlinearity.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) describes the
slowly modulated envelope of a rapidly oscillating nonlinear
wave train, which is strongly dispersive, nearly monochro-
matic (has a narrow spectrum), and weakly nonlinear (of a
small amplitude) [1]. The NLSE coefficients are determined
as functions of the parameters of a particular physical medium
by expanding (1) the equations of motion, (2) Lagrangian, or
(3) Hamiltonian in terms of small amplitude A. These three
approaches yield the same results in the case of standard cubic
NLSE (NLSE3).

In the case of a fourth-order NLSE (the so-called NLSE4
model, where the total maximum power of amplitude A and
its derivatives with respect to coordinate is equal to four), the
non-Hamiltonian and Hamiltonian forms of this equation are
nonequivalent. Non-Hamiltonian high-order NLSEs can be
derived from the equations of motion (see, e.g., Refs. [2–7]) or
from the associated Lagrangian [8], while Hamiltonian high-
order NLSEs are derived from Hamilton’s equations (see, e.g.,
Refs. [9–12]). An infinite hierarchy of integrable NLSEs was
derived in Ref. [13], with the Hamiltonian being one of its
invariants.

The Hamiltonian approach is generally considered as
canonical in the nonlinear theory of waves [14]. On the other
hand, the non-Hamiltonian form of NLSE4 includes the A2Ax

term (Ax being the partial derivative with respect to coordi-
nate, and the bar designating the complex conjugate). This
term is absent in the Hamiltonian counterpart of this equation
written in terms of another complex amplitude u defined as a
function of a complex symplectic coordinate z [10].

The purpose of this work is to show the complete equiva-
lence between the Hamiltonian and non-Hamiltonian forms
of NLSE4 for a particular example of the physical system
described by the nonlinear Klein-Gordon equation with cubic
nonlinearity. To this end, we employ the transformation of
variables that unambiguously transforms the “noncanonical”
form of NLSE4 for the amplitude A to the “canonical” form
for the amplitude u.
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Note that in this article we deal only with the so-called
narrow-banded spectrum approximation to describing the
propagation of nonlinear waves. There exist much more
general models going beyond this approximation; see, e.g.,
Ref. [15] and references therein. In the Hamiltonian ap-
proach, such a more general model is given by the celebrated
Zakharov integro-differential equation [16], which describes
nonlinear four-wave interactions within a spectrum of sur-
face waves (see also Ref. [17] for more general four- and
five-wave forms of the Zakharov equation that preserve the
Hamiltonian). NLSE3 and NLSE4 can generally be obtained
as a narrow-band limit of the Zakharov equations [11]. Ad-
ditional conformal mappings and canonical transformations
allow the cancellation of certain nontrivial four-wave reso-
nant interactions and produce the so-called compact [18] and
supercompact [19] modifications of the Zakharov equations.
These modified Zakharov equations result in more general en-
velope equations valid without usual narrow-banded spectrum
approximation [20,21].

Nevertheless, for reasons of simplicity and brevity, the
main focus of this work stays in the classical NLSE frame-
work. We refer to a simple example of a physical system with
known Hamiltonian and non-Hamiltonian representations. We
prove these two representations to be fully equivalent and
interdeducible by a simple transformation of variables. This
result allows us to suppose the same equivalence in more
complicated systems and examples, in particular in those
outlined above.

II. NONLINEAR KLEIN-GORDON EQUATION AND NLSE4

A. Nonlinear Klein-Gordon equation

We use the nonlinear Klein-Gordon (nKG) equation with
cubic nonlinearity as an example of the model equation that is
governing the wave evolution:

φ tt − c2φ xx + α1φ + α3φ
3 = 0. (1)

Here the unknown real function φ is a characteristic of the
wave field, t is time, x is coordinate, and c is the velocity
parameter that deals with the speed of interaction propagation.
The subscripts denote the partial derivatives. In particular,
Eq. (1) describes the φ4 model in the quantum field theory
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[22] and represents the leading terms of the more general sine-
Gordon equation, which has multiple physical applications
[23] (see also Ref. [24] for more details). The real coefficients
α1 and α3 describe the linear and nonlinear responses of the
medium, respectively.

B. Non-Hamiltonian form of NLSE4

The unknown function φ is represented as the Fourier
expansion over the basis of rapidly oscillating harmonic func-
tions with slowly modulated amplitudes:

φ = 1
2 [εA(χ, τ ) exp(iθ ) + ε3A3(χ, τ ) exp(3iθ ) + c.c.], (2)

where θ (x0, t0) = k0x0 − ω0t0 is the carrier phase (k0 and ω0

being the carrier wave number and frequency, respectively),

ω(k) =
√

c2k2 + α1 (3)

is the liner dispersion relation, and c.c. denotes the complex
conjugate terms. Note that expansion (2) misses the even and
zeroth harmonics inasmuch as they are identically equal to
zero when only the odd powers of the function φ are present
in the nonlinear part of the nKG equation (1).

The complex amplitude A(χ, τ ) describes the slow enve-
lope of the rapidly oscillating carrier with phase θ (x0, t0). The
long coordinate χ and slow time τ are expressed in terms of
short coordinate x0 and fast time t0 as (the so-called method
of multiple scales),

∂

∂x
= ∂

∂x0
+ ε

∂

∂χ
,

∂

∂t
= ∂

∂t0
+ ε

∂

∂τ
, (4)

and ε is a formal small parameter describing the smallness of
the wave amplitude and the slowness of its modulations [7,8].
The complex amplitude A satisfies a high-order NLSE, which
we write here up to the fourth order:

iε2(Aτ + ω′
0Aχ ) + ε3

(
1
2ω′′

0Aχχ + q(3)A2A
)

+iε4
( − 1

6ω′′′
0 Aχχχ + q(4)

1 AAAχ + q(4)
2 A2Aχ

) = 0. (5)

It was derived in a more general form (up to the sixth order)
by the method of multiple scales [7], by the method of the
averaged Lagrangian [8], and by the method of two-parameter
expansions [5]. Noteworthy is that these three different ap-
proaches yielded the same results in all six orders of small-
ness.

The coefficients ω′
0, ω′′

0 , and ω′′′
0 in the above equation

are the derivatives of the linear dispersion relation ω(k) with
respect to wave number k calculated at the point k = k0. The
coefficients q(3), q(4)

1 , and q(4)
2 are expressed explicitly in terms

of the parameters of the original nKG equation:

q(3) = − 3α3

8ω0
, (6)

q(4)
1 = 2r q(3), r ≡ ω′

0

ω0
, (7)

q(4)
2 = 1

2 q(4)
1 = r q(3). (8)

The non-Hamiltonian nature of Eq. (5) is manifested by
the fact that q(4)

2 �= 0, so that there exists no equivalent
Hamiltonian.

C. Hamiltonian form of NLSE4

When the NLSE of form (5) is derived as Hamilton’s
equation for the Hamiltonian density

H = 1
2

(
φ2

t + c2φ2
x + α1φ

2 + 1
2α3φ

4
)
, (9)

it is written in terms of the complex symplectic coordinate

z = εu exp(ik0x) (10)

as the gauge transformation of the corresponding complex
envelope amplitude u, so that

iut = δH

δu
,

with δ denoting the variational derivative [10]. (Such a gauge
transformation was also considered in Ref. [25] in application
to the problem of surface water waves.) The corresponding
NLSE4 for the function u is written as

iε2(uτ + ω′
0 uχ ) + ε3

(
1
2ω′′

0uχχ + Q(3)u2u
)

+ iε4
( − 1

6ω′′′
0 uχχχ + Q(4)

1 u u uχ + Q(4)
2 u2uχ

) = 0, (11)

where

Q(3) = − 3α3

4ω2
0

, Q(4)
1 = 2r Q(3),

Q(4)
2 ≡ 0. (12)

Equation (11) has a Hamiltonian structure, inasmuch as the
term proportional to u2uχ vanishes.

III. EQUIVALENCE OF THE NON-HAMILTONIAN AND
HAMILTONIAN FORMS OF NLSE4

The purpose of this section is to prove that Eqs. (5) and
(11) are equivalent. First, we have to establish the relationship
between the functions φ and z and between the amplitudes A
and u.

A. Relationship between φ and z

In the Hamiltonian approach that was proposed by Craig
et al. [10] (see also Refs. [12,26] for more details), the
quadratic part of Hamiltonian (9),

H2 = 1
2

(
φ2

t + c2φ2
x + α1φ

2
)
,

is represented in the following operator form:

H2 = 1
2

[
φ2

t + (ω̂φ)2
]
.

Here ω̂ is a pseudo-differential operator [27–29] (or the so-
called Fourier multiplier operator) such that the wave number
k in the linear dispersion relation (3) is replaced with the
differential operator (−i∂x ):

ω̂ = ω(−i∂x ) =
√

c2(−i∂x )2 + α1. (13)

Then we have

H2 = 1
2 (iφt + ω̂ φ)(−iφt + ω̂ φ) ≡

√
ω̂z

√
ω̂z,

where z is the so-called complex symplectic coordinate that
was introduced instead of function φ,

z = 1√
2

(
i

1√
ω̂

φt +
√

ω̂ φ

)
, (14)
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with the spatial derivative φx hidden in the operator ω̂. Since

z + z =
√

2ω̂ φ, (15)

the function φ is expressed in terms of z as follows:

φ = 1√
2ω̂

z + c.c. (16)

The above equation means that Hamilton’s equation in terms
of the complex variable z is the complex conjugate to Hamil-
ton’s equation in terms of variable z.

B. Relationship between A and u

Next we use Theorem 1 from Ref. [10] (see also Theorem
4.1 from Ref. [30]) for the operator ω̂ and some sufficiently
smooth function f (χ ), namely,

ω̂(−i∂x )[exp(ik0x) f (χ )] = exp(ik0x) ω̂(k0 − iε∂χ ) f (χ ).
(17)

This formula basically means the operator expansion around
the carrier wave number k0 with the assumption of narrow
spectrum and slow modulations. Then, by using formula (17)
with Eq. (16), we have

φ = 1√
2ω0

[
z + iε

r

2
zχ + O(ε2)

]
+ c.c., (18)

where we took into account that

1√
ω̂(k0 − iε∂χ )

= 1√
ω0

+ iε
ω′

0

2ω0
√

ω0
∂χ + O(ε2). (19)

Finally, by substituting relations (2) and (10) in Eq. (18) and
averaging over the fast phase, we get

1

2
A = 1√

2ω0

(
u + iε

r

2
uχ

)
. (20)

Similarly, by using formula (17) with Eq. (15), one can show
that

u =
√

ω0

2

(
A − iε

r

2
Aχ

)
. (21)

Thus, the complex amplitude u is a combination of the am-
plitude A and its small derivative Aχ , the latter describing the
slow variation of the envelope amplitude. The same relation-
ship was also obtained in the Fourier space in the framework
of the traditional (Zakharov’s) Hamiltonian formalism in the
nonlinear theory of surface water waves [see Eq. (B3a) from
Ref. [11]].

C. Proof

Now, the proof of equivalence of Eqs. (5) and (11) is
straightforward. By substituting relation (21) in Eq. (11), we
easily come to Eq. (5) with

q(3) = ω0

2
Q(3) = − 3α3

8ω0
,

q(4)
1 = ω0

2
Q(4)

1 = 2r q(3),

q(4)
2 = ω0

2

(
Q(4)

2 + r Q(3)
) = 1

2
q(4)

1 .

IV. CONCLUSIONS

Thus, we demonstrated that the coefficients of the Hamil-
tonian form of NLSE4 expressed in terms of variable u (which
was derived as Hamilton’s equations for the nKG equation
[10]) could unambiguously be transformed into the same
coefficients of the non-Hamiltonian form of NLSE4 expressed
in terms of variable A (which was derived as variational
equations for the averaged Lagrangian [8] or as the multiple-
scale expansion of the nKG equation [7]). Therefore, the
non-Hamiltonian and Hamiltonian forms of NLSE4 derived
in Refs. [7,8,10] are equivalent, which proves the validity of
these three approaches for the reduction of the nKG equation
to a high-order NLSE.

We believe that the results presented here will be useful
in facilitating the ongoing discussions on the equivalence
between the Hamiltonian and non-Hamiltonian forms of high-
order NLSEs.
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