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Quasi-integrable systems are slow to thermalize but may be good scramblers

Tomer Goldfriend* and Jorge Kurchan
Laboratoire de Physique Statistique, Département de physique de lÉNS, École Normale Supérieure, PSL Research University 75005 Paris,

France, Université Paris Diderot, Sorbonne Paris-Cité; Sorbonne Universités, UPMC Univ. Paris 06, CNRS,
24 rue Lhomond, 75005 Paris, France

(Received 9 November 2019; revised 6 June 2020; accepted 10 July 2020; published 6 August 2020)

Classical quasi-integrable systems are known to have Lyapunov times much shorter than their ergodicity
time—the clearest example being the Solar System—but the situation for their quantum counterparts is less
well understood. As a first example, we examine the quantum Lyapunov exponent, defined by the evolution of
the four-point out-of-time-order correlator (OTOC), of integrable systems which are weakly perturbed by an
external noise, a setting that has proven to be illuminating in the classical case. In analogy to the tangent space in
classical systems, we derive a linear superoperator equation which dictates the OTOC dynamics. (1) We find that
in the semiclassical limit the quantum Lyapunov exponent is given by the classical one: it scales as ε1/3, with ε

being the variance of the random drive, leading to short Lyapunov times compared to the diffusion time (which
is ∼ε−1). (2) We also find that in the highly quantal regime the Lyapunov instability is suppressed by quantum
fluctuations, and (3) for sufficiently small perturbations the ε1/3 dependence is also suppressed—another purely
quantum effect which we explain. These essential features of the problem are already present in a rotor that is
kicked weakly but randomly. Concerning quantum limits on chaos, we find that quasi-integrable systems are
relatively good scramblers in the sense that the ratio between the Lyapunov exponent and kT/h̄ may stay finite
at a low temperature T .
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I. INTRODUCTION

The field of quantum chaos was born from the attempt
to understand how the characteristics of classical chaotic
systems appear in quantum mechanics [1]. By definition, clas-
sical chaos refers to high sensitivity to initial conditions. This
is traditionally measured by the largest Lyapunov exponent
that gives the exponential rate at which two initially close by
trajectories separate in time. Given the lack of an equivalent
measure in the linear and unitary quantum evolution, in 1984
Peres [2] suggested a Loschmidt echo protocol (fidelity) as an
analog quantity to characterized quantum chaos. It was only
about 15 years later when new echo experiments and interest
in quantum computation motivated theorists (see original
work in Ref. [3]) to show how the fidelity is connected to
the classical Lyapunov exponent in the semiclassical limit. A
slightly different measure that was already introduced in the
late 1960s [4]—the out-of-time-order correlator (OTOC)—is
in the focus of a recent revival in the field of quantum chaos.
The OTOC is a four-point correlation function referring to the
square of the commutation relation between operators at time
t and time zero, 〈[A(t ), B0]2〉, where the average is usually
taken over thermal ensemble.

Semiclassical approximations [4,5], quantum information
scrambling [6–8], and a direct relation to the Loschmidt echo
[9] connect between chaoticity and an exponential growth of
the OTOC—leading to the term quantum Lyapunov exponent
λQ, whenever 〈[A(t ), B0]2〉 ∼ e2λQt . The recent wave of stud-
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ies on the OTOC was initiated in the context of holographic
theories for black holes, in the from of a quantum bound on
its growth [5]. This theoretical interest is accompanied with
new experimental abilities for controlling cold-atom systems
[10,11] (and references therein). These setups concern many-
body isolated systems, which might be integrable [12], near-
integrable [13,14], or chaotic [15]. They allow one to study the
behavior of the OTOC and its relevance to different processes
in closed many-body quantum systems. Several experimental
realizations to measure the OTOC were suggested [16–22]
and preformed [23–25].

In classical mechanics, many-body near-integrable (or,
quasi-integrable) systems exhibit strong chaotic behavior but
thermalize slowly, the Lyapunov time characterizing the for-
mer is much smaller than the phase-space diffusion time
associated with the latter. A well-known example is the Solar
System, which has a Lyapunov time of ∼5 Myr and stability
time of >5 Gyr [26]. The resulting relaxation process involves
slow dynamics from one ergodized torus to the another.
The separation between chaotic and ergodic timescales can
be understood because the Lyapunov instability is mostly
tangent to the high-dimensional invariant tori, and hence
helps little with thermalization. This was illustrated for
the paradigmatic quasi-integrable system—the Fermi-Pasta-
Ulam-Tsingou chain—where the route to equilibration passes
through quasistatic states that live on invariant tori of the
integrable Toda chain [27].

The behavior of quantum quasi-integrable systems is akin
to the classical one. A quantum protocol that has received
extensive attention is to follow the thermalization of an iso-
lated system starting from some initial state: quasi-integrable
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systems quickly evolve to a long-lived prethermalized state
determined by the (quantum) quasiconstants of motion,
followed by a slow relaxation to equilibrium [13,14]. In
general, “thermalization time” refers to the time it takes for
a wave packet to explore sequentially space with equilib-
rium probability, irrespective of its size. When we refer to
“scrambling” or Ehrenfest time, we mean the time it takes
for the packet to be spread over all accessible space at each
time. Clearly, the latter may be infinite in a strictly classical
situation, while the former is typically finite, even classically.
In this paper, we apply the same difference to “prethermaliza-
tion” and “prescrambling,” where the space in question is the
torus of prethermalizad Hilbert space.

For the classical problem, the essence of the dynamics
of quasi-integrable systems may be understood with an ana-
lytically much simpler example: an integrable system which
is weakly perturbed by an external noise [28], arguably, a
stochastic drive can simulate the effect of the many-body
integrability-breaking interactions. In particular, Ref. [28]
showed that the randomly driven system develops chaos that
is almost tangent to the invariant high-dimensional torus, with
a Lyapunov time which is much smaller than the diffusion
time. In addition, chaos appears for any magnitude of the
noise (no regular islands in phase space for any value of per-
turbation), thus the stochastic model can mimic the behavior
of classical quasi-integrable systems beyond the Kolmogorov-
Arnold-Moser (KAM) regime. It also does not contradict the
KAM theorem, as an external random drive can be thought as
coupling to an infinite set of oscillators with all frequencies
[29], thus “resonating with everything.”

In the current paper the ideas described above are extended
to quantum systems. We study in detail chaos in quantum
integrable systems which are weakly perturbed by (classical)
noise. The initial conditions we have in mind will be linear
combinations of states

∑
α cα|α〉 having a set of quantum

numbers {I1
α, . . . , In

α} ∼ {I1
o , . . . , In

o } that correspond to ap-
proximately equal values of all the constants of motion—the
quantum analog of starting “near a torus.” Time evolution
will dephase these contributions, even before the breaking of
integrability makes the amplitude norms change appreciably,
i.e., |cα|eiψα → |cα|eiψ ′

α . The role of “chaos on the torus” for
classical systems is now played by “dephasing at constant
|cα|.” Remarkably, the noise term has a strong effect on
dephasing, even before the quantum numbers have changed
substantially. An important timescale in the present paper is
the scrambling-on-the-torus time—the prescrambling time—
at which the eiψ ′

α are essentially random, but the |cα| have not
yet diffused: this is the time it takes for a wave packet to cover
the whole torus. For these timescales, we shall focus on the
evolution of the OTOC, and on the quantum bounds on chaos.

The paper is organized as follows: First, we set the frame-
work for the analysis by indicating notations in Sec. II;
defining the quantum Lyapunov exponent together with the
quantum tangent space in Sec. III; and presenting our gen-
eral stochastic one-dimensional quantum model for quasi-
integrable systems in Sec. IV. Then Sec. V summarizes the
solution to the classical model [28] and is followed by Sec. VI,
in which we outline our main results concerning the quantum
model. In Sec. VII we derive the basic equations for obtaining
the quantum Lyapunov exponent and solve explicitly the

semiclassical case described by the Bohr-Sommerfeld quan-
tization (Sec. VII D). Numerical simulations demonstrating
the analytical predictions are presented in Sec. VIII. Finally,
we discuss the results in Secs. IX and X, where the former
focuses on the implications for the quantum bound on chaos.
Technical details are given in four Appendixes.

II. NOTATIONS

In the next sections we discuss classical along quantum
models. The mathematical language of the latter consists of
different objects and operations, such as matrices and tensors.
To facilitate the reading we now specify the different notations
that we use throughout the paper:

(a) Superoperators, which operate on matrices and return
matrices, are denoted by calligraphic letters, e.g., J .

(b) The superoperators (tensors of rank 4) act on operators
(matrices) according to the following definition and notation:

(F � O)nn′ ≡
∑
n2,n1

Fnn′n1n2 On2n1 .

(c) Matrix multiplication operates as usual:(A� B�
C� D�

)(
X
Y

)
=

(A � X + B � Y
C � X + D � Y

)

(d) We work in the Heisenberg picture where operators are
time-dependent. The subscript 0 refers to the initial value.

III. QUANTUM LYAPUNOV EXPONENT AND THE
QUANTUM TANGENT SPACE

In classical mechanics, the basic measure of chaos is
the divergence of two initially close trajectories in the
phase space, x ≡ (q, p). An exponential separation—defining
the Lyapunov exponent—signifies chaos. The standard proce-
dure to calculate Lyapunov exponents is by considering the
tangent space, which describes the evolution of the distance
between a pair of infinitesimally separated trajectories u ≡
x(t ) − x′(t ). It is dictated by the linear relation u̇ = M(x(t ))u,
where the matrix M contains the second derivatives of the
Hamiltonian evaluated along a reference trajectory x(t ) in
phase space (see, e.g., Appendix A). The largest Lyapunov
exponent is then defined by

λcl ≡ lim
t→∞ lim

||u(0)||→0

1

2t
ln

||u||2
||u(0)||2

= lim
t→∞ ln

{
λmax

[(
T e

∫ t M(t ′ )dt ′)TT e
∫ t M(t ′ )dt ′]

2t

}
, (1)

where λmax[A] is the maximal eigenvalue of A, and T denotes
time ordering.

Because we will be interested in the relation with quantum
mechanics, it is natural to define the tangent space dynamics
with Poisson brackets. They satisfy a chain rule: for any pair
of conjugate variables, (p, q) and some function F (q, p) we
have

{F, p0} = −{p, p0}{F, q} + {q, p0}{F, p}, (2)

where (q0, p0) corresponds to the value at time zero. In Eq. (2)
we also make use of the fact that the the Poisson brackets are
canonical invariants; see explicit derivation in Appendix A.
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Based on this chain rule, from the Hamilton equations one
finds

d

dt

({p, q0}
{q, q0}

)
=

({{H, p}, q} −{{H, p}, p}
{{H, q}, q} −{{H, q}, p}

)({p, q0}
{q, q0}

)
.

(3)
The matrix that appears in Eq. (3) is exactly M(t ) that governs
the dynamics of the displacement vector u in the tangent
space. The initial condition for Eq. (3) is the vector (0,−1).
One should also consider the other set of Poisson brackets
{·, p0}. However, these are decoupled from the set {·, q0} and
satisfy the same linear relation with an initial condition (1,0).
Therefore it is sufficient to study the dynamics dictated by the
matrix M(t ) for any initial condition.

Let us now turn to quantum mechanics. It is natural to
implement quantization by replacing Poisson brackets by
commutators {·, ·} → ih̄[·, ·], but now we have to take care
of factor orderings. One thus finds that the dynamics of an
OTOC is dictated by a linear relation

ih̄
d

dt

(
[A, B0]
[B, B0]

)
=

(
K1� K2�
K3� K4�

)(
[A, B0]
[B, B0]

)
, (4)

where, for example, K1 and K2 come from [[A, H], B0].
Equation (4) may be seen as a Lindbladian expression for
the tangent-space evolution. In order to prove the relations
playing the role of the chain rule for the commutators, we
use the fact that for any analytic function g(A) = ∑

n dnAr

we have [g(A), B] = Sg � [A, B], with the superoperator Sg

acting as

Sg � [X ] =
∞∑

n=0

n∑
r=1

dnAr−1XAn−r . (5)

The superoperation is just a combination of left and right
matrix multiplications; see Appendix B1 for more details. As
an example, if we take A = p, B = q and H = p2 + q4, then
we get

[[A, H], B0] = [[p, p2 + q4], q0] = −4ih̄[q3, q0]

= −4ih̄([q, q0]q2 + q[q, q0]q + q2[q, q0]). (6)

Note that the initial conditions for the ODE in Eq. (4) is
([A0, B0], 0), however as in the classical case we can also
consider commutators of the form [·, A0], for which we have
the initial condition (0, [B0, A0]). Therefore, in principle, it is
sufficient to consider the above matrix of superoperators for
general initial conditions, although one should bear in mind
that the magnitude of these must be bounded, e.g., |[p0, q0]| =
h̄.

As discussed in the Introduction, a quantum Lyapunov
exponent λQ can be defined via 〈[A(t ), B0]2〉 ∼ e2λQt . In the
current paper we mostly focus on a microcanonical version,
taking 〈ψ0|[A(t ), B0]2|ψ0〉 with an initial eigenfunction |ψ0〉.
The canonical version is discussed in Sec. IX.

Equation (4) gives us a convenient framework to explore
the growth of the OTOC, and its analogy to the classical
Lyapunov separation. Ideally, we should compute the average
of the logarithm of the squared commutator. For simplicity,
more often the average of the squared commutator itself is
computed, which thus constitutes an annealed average: this is

what we shall do in this paper. We focus on a general class of
models: Integrable systems which are weakly perturbed by an
external noise.

IV. ONE-DIMENSIONAL MODEL

Our goal is to understand the Lyapunov exponent of a
quantum integrable Hamiltonian, Hint, which is weakly per-
turbed by additive noise. It turns out that the mechanism
whereby chaos is induced by noise is already well represented
by a system of one degree of freedom. Transforming to action-
angle variables it reads

H (N, ei�) = Hint(N ) + ε1/2η(t )G(N, ei�), (7)

where the action-like operator N counts the energy level num-
ber of Hint, the operator ei� satisfies the commutation relation
[N, ei�] = ei�, and η is a Gaussian white noise. Working with
the operator ei� = cos � + i sin � allows us to easily relate
the quantum problem to the classical action-angle variables,
while avoiding an explicit use of the problematic phase-
opertor �. The operator ei� itself suffers from some perplex-
ing properties [30,31] such as ei�e−i� 
= e−i�ei�, but this will
pose no problem. Apart from the commutation relation stated
above, we have eim�|n〉 = |n + m〉. Thus, alternatively one
can work with the more familiar ladder operator a†, where
the number operator reads N = a†a.

The model in Eq. (7) may involve any functional form
for Hint and G. Nevertheless, in this paper we start with a
concrete class of classical models—a particle in a power po-
tential weakly perturbed by a random field—and its quantum
counterpart. The classical Hamiltonian reads

Hcl = Hcl,int + ε1/2qη(t ), Hcl,int = p2

2m
+ αqν, (8)

where m is the mass of the particle and 0 < ν < ∞. Being
one-dimensional, Hcl,int is integrable, and the action coordi-
nate can be calculated explicitly [32], giving

classical: Hcl = KIγ + ε1/2q(I, ei�)η(t ), (9)

where γ = 2ν/(2 + ν), q(I, ei�) ∝ I2/(2+ν), and K is a func-
tion of m, α, and ν given in Eq. (C3). The form of the quantum
version can be deduced directly from of Eq. (8) by using
scaling arguments: we look for a rescaling of momentum
p → bp, such that coordinate rescales as q → (h̄/b)q. We find
(see Appendix C)

quantum: H = ω0 h̄H̃ (N, ei�)

= ω0 h̄[H̃int(N ) + ε̃1/2q̃(N, ei�)η(t )], (10)

where ω0 = α1− γ

2 m− γ

2 h̄γ−1 has units of frequency, and ε̃ =
ε/(m1−γ α2−γ h̄2γ−1) is adimensional. In Eq. (10) we have
also rescaled time by ω0, η(t ) → ω

1/2
0 η(t ), such that all the

quantities in the square brackets are separately adimensional.
The Bohr-Sommerfeld approximation of the time-

independent part can be inferred by inserting the quantization
relation I = h̄N in Eq. (9), which gives H̃int(N ) = Nγ and
q̃ ∝ Nμ with μ = (2 − γ )/2 [32]1. This approximation is
used to derive the semiclassical Lyapunov in Sec. VII D.

1A proof that the Bohr-Sommerfeld approximation is valid for the
case of one-dimensional power potential can be found in Ref. [49].
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The quantum Lyapunov exponent should be understood for
two copies that evolve and “feel” the same noise realization. In
other words, if alternatively we considered a Loschmidt echo,
then we would do the following [9]: evolve the system forward
up to time T with H (N, ei�, η(t )), and then backward from T
to 2T with −H (N, ei�, η(2T − t )) + δH , where δH is some
small perturbation, and the noise for the backward evolution
is the time-reversed of the one for the forward one. Next we
summarize the chaotic behavior of the classical model.

V. SUMMARY OF THE CLASSICAL CASE

The Lyapunov exponent of a general classical integrable
model perturbed by noise was derived in Ref. [28]. We now
briefly present the analysis of this derivation as applied to the
Hamiltonian in Eq. (9). The different steps of the derivation
shall be followed as closely as possible when we treat the
quantum case in Sec. VII.

A. Classical tangent space dynamics

The motion in the tangent space is dictated by the Langevin
dynamics

d

dt

(
uI

u�

)
=

[(
0 0

H ′′
cl,int 0

)
+ ε1/2η(t )K (t )

](
uI

u�

)

≈
(

0 ε1/2
(
∂2
�q(I0, ei�)

)
η(t )

H ′′
cl,int(I0) 0

)(
uI

u�

)
,

(11)

where the prime refers to a derivative with respect to the
action variable I , and K (t ) is a matrix which depends on the
second derivatives of the perturbation. The structure of the
final matrix results from power counting in ε, after assuming
that the matrix is evaluated along unperturbed reference tra-
jectory (along which the tangent space is measured) I (t ) = I0,
�(t ) = �0 + H ′

cl,int(I0)t . At this point one can scale out ε by
rescaling uI → uI , u� → ε−1/3u� and t → ε−1/3t , and thus
immediately reach the conclusion that λcl ∝ ε1/3. However,
we shall continue without this rescaling since it is not crucial
for the purpose of this section.

The Fokker-Planck equation, describing the evolution of
the probability distribution of (uI , u�), reads

∂P(uI , u�)

∂t
=

{
−H ′′

cl,intuI
∂

∂u�

+ ε
[
∂2
�q(I0, ei�)

]
u2

�

∂2

∂u2
I

}

× P(uI , u�). (12)

This equation is homogeneous, thanks to this we can derive
a close set of ODEs describing averages over the noise of
quadratic quantities:

d

dt

⎛
⎝

〈
u2

I

〉〈
u2

�

〉
〈uI u�〉

⎞
⎠ =

⎛
⎜⎝ 0 ε

[
∂2
�q(I0, ei�)

]2
0

0 0 2H ′′
cl,0

H ′′
cl,0 0 0

⎞
⎟⎠

×
⎛
⎝ 〈u2

I 〉
〈u2

�〉
〈uI u�〉

⎞
⎠. (13)

This set of equations describes the evolution of the an-
nealed Lyapunov exponent. Under the assumption that ro-
tation around the torus is faster than the Lyapunov time,
λcl 
 H ′

cl,int(I0), one can average over the angle �, defining
the important parameter for what follows

q̄ ≡
√〈[

∂2
�q(I, ei�)

]2〉
�
. (14)

Replacing the term by its average may be understood as a first
term in a Magnus expansion (see Appendix D2). The resulting
3 × 3 eigenvalue problem gives the annealed Lyapunov

2λcl = 22/3ε1/3(H ′′
cl,int )

2/3q̄2/3(I0). (15)

The above derivation relies on the assumption of weak
perturbation—the diffusion time for action variables is shorter
than the Lyapunov time

λ−1
cl 
 I2

0

εq̄2(I0)
. (16)

Since λcl ∼ ε1/3, this inequality holds for small enough ε. The
λcl ∝ ε1/3 scaling was already found in the context of motion
along a stochastic magnetic field [33] and in the theory of
products of random matrices [34,35].

B. Classical prescrambling time

In order to better understand the influence of the quantum
dispersion of the initial condition, we need to see first what
happens classically when the initial separation of trajectories
is finite. Let us thus consider two initial nearby trajectories at a
noninfinitesimal initial separation (uI,0, u�,0). There is an ini-
tial time window, [0, tb], within which the uI stays small, while
their angular separation grows ballistically u�(tb) ≈ u�,0 +
H ′′

cl,int(I0)uI,0tb. This is followed by the Lyapunov regime,
where the two trajectories separate exponentially at a rate
λcl. In general, it is expected that the exponential growth
starts after one Lyapunov time tb = λ−1

cl (we confirm this
numerically in Sec. VIII), and is expected to saturate after
some finite time, when the separation has grown to the size of
the torus. Naïvely, one would think that the saturation time ts
may be estimated in the usual way, as the time u�,0eλclts ∼ 2π .
However, this is not quite true. What happens is that it is not
the initial time separation that is amplified by the exponential
separation, but rather the separation after the ballistic regime,
i.e., u�(tb) ∼ u�(λ−1

cl ) we obtained above. We hence have

ts ≡ λ−1
cl log

[
2π

u�(tb)

]
∼ λ−1

cl log

[
2π

u�

(
λ−1

cl

)
]
. (17)

Finally, let us check that during these times the diffusion of
the action is small. At the saturation time

uI (ts) = uI
(
λ−1

cl

)
eλclts = 2πuI

(
λ−1

cl

)
u�

(
λ−1

cl

) . (18)

Plugging in the expression for u�(λ−1
cl ) and the solution for

λcl from Eq. (15) we find

uI (ts) = 2π

H ′′
cl,int(I0)λ−1

cl

= π

(
εq̄2

H ′′
cl,int

)1/3


 I0, (19)
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FIG. 1. A scheme summarizing our findings for the OTOC dy-
namics in quantum quasi-integrable systems described by Eq. (10).
The analysis assumes weak perturbation, Eq. (22), thus excluding the
blue regime. When J in Eq. (20) is negligible, a Lyapunov exponent
which scales as ε̃1/3 is predicted based on scaling arguments (white
area; this is verified in Figs. 5 and 6). A semiclassical derivation
based on the BS for n0 large enough is given in Sec. VII D. From the
discussion of the prescrambling times in Sec. VI, we can predict that
the Lyapunov regime vanishes at low quantum numbers [red area;
supported by Fig. 5(a) and 3], and at very low perturbation [green
area; supported by Fig. 5(b) and 6].

where the inequality comes from the assumption of weak per-
turbation in Eq. (16). Thus, we confirm that small perturbation
that corresponds to very slow diffusion results in a Lyapunov
separation with small projection along the action coordinates.
All of these results are verified numerically in Sec. VIII; see
Fig. 2 below.

VI. OUTLINE OF MAIN RESULTS FOR THE
QUANTUM CASE

Let us now consider the quantum model in Eq. (10). The
model depends on two adimensional numbers: the typical
energy level n0 and the adimensional perturbation strength ε̃.

In the current section we provide general arguments for the
behavior of the quantum model, and outline our main results
with a scheme in Fig. 1.

A. Quantum tangent space dynamics

As we show in Sec. VII, it is sufficient to focus on the
dynamics of two operators, C� = [ei�, A0]e−i� and CN =
i[N, A0], with A0 being some initial Hermitian operator. The
time derivative of these operators follows a linear superopera-
tor equations, which are the analog of those of Eq. (11), of the
form(

ĊN

Ċ�

)
=

[(
0 0
L� iJ�

)
+ ε̃1/2η(t )

(M� F�
N� K�

)](
CN

C�

)
,

(20)

where L,J ,M,F ,N ,K are superoperators easily obtained
by using the “chain rule” for commutators.

The quantum Lyapunov exponent is adimensionalized as
λ̃Q = λQ

ω0
, with λ̃Q defined by the (adimensional) time depen-

dence of the OTOC associated with the evolution generated
by the adimensional Hamiltonian H/(ω0 h̄):

C2(t ) ≡ 〈ψ0|C2
�|ψ0〉 ∼ e2λ̃Qt . (21)

The initial state, |ψ0〉 = ∑
n cn|n〉, is assumed to be concen-

trated around some n0, here we take directly |ψ0〉 = |n0〉.
The superoperator J comes from factor reorderings and

thus vanishes in the classical case. When this is so, we
may rescale CN → CN , C� → ε̃−1/3C� and t → ε̃−1/3t , and
conclude that M,N ,K may be neglected for small ε̃, and that
the Lyapunov exponent λ̃Q scales like ε̃1/3. In the quantum
case J 
= 0, and time cannot be rescaled with ε̃.

As in the classical case, we assume weak perturbation, such
that there is a negligible diffusion of energy levels during one
Lyapunov time, td � tLyp. In adimensional units this reads

ε̃q2(n0) 
 n3/2
0 H ′′(n0), (22)

where the energy diffusion rate is approximated hereafter
as n0 ∼ ε̃q2(n0)td , and q2(n0) is defined in Eq. (14). For
large values of ε, the ε1/3 scaling breaks down; see, e.g.,
Refs. [36,37].
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FIG. 2. The separation of two initially close by trajectories for the classical randomly kicked rotor (averaged over 1000 pairs of trajectories).
The solid lines corresponds to angular separation, whereas the dashed lines indicate the difference in the action variables. Different curves
correspond to different noise magnitude, ε̃1/2 outlined in the legend (smaller perturbations corresponds to longer saturation times). The initial
separation is fixed. In panel (a) the time axis is in logarithmic scale, whereas in panel (b) it is in linear scale and rescaled with ε̃1/3t ∼ λclt .
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B. Quantum prescrambling time

Let us now see how what we have learned about satu-
ration times in classical case (Sec. V B) affects the quan-
tum picture. Following Refs. [38,39], one shall imagine the
semiclassical spreading of an initial wave packet. The size
of the packet prior to the exponential growth includes an
initial ballistic regime, �(tb) = �0 + v0tb ∼ �0 + v0/λcl . Now,
the uncertainty principle implies that both �0 and v0 are finite,
for example, considering a coherent state as an initial packet.
Quantum effects thus saturate the exponential growth once the
wave packet spreads throughout the torus, λclt ∼ − log(�0 +
v0/λcl ).

Quantum mechanics thus acts in two forms: for large
Lyapunov exponents it is the initial wavepacket that spreads,
just as in the usual Ehrenfest time estimate—only that here
it concerns spreading over the prethermalization space (the
quantum counterpart of the torus) rather than over the entire
phase space. For small Lyapunov exponents, as we shall have
when the perturbation is weak, the ballistic time is long, and
hence the quantum spread of initial velocities could even
reach prescrambling. These two effects thus limit separately
the conditions under which there is a Lyapunov time at all:
if the prescrambling time is of the order of the (classical)
Lyapunov time, then the Lyapunov regime is finished before it
starts.

C. Overview of the results

A summary of our main conclusions is given schematically
in Fig. 1. The different regimes are based on the physical argu-
ments presented in the current section, the complete analysis
in Sec. VII, and its verification with numerical simulations
in Sec. VIII. We indicate explicitly what is the numerical
evidence or analytical derivation from which we conclude
each part of the diagram.

We now move to the calculation of the quantum Lyapunov
exponent.

VII. ANALYTICAL DESCRIPTION FOR THE OTOCS
DYNAMICS AND THE QUANTUM LYAPUNOV EXPONENT

The goal of this section is to calculate the growth rate of the
square of a commutator, 〈ψ |C2|ψ〉. The most natural thing is
to consider a linear combination of states around some |n0〉,
corresponding to a wave packet in the angular variables. In
fact, we shall use a single state |ψ〉 = |n0〉, and check that the
results correspond to those of a packet. The state |n0〉 is spread
over all angles, which seems at odds with the interpretation
of the Lyapunov regime as the time during which a packet
has not spread. It should be borne in mind, however, that
|n0〉 has oscillations in � of length 1/n0, and these dephase
completely in times similar to that of a wave packet (see
inset of Fig. 3 below). Finally, the implications of our re-
sults for thermal averages are discussed in the last section,
Sec. IX.

The current section is organized as follows: The equations
for the tangent space dynamics and the annealed Lyapunov ex-
ponent are derived in Sec. VII A and Sec. VII B, respectively.
Then in Sec. VII C we treat further a slightly simplified model
and solve explicitly the semiclassical limit in Sec. VII D.

0 2 4 6 8

10 1

10 2

10 3

10 4

10 5

10 6

FIG. 3. The OTOC growth for the quantum randomly kicked
rotor, for two different initial conditions, n0 = 8191 (blue) and
n0 = 255 (red), and fixed magnitude of the perturbation ε̃1/2 = 100.
The time is rescaled with ε̃1/3. For smaller n0 the Ehrenfest time
(indicated by the dotted gray lines), measured in Lyapunov times, is
shorter. The inset shows off-diagonal components of the commutator
Cn0,n0+10 with a green solid line. The growth of the diagonal elements,
shifted along the y axis for reference, are shown with a red dashed
line (n0 = 255).

A. Evolution of the OTOCs

We focus on the dynamics of two operators

C� ≡ [ei�, A0]e−i�, CN ≡ i[N, A0], (23)

with A0 being some initial Hermitian operator. The choice of
normalization of the first commutator with e−i� is analogous
to the classical counterpart, there it compensates for the fact
that we are working with noncanonical variables N and ei�

(see Appendix A). The normalization also guarantees that C�

is Hermitian. We find that this choice of OTOCs facilitates the
analytic derivation, however, the same dynamics is expected
for other operators such as [cos �, A0].

Let us look at the time derivatives of the above two
operators (recall that time is rescaled by ω0):

ĊN = [[N, H̃int(N ) + ε̃1/2q̃(N, ei�)η(t )], A0] ∼ O(ε̃1/2),

Ċ� = −i[[ei�, H̃ ], A0]e−i� − i[ei�, A0][e−i�, H̃ ]. (24)

The first term on the right-hand side of Eq. (24) can be written
as

− i[[ei�, H̃ ]e−i�, A0] + i[ei�, H̃ ][e−i�, A0]

= −i[[ei�, H̃ ]e−i�, A0] − i[ei�, H̃ ]e−i�C�, (25)

where we have applied the relations [A,C]B = [AB,C] −
A[B,C] and [e−i�, ·] = −e−i�[ei�, ·]e−i�. In addition, using
this last relation, the second term in Eq. (24) can be rewritten
as

−i[ei�, A0][e−i�, H̃ ] = iC�[ei�, H̃ ]e−i�. (26)

In summary we have

Ċ� = i[�(N ), A0] + i[�(N ),C�] + O(ε̃1/2), (27)

where �(N ) ≡ −[ei�, H̃int(N )]e−i� = H̃int(N ) − H̃int(N −
1).
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The corresponding equations, which are equivalent to
those of the tangent space in classical mechanics, are of the
form(

ĊN

Ċ�

)
=

[(
0 0
L� iJ�

)
+ ε̃1/2η(t )

(M� F�
N� K�

)](
CN

C�

)
.

(28)

Let us now write explicitly the operators J and L, which
depend only on the integrable part H̃int. We work in the
eigenbasis |n〉 and denote the period of the torus

ωn ≡ En − En−1, (29)

with En the energy levels of the integrable model from
Eq. (27) we have for J :

(J � C)nn′ = i(ωn − ωn′ )Cnn′ ≡ i j(n, n′)Cnn′ , (30)

The superoperator L can be represented as a sum of left
and right matrix multiplication, using the relation [Ns, A0] =∑s

r=1 Ns−1[N, A0]Ns−r ; alternatively, we can use the relation
in Eq. (B3) which leads to

(L � C)nn′ = ωn − ωn′

n − n′ Cnn′ ≡ l (n, n′)Cnn′ . (31)

In the semiclassical limit, when the density of levels is
high, n ∼ n′ � 1, one has that l (n, n′) → ∂2H/∂n2 (see
Sec. VII D).

Before we proceed with the equations for the annealed
Lyapunov exponent, we briefly discuss the integrable case.

Integrable case

When there is no external noise, ε̃ = 0, the dynamics of the
OTOC follows(

ĊN

Ċ�

)
=

(
0 0
L� iJ�

)(
CN

C�

)
. (32)

The above dynamics cannot yield an exponential growth for
the OTOC. Only C� may grow exponentially, but since iJ =
i[�(N ), ·] we get C�(t ) = e−i�tC�

0 ei�t , an oscillatory term.

B. Annealed Lyapunov exponent

The derivation which follows is done along the lines of
the classical problem that was addressed in Ref. [28] and
briefly discussed in Sec. V. We can do this since the for-
mulation of the two problems is the same, the quantum case
is just in higher number (infinite) of degrees of freedom:
the variables Cnn′ can be thought as vectors, and accordingly
the superoperators can be thought as matrices. Neverthe-
less, there should be differences which come from quantum
mechanics.

The matrix of superoperators in Eq. (28) has elements that
depend on time through the operators N and ei�, which evolve
according to the full perturbed Hamiltonian in the Heisenberg
picture. However, we can assume that the evolution is well
approximated by the evolution unperturbed by noise, and the
effect of noise is important only at the level of the tangent
space. Note that the same approximation is assumed in the
classical case. For small ε̃ [Eq. (22)] the perturbation then

gives only small corrections, and we have

F (N, ei�) = F
(
N0, eiH̃int (N0 )t ei�0 e−iH̃int (N0 )t

) + O(ε̃). (33)

Now, we can employ power counting in ε̃ to eliminate
several components in the matrix of superoperators. If we
assume the scaling t → ε̃−αt , CN → CN and C� → ε̃−βC�,
together with the fact that for white noise η(at ) = a−1/2η(t ),
we find

ĊN = ε̃1/2−αη(t )M � CN + ε̃1/2−α−βη(t )F � C�, (34)

Ċ� = [ε̃−α+βL + ε̃1/2−α+βη(t )N ] � CN

+ [iε̃−αJ + ε̃1/2−αη(t )K] � C�. (35)

Then, ε̃ 
 1 implies that M can be neglected with respect to
F , as well as N compared to L, and K compared to J . We
have then(

ĊN

Ċ�

)
=

(
0 ε̃1/2η(t )F (t )�
L� iJ�

)(
CN

C�

)
. (36)

We keep both L and J , the latter is a factor-ordering term that
disappears in the classical case.

This is a Langevin equation satisfied by the components
of the commutator. Next, we may repeat the steps we fol-
lowed in the classical case, deducing from the Langevin
equation (36) a Fokker-Planck equation satisfied by the com-
ponents of the commutator [whose complete form is given
in Eq. (D1)]. Using the homogeneity in the same way,
we obtain a closed equation for the quadratic averages of
components:

d

dt

〈
CN

nn′CN
mm′

〉 = ε̃
∑
n3, n4
m3, m4

Fnn′n3n4 (t )Fmm′m3m4 (t )
〈
C�

n4n3
C�

m4m3

〉
,

d

dt

〈
C�

nn′C�
mm′

〉 = l (n, n′)
〈
CN

nn′C�
mm′

〉 + l (m, m′)
〈
C�

nn′CN
mm′

〉
+i

(
j(n, n′) + j(m, m′)

)〈
C�

nn′C�
mm′

〉
,

d

dt

〈
CN

nn′C�
mm′

〉 = l (m, m′)
〈
CN

nn′CN
mm′

〉 + i j(m, m′)
〈
CN

nn′C�
mm′

〉
,

(37)

where the functions j(n, n′) and l (n, n′) = l (n′, n) appear in
Eqs. (30) and (31). This is a closed set of ODEs for the
averaged products of matrix elements. One can take a subset
of these equations and hope that they will form a closed set.
Next we consider a simplified model for which this can be
done. In particular, we are interested in quantities of the form
〈∑n1

Cnn1Cn1n〉 which correspond to evaluating expectations
of square commutators at a given eigenstate |n〉.

C. Simplified model

We now simplify the problem by employing q̃(N, ei�) =
V (N ) cos � + cos �V (N ), a particular case of the general
model in Eq. (10). The main characteristics of the solu-
tion should hold for other functional forms, that is, taking
higher harmonics cos(2�), sin(�), etc. We thus treat the

022201-7



TOMER GOLDFRIEND AND JORGE KURCHAN PHYSICAL REVIEW E 102, 022201 (2020)

adimensional Hamiltonian:

H̃ = H̃int(N ) + ε̃1/2η(t )[V (N ) cos(�) + cos(�)V (N )].

(38)

The OTOCs dynamics is dictated by Eq. (36) that contains the
superoperators L, J , and F . The former two are related to the
integrable part and already given in Sec. VII A.

Let us calculate the superoperator F , which corre-
sponds to the term proportional to C� in the operation
[[N,V (N ) cos � + cos �V (N )], A0]. We shall thus consider

[[N, cos �], A0] = 1
2 (C�ei� + e−i�C�).

Working in the eigenbasis of N , where 〈m|ei�|n〉 =
eiωmtδm,n+1 and 〈m|e−i�|n〉 = e−iωntδm,n−1, we find that

Fnn′kk′ = (
eiωn′ tδn,k′δn′+1,k + e−iωntδn+1,k′δn′,k

)
× 1

2

[
V (n) + V (n′)

]
. (39)

Next, we write down a set of ODEs for the dynamics of
averages, according to Eq. (37). Defining F XY

nn′ ≡ 〈CX
nn′CY

n′n〉,
with X and Y being N or �, we find

d

dt
F NN

nn′ =
∑
n1, n2
m1, m2

ε̃Rnn′m1m2n1n2 (t )〈C�
n2n1

C�
m2m1

〉, (40)

d

dt
F��

nn′ = 2l (n, n′)
F N�

nn′ + F�N
nn′

2
, (41)

d

dt

(
F N�

nn′ + F�N
nn′

2

)
= l (n, n′)F NN

nn′ − i j(n, n′)
F N�

nn′ − F�N
nn′

2
,

(42)

d

dt

(
F N�

nn′ − F�N
nn′

2

)
= −i j(n, n′)

F N�
nn′ + F N�

nn′

2
, (43)

where Rnn′kk′ll ′ (t ) ≡ Fnn′ll ′ (t )Fn′nkk′ (t ), and we use the fact
that j(n, n′) = − j(n′, n) and l (n, n′) = l (n′, n). Finally, we
preform time averaging for R (see Appendix D2), that
is, we drop all of the oscillating components. As in the
classical case, this procedure refers to the assumption
that the Lyapunov time is much longer than the periods
around the torus. We find

∑
Rnn′m1m2n1n2 (t )〈C�

n2n1
C�

m2m1
〉 =

1
4 (V (n) + V (n′))2(F��

n,n′+1 + F��
n+1,n′ ), and thus Eq. (40) can be

replaced by

d

dt
F NN

nn′ = ε̃

4

[
V (n) + V (n′)

]2(
F��

n,n′+1 + F��
n+1,n′

)
. (44)

This closes the equations for the F XY functions.
Following the classical case, the closed set of equations

may be transformed to an equation for a single commutator:

d3

dt3
F��

nn′ + 2l2(n, n′)(n − n′)2 d

dt
F��

nn′ − ε̃

4
2l2(n, n′)(V (n)

+ V (n′))2
(
F��

n,n′+1 + F��
n+1,n′

) = 0, (45)

where we substitute j2(n, n′) = (n − n′)2l2(n, n′).
Equation (45) is the key outcome of the calculation—it

describes the growth of the norm of matrix elements F��
nn′ ≡

|C�
nn′ |2, in a simple model which tries to capture generic

properties of quasi-integrable systems. This third order ODE

should be accompanied with initial conditions that correspond
to some energy shell, as we describe below. Equation (45)
should contain (a) the exponential growth of expectation
values within the prescrambling time and (b) their spreading
along energy levels. One might also conjecture that this equa-
tion will give (c) the saturation, i.e., the prescrambling time.
In the current paper we focus on the exponential growth, pro-
viding an explicit result for the semiclassical limit. The other
two dynamical properties are left for future considerations.

We already learn something from Eq. (45): if the term
with the first time derivative were absent, we could absorb
ε̃ into time and conclude that we have an ε̃

1
3 scaling of the

Lyapunov exponent, just as in the classical case (see the
remark in Sec. V). The term linear in d

dt , originates from the
factor reordering induced by J � C� = [�(N ),C�], and is
of purely quantum origin.

Initial conditions

The definition of C� and CN in Eq. (23) concerns the
commutation of a time-evolving operator with some initial
Hermitian operator A0. We may choose A0 = |ψ0〉〈ψ0| as a
projection on an initial wave packet concentrated around an
eigenstate |n0〉, or in the extreme case, just as |n0〉〈n0|. The
corresponding commutators at time t = 0 then read

C�
0 = |n0 + 1〉〈n0 + 1| − |n0〉〈n0|, CN = 0.

Therefore, the solution to Eq. (45) shall be obtained for
a given initial condition F��

nn′ (t = 0) which is zero almost
everywhere [this is a third-order ODE, it has three initial con-
ditions which are related to F NN and F�N through Eqs. (41)–
(44)].

D. Semiclassical limit: Bohr-Sommerfeld approximation

The aim of the current section is to investigate Eq. (45)
in the semiclassical limit, and show that it yields the classical
Lyapunov exponent in Eq. (15). In this limit we have the Bohr-
Sommerfeld approximation H̃int(N ) = Nγ and V (N ) = Nμ,
where γ and μ are related to the power-law potential; see the
discussion after Eq. (10). This should be taken together with
the limit n → ∞ [going back to the dimension-full variables,
this is equivalent to taking the limit h̄ → 0 while fixing the
energy ∼(h̄N )γ ].

First, the function l (n, n′) for a given n � 1 and n′ = n +
Z reads

l (n, n + Z ) = nγ − (n − 1)γ − (n + Z )γ + (n + Z − 1)γ

Z
.

Since we are interested in operators which are localized
in energy space, we are focusing on the limit of Z 
 n.
Then we find l (n, n + Z ) = γ (γ − 1)nγ−2, which is simply
∂2H̃int(n)/∂n2. In addition, the expression nμ + (n + Z )μ that
appears in Eq. (45) is approximated as 2nμ. Next, let us
discuss the term which is proportional to (n − n′)2 dF

dt . When-
ever this term is negligible, we can rescale time to find
F ∼ eλ̃Qt with λ̃3

Q ∼ l2ε̃n2μ. Hence, we can drop this term
self-consistently if λ̃QZ2 
 ε̃n2μ. This criterion is equivalent
to

|l (n, n + Z )Z| = |ωn − ωn+Z | 
 λ̃Q. (46)
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As we discuss for the classical problem in Sec. V and
demonstrate explicitly in the next section: when the inequality
in Eq. (46), which depends on the initial condition, is not
satisfied we do not expect to see a Lyapunov regime.

In summary, the semiclassical limit refers to large en-
ergy n0 → ∞ and not too small perturbation Z0 
 ε̃n2μ+γ−2

0 .
Inserting those limits into Eq. (45), summing over n′, and
recalling that

∑
n′ F��

nn′ = 〈n|(C�)2|n〉 = (C�)2
nn, we find

d3

dt3
(C�)2

nn = 2ε̃[γ (γ − 1)nγ−2]2n2μ[(C�)2
nn + (C�)2

n+1,n+1].

(47)
Finally, assuming that the initial condition is concentrated

around n0, such that (C�)2
n0+1,n0+1 ∼ (C�)2

n0,n0
, we can find

the exponential growth described by Eq. (47) with the ansatz
(C�)2

n0,n0
∼ e2λ̃Qt to find the resulting adimensional quantum

annealed Lyapunov:

2λ̃Q = 22/3ε̃1/3[γ (γ − 1)nγ−2
0

]2/3
n2μ/3

0 . (48)

We verify the correspondence between the semiclassical Lya-
punov and the classical one in Eq. (15) by putting back the
units λQ = ω0λ̃Q. Then, taking n0 = I/h̄, and inserting the
definitions of ω0 and ε̃ we have

λ3
Q = 1

2εα
2−γ

2 m
−2−γ

2 Iγ−2,

which is exactly the Lyapunov we get for the classical Hamil-
tonian in Eq. (8) with q̃(ei�) = 2 cos �.

VIII. NUMERICAL SIMULATIONS OF KICKED SYSTEMS

We now move to verify with numerical simulations all the
theoretical results derived in the previous sections. In particu-
lar, working in the classical or quantum tangent space allows
us to derive the asymptotic exponential growth of trajectories
separations or the OTOCs, but it says nothing explicitly on the
saturation of this divergence—the prescrambling time. The
saturation is expected when the angular separation reaches a
value of order one, when a phase-space wave packet would
cover the classical torus. Below we study numerical examples
of the classical and quantum problems.

One way to realize the external white noise is to treat a
kicked system

η(t ) =
∞∑

k=−∞
rkδ(t − kτ ), (49)

with some kicking rate τ−1 and where rk are taken from
a normal distribution of zero mean and variance τ ε̃. If the
time between kicks is shorter than the unperturbed evolution
and the Lyapunov time τ 
 ω−1

n 
 tLyp, then the external
drive can be considered as a white noise. Stroboscopic drive
with a constant magnitude corresponds to fundamental ex-
amples in the study of classical and quantum chaos. A well-
known system is the standard (Chirikov) map and its quantum
equivalent—the quantum kicked rotor [38,40–43].

The case of random kicking is closely related to Chirikov
“typical map” [44,45], where the magnitudes of the kicks are
given by a set of T random variables which is repeated peri-
odically. Frahm and Shepelyansky [45] studied in detail the

classical and quantum version of this map. For the classical
case they found a Lyapunov exponent that scales as ε̃1/3.

In what follows we treat the adimensional model

H̃ (N, ei�) = Nγ + 2η(t ) cos �, (50)

where η(t ) is given in Eq. (49). This randomly kicked sys-
tem can be integrated numerically by applying the unitary
operation Uτ (r) = e−iNγ τ e−2ir cos � between kicks, where r is
drawn from a normal distribution of zero mean and variance
ε̃τ . We work in the eigenbasis of N , where operations of
cos � correspond to 2〈n| cos �|n′〉 = δn,n′+1 + δn+1,n′ for n, n′
non-negative. This can be done in Fourier space, as long as
the system is far from the edges n = 0 and n = M, with M
the size of the system. We verified that this is indeed a good
approximation, by exact diagonalization of cos �.

We consider the microcanonical OTOC, where the system
is initialized with |ψ0〉 = |n0〉 and focus on the evolution
of C2(t ) = 〈ψ0|[cos �(t ), N0]2|ψ0〉. For our localized initial
wave function we have that

C2(t ) = 2
∑

n

(n − n0)2|〈n|U † cos �0U |n0〉|2, (51)

with the evolution operator U = · · ·Uτ (r3)Uτ (r2)Uτ (r1). In
all the examples below we choose a kicking rate which is fixed
with respect to the Lyapunov exponent, τ ∼ 0.01tLyp(n0, ε̃), to
guarantee uncorrelated drive and allow a reasonable number
of time steps for observing a Lyapunov regime.

A. Classical and quantum weakly, but randomly, kicked rotor

The case of γ = 2 (infinite potential well) can be consid-
ered as a rotor. The only difference is that for the latter, the
angular momentum operator N can assume negative values.
In that case, one should modify the operation cos � to account
for negative values as well. We verified that the latter does not
affect the results.

1. Classical

As a reference, and demonstration of the theoretical de-
scription presented in Sec. V, we study the analog classical
problem

Hcl(I,�) = I2

2
+ 2η(t )ε̃1/2 cos �. (52)

The Hamilton equation yields the random map

It+dt = It + 2rt sin �t , (53)

�t+dt = �t + It dt (mod 2π ), (54)

where rt is taken from a normal distribution of zero mean
and variance ε̃dt . We integrate this map for pairs of initial
conditions, one initialized at I0 = 0 and some random initial
phase �0 = α0 and the other is at a distance u0 from it. We fix
the initial norm of u0 = 10−8. A pair of such initial conditions
is integrated with the same realization of the noise.

In Fig. 2(a) we present separately the quenched evolution
of the action separation uI (dashed curves) and the angular
separation ucos = cos �(1) − cos �(2) (solid curves). The fig-
ure shows all the three regimes discussed in Sec. V: at short
times, the angular separation roughly grows in a linear fashion
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FIG. 4. The spreading of the initial wave function U (t )|n0〉
(blue) and 〈n| cos �(t )|n0〉 (red) that controls the OTOC growth
[see Eq. (51)]. Initially, the latter is narrower than the former until
they meet each other at later times. The initial eigenstate refers to
n0 = 213 − 1, where the size of the system is M = 214. The curves
are averaged over 76 realizations of the noise.

(ballistic regime), whereas the action separation changes little.
At later times, an exponential growth starts in both coordinates
and saturates when uθ ∼ O(1). By that time, still uI 
 1, the
more so the weaker the perturbation. In Fig. 2(b) we show,
by collapsing the curves with rescaling time, that the rate of
exponential growth is proportional to ε̃1/3, as expected.

2. Quantum

Let us now move to the quantum problem. In Fig. 3
we show the evolution of the OTOC in Eq. (51) for two
different initial conditions with the same perturbation strength
ε̃. Times are rescaled with ε̃1/3. The curves show how the pre-
scrambling time, measured in Lyapunov times, decreases with
decreasing n0. As explained in the beginning of Sec. VII A, we
shall have in mind an initial condition of a wavepacket around
an eigenstate |n0〉, rather than strictly the eigenstate. We have
thus verified that, starting with |ψ0〉 = |n0〉, at later times the
off-diagonal terms of the commutator square grow roughly
as the diagonal terms (see inset of Fig. 3). Figure 4 shows

how energy diffuses little during the Lyapunov regime, this
is equivalent to the small diffusion of the tori in the classical
case. It would be interesting to check that a wave packet in the
coherent state or Wigner representation indeed fills the torus
in an Ehrenfest time, and diffuses subsequently [27,28].

In Fig. 5(a) we show the growth of the OTOC for dif-
ferent initial energy levels n0 and fixed relative perturbation
ε1/2 = 5 × 10−3n0. (In this example we choose to keep ε̃/n2

0
fixed rather than ε̃ since the former controls the smallness of
the perturbation, as the energy is almost constant through-
out the evolution.) The OTOCs show an exponential growth
with essentially the classical Lyapunov exponent for a time
window—the Lyapunov regime—that roughly starts at one
Lyapunov time and ends at the prescrambling time tE . In the
inset of Fig. 5(a) we show that the latter is proportional to
log n0 Lyapunov times. For log n0 ∼ 1 there is no Lyapunov
regime. This is the usual situation for large ε̃. For smaller ε̃

the Lyapunov time becomes large, and we must correct the
initial size �q(ε̃) ∼ ε̃−1/3, according to the estimate above (see
discussion in Sec. VI).

We check how the prescrambling time depends on the
perturbation strength. In Fig. 6(b) we show the evolution of
C2(t ) for various magnitudes of external noise and fixed initial
condition. The Lyapunov regime gets shorter with decreasing
ε̃, and for small enough perturbation it vanishes. This behavior
resembles the one observed for the classical model in Fig. 2.

B. Other randomly kicked integrable models

In Fig. 6 we present results for the case of γ = 4/3 and
γ = 3/2 that correspond to the Bohr-Sommerfeld approx-
imation of an integrable part with power potential q4 and
q6 respectively; see Eq. (8) (the perturbation part is taken
with μ = 0, as N is roughly fixed during the Lyapunov
regime). Similar to the previous examples, the figure shows
that the quantum Lyapunov exponent follows the classical
one, λ̃Q ∼ ε̃1/3n2(γ−2)/3

0 . The exponential growth starts after
∼1 Lyapunov time until it saturates at later time. The figure
also illustrates how the Lyapunov regime vanishes at suffi-
ciently weak perturbation according to Eq. (46). The relevant

10-1 100 101
10-2

10-1

100

(a)100 104
0

2

4

6

5 10 15 20
100

102

104

106
(b)

FIG. 5. (a) The (quenched) growth rate of the OTOC for a fixed relative perturbation strength ε̃1/2/n0 as a function of time rescaled by the
semiclassical Lyapunov exponent (averaged over 86 noise realizations). For larger initial energy level n0 the Lyapunov regime is longer, and
below a certain n0 the Lyapunov regime disappears. The inset shows how λ̃QtE , with tE being the prescrambling time (stars in the main figure),
increases with the logarithm scale of n0, indicating a linear trend. (b) The growth of the OTOC (one noise realization) for different relative
perturbation strength and fixed initial state n0 = 8191 (smaller perturbation corresponds to lower saturation levels).
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FIG. 6. The (quenched) growth rate of the OTOC under the evolution of the Hamiltonian in Eq. (50) with γ = 4/3 and γ = 3/2
in panels (a) and (b), respectively. The curves are averaged over 17 realizations of the random drive. The different curves corresponds
to fixed initial condition n0 = 29 − 1 and varying perturbation ε̃. For each curve the time is rescaled with the Lyapunov exponent

λ̃Q(ε̃) = 2ε̃1/3[γ (γ − 1)nγ−2
0 ]

2/3
. The gray dashed line is exp(t − 1) shows clearly the validity of the theoretical prediction of λ̃Q. The

values of ε̃ for the different curves are (10−1, 10−2, 10−3, 10−4, 10−5) × nγ

0 , where larger ε̃ corresponds to longer (rescaled) saturation
times.

quantity �ωn0 = γ (γ − 1)nγ−2
0 is fixed by the initial condi-

tion, whereas the Lyapunov time increases with decreasing ε̃.
As the ratio �ωn0/λ̃Q increases the exponential growth satu-
rates earlier. Once this ratio is ∼O(1) we do not observe an
exponential growth. The ballistic regime suffices to scramble
over the torus, as explained above.

IX. THE QUANTUM BOUND ON CHAOS

In the current paper we have focused on a microcanon-
ical version of the OTOC, namely, the expectation value
of 〈n0|(C�)2|n0〉. Recently, it was shown that the quantum
Lyapunov exponent (defined by the growth rate of the OTOC)
is bounded in thermal systems as β h̄λT � 2π [5]. We shall
argue that, at least in our model, the quantum limitation
to chaos is imposed by blocking one by one the Lyapunov
regimes of the degrees of freedom that would yield the largest
Lyapunov divergencies.

Let us start by performing a canonical averaging:

λT = 1

t
ln Tr

{
[A(t ), B0]2 e−βω0 h̄ H̃int (N )

}
/Z, (55)

nT(βω0h̄) = Tr
{
N e−βω0 h̄ H̃int (N )

}
/Z, (56)

where we put back the energy and time scales, h̄ω0 and ω−1
0 ,

respectively. The long-time limit in the annealed averaging
of Eq. (55) has to be taken with care, or alternatively, one
can make a “quenched” calculation by taking the expectation
of the logarithm of the squared commutator. The canonical
averaging in Eq. (56) imposes a relation β h̄ω0 ≡ k(nT), which
is a decreasing function of nT. Hence, if we evaluate the
averaging in Eq. (55) with nT we obtain

β h̄λT = k(nT)λ̃Q(nT, ε̃) ≡ g(nT, ε̃). (57)

The fact that there should be at all a Lyapunov regime
at a given finite value of n0 already implies that the adi-
mensional quantity β h̄λT scales as a finite number, and the
system is a “rather good scrambler” between Lyapunov and

prescrambling times. We now derive a general semiclassical
expression for the adimensional function g(nT, ε̃) and show
that it grows, for a given ε̃, as nT decreases: the quantization
of nT will provide a bound. The system is then a relatively
good scrambler, in the sense that β h̄λT reaches, at low T ,
a finite (albeit small) ε̃-dependent value. Note that although
ε̃ depends on h̄ and ω0, we can change nT independently by
varying the temperature.

For a general Hamiltonian in Eq. (10), the scalings for the
adimensional Lyapunov and the assumption of weak perturba-
tion are given, respectively, according to Eq. (15) and Eq. (22),
replacing I0 → n0. The adimensional relation in Eq. (57) then
reads

β h̄λT = λ̃(nT, ε̃)

k−1(nT)
=

[
ε̃q̄2(nT)

H̃ ′′
int (nT)n3

T

]1/3[
nTH̃ ′′

int (nT)

k−1(nT)

]
. (58)

Now, the first brackets cannot be too large according to
Eq. (22), and, if we do not want to violate the bound [5],
then the second brackets must be a decreasing function of nT.
Hence, the most chaotic system corresponds for nT = O(1),
at which the Lyapunov regime also vanishes. We can verify
this explicitly for the BS of H̃int, for which we find β h̄λT =
ε̃1/3k(nT)n(γ−2)/3

T with 0 < γ � 2. We know, however, that
when n0 becomes of O(1), the Lyapunov regime shrinks to
zero.

In a many-body system, the mechanism for the quantum
bound may be hence understood as follows: consider a system
consisting of M copies of our integrable model, having values
of ω0 = ω

(1)
0 > · · · > ω

(M )
0 ∼ 0, with ω

(i)
0 spanning an interval

that goes down to zero. The system is at temperature T , so
that the corresponding average quantum numbers are n(1)

T <

· · · < n(M )
T . The coupling introduces perturbations with ε̃ (i).

Importantly, the global Lyapunov exponent is dominated by
the largest of individual ones.

Consider then choosing the adimensional ε̃ (i) = ε̃ (1), the
same ∀i. At each temperature some subsystems will have
n(i)

T < 1, and will thus not contribute with a Lyapunov regime.
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Hence, the global Lyapunov exponent corresponds to the one
of the systems n∗

T ∼ 1 that is just about to lose its Lyapunov
regime by quantum effects, which one depends on the value
of T . This in turn means that, as T → 0, the combination
β h̄λT remains a number of O(1), albeit small (because ε̃ is
small).

X. CONCLUSION AND OUTLOOK

In the current paper we have focused on the case of a one
degree of freedom integrable model, which is weakly driven
by an external white noise. For the classical counterpart [28],
we know that the mechanism of the exponential growth “over
the torus” and saturation is in fact generic and is also relevant
in higher dimensions. The same is expected for the quantum
problem and the growth of the OTOC. The formalism of the
quantum tangent space lays the groundwork to study such
generalization.

Our main motivation is to understand the properties of
an isolated quasi-integrable models by mimicking the many-
body integrability breaking coupling by some external noise.
However, the model we study concerns only classical noise
acting on a quantum system, which might not be suitable
to capture all the effects of quantum couplings. One, rather
primitive, way to account for noise with quantum origins
is to consider correlated instead of white noise. This can
be addressed theoretically, as was done for the classical
problem [28], or numerically—by reducing the kicking rate
with respect to the unperturbed evolution and the Lyapunov
time. A more serious way to take into account the quantum
origins of noise is to start with a one-dimensional model
which is coupled to ensemble of linear oscillators and em-
ploy the Feynman-Vernon, Caldeira Leggett method, e.g.,
as in Ref. [46]. Within this formalizm, the assumption of
Markovianity shall lead to a Lindblad-like operator, which
accounts for the coupling to the bath [47]. We expect this
term to enter within the tangent space formalizm, however,
we note that such a new term should not modify the results,
as it can be derived from a classical noise on a quantum
system [48].

Our results highlight the meaning of the Ehrenfest time as
the time at which the wave character of a quantum system
plays an important role. We have found that for the case
of very weak perturbations and that of very small quantum
numbers, the mechanism for exponential growth is turned
off by quantum effects that originate in the discreteness
of the spectrum, ultimately the uncertainty principle. This
phenomenon is absent in the classical case, where two ini-
tial conditions can be arbitrarily close to each other. Our
results show how the energy (or any other quasiconstant of
motion) does not diffuse significantly during the Lyapunov
regime (Fig. 4). We have not explicitly studied the scrambling
of the cos � operator, i.e., an analogous quantum picture
for the solid curves in Fig. 2. One interesting future direc-
tion is thus to see how a phase-space wave packet spreads
throughout the torus, when described in the coherent-state
representation.

The formalism we derived—the quantum tangent space,
e.g., Eq. (4)—might be useful to address operator growth
in other setups. An interesting generalization might be to

consider a quantum chain of bosons, where the tangent space
is written in terms of the ladder operators a(α), replacing e−i�,
and occupation numbers N (α) = (a(α) )†a(α). For such systems,
apart of the exponential growth rate, one can also consider the
butterfly velocity, i.e., the rate at which [N (α), N (β )

0 ]2 depends
on time as a function of sites α and β.

Finally, it will be interesting to test the implications of our
model against isolated quasi-integrable systems. In particular
the scaling of the Lyapunov exponent with the effective per-
turbation strength, and its comparison to the thermalization
time of the system. The latter has been recently measured
in a cold-atom system with a tunbable integrability breaking
interactions [14].
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APPENDIX A: DYNAMICS IN THE SPACE OF POISSON
BRACKETS

Below we derive the equations which govern the dynamics
in the space of Poisson brackets. This dynamics is equivalent
to the one of the tangent space. We treat the case of canonical
and noncanonical variables

1. Canonical variables

In relation to the problem studied in the paper, we consider
action-angle variables (I,�). The derivations holds for any
canonical variables, e.g., coordinates and momentum (q, p),
and for many degrees of freedom.

Since the Poisson brackets act as derivatives,

∂

∂I
= −{·,�}, ∂

∂�
= {·, I}, (A1)

they also have a corresponding chain rule: for a function
F (I,�)

{F,�0} = −∂F

∂I0
= − ∂I

∂I0

∂F

∂I
− ∂�

∂I0

∂F

∂�

= −{I,�0}{F,�} + {�,�0}{F, I}, (A2)

{F, I0} = ∂F

∂�0
= ∂I

∂�0

∂F

∂I
+ ∂�

∂�0

∂F

∂�

= −{I, I0}{F,�} + {�, I0}{F, I} (A3)

where the subscript 0 refers to values at initial time. In
the last equality we use the fact that the Poisson brackets
are canonically invariant: taking them with respect to the
canonical variables (�0, I0) or (�, I ) is the same.
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From the above relations we find

d

dt

⎛
⎜⎜⎝

{I,�0}
{�,�0}
{I, I0}
{�, I0}

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

{{I, H},�0}
{{�, H},�0}
{{I, H}, I0}
{{�, H}, I0}

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

−{{I, H},�} {{I, H}, I} 0 0
−{{�, H},�} {{�, H}, I} 0 0

0 0 −{{I, H},�} {{I, H}, I}
0 0 −{{�, H},�} {{�, H}, I}

⎞
⎟⎟⎠
⎛
⎜⎜⎝

{I,�0}
{�,�0}
{I, I0}
{�, I0}

⎞
⎟⎟⎠. (A4)

Since the upper and lower blocks are identical, and since the
initial condition is

({I0,�0}, {�0,�0}, {I0, I0}, {�0, I0}) = (−1, 0, 0, 1),

it is sufficient to consider only the first two entries

d

dt

( {I,�0}
{�,�0}

)
=

( {{H, I},�} −{{H, I}, I}
{{H,�},�} −{{H,�}, I}

)( {I,�0}
{�,�0}

)
.

(A5)

2. Noncanonical variables

We now consider the case when the pair of variables are not
canonically conjugate. Instead of working in the action-angle
space (I,�), we change coordinates to (I, g(�)). Then, the
Poisson brackets are related to the derivatives according to

−{·,�} = ∂

∂I
= − 1

g′ {·, g}, (A6)

∂

∂g
= 1

g′ {·, I}, (A7)

where g′ ≡ ∂g(�)/∂�. The chain rule relations are then

{F, g0} = 1

g′ (−{I, g0}{F, g} + {g, g0}{F, I}), (A8)

{F, I0} = 1

g′ (−{I, I0}{F, g} + {g, I0}{F, I}). (A9)

In analogy to Eq. (A5), we have now

d

dt

({I, g0}
{g, g0}

)
= 1

g′

({{H, I}, g} −{{H, I}, I}
{{H, g}, g} −{{H, g}, I}

)({I, g0}
{g, g0}

)
.

(A10)
We note that

{{H, I}, g} = −{{g, H}, I} − {{I, g}, H} = {{H, g}, I} + ġ′,
(A11)

that is, the matrix includes full time derivatives of g′. The ma-
trix appearing in Eq. (A10) cannot imply symplectic dynam-
ics, as the transformation (I,�) → (I, g) is not a canonical
one. We can get a symplectic dynamics by considering the
vector( {I, g0}

{g, g0}/g′

)
, which satisfies the relation

( {I, g0}
{g, g0}/g′

)

= g′
0

( {I,�0}
{�,�0}

)
.

The time derivative of this new vector is identical to the one
in Eq. (A5) and can be written as

d

dt

( {I, g0}
{g, g0}/g′

)
= 1

g′

( {{H, I}, g} −{{H, I}, I}g′

{{H, g}, g}/g′ −{{H, I}, g}
)

×
( {I, g0}

{g, g0}/g′

)
, (A12)

where we use the relation in Eq. (A11).

APPENDIX B: CHAIN RULE FOR COMMUTATORS

In the current Appendix we consider a general statement
for a chain rule for commutators and its implication on the
operators evaluated in the eigenbasis of N

1. General relation

We prove the following general statement: for an analytic
function (at some domain) g, and operators A and B we have

[A, g(B)] = lim
s→0

g(B + s[A, B]) − g(B)

s
. (B1)

Proof: For an integer power g(x) = xk we have the
known formula (readily proven by induction) [A, Bk] =∑k

r=1 Br−1[A, B]Bk−r , which is equivalent to the expression
in Eq. (B1):

k∑
r=1

Br−1[A, B]Bk−r = lim
s→0

(B + s[A, B])k − Bk

s
. (B2)

The general result now follows: since g is analytic, then we
have g(B) = ∑

ak (B − x0)k , and

[A, g(B)] =
∑

ak[A, (B − x0)k]

=
∑

ak lim
s→0

(B + s[A, B] − x0)k − (B − x0)k

s

= lim
s→0

∑
ak (B + s[A, B] − x0)k − ∑

ak (B − x0)k

s

= lim
s→0

g(B + s[A, B]) − g(B)

s
.

Equation (B1) induces a linear relation between [A, g(B)] and
[A, B].
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2. Algebraic relations in the eigenbasis of N

The basic relations we have are eim�|n〉 = |n + m〉 and
[N, eim�] = meim�, that is, in the eigenbasis of N we can write
(ei�)n,n′ = δn,n′+1 and Nn,n′ = nδn,n′ . We use the chain rule for
commutators above to calculate commutation with Nγ . Below
we prove the relations

([·, Nγ ])nn′ = nγ − n′γ

n − n′ [·, N]nn′ , (B3)

([ei�, Nγ ])nn′ = ((n − 1)γ − nγ )δn,n′+1. (B4)

Proof: Since we know that in the action space (N )nn′ = nδnn′

we can employ first-order perturbation theory to write (N +
s[·, N]) = U −1DU , where

Dnn = n + s[·, N]nn, Unn′ = 1 + s
[·, N]nn′

n − n′ .

Note that the last term does not diverge as [·, N]nn = 0 since
N is diagonal. Therefore, to leading order in s we have

(N + s[·, N])nn′ = nδnn′ + s

(
n

[·, N]nn′

n − n′ − n′ [·, N]nn′

n − n′

)
,

(B5)
and subsequently

(N + s[·, N])γnn′ = nγ δnn′ + s

(
nγ [·, N]nn′

n − n′ − n′γ [·, N]nn′

n − n′

)
,

(B6)
which gives Eq. (B3)

([·, Nγ ])nn′ = nγ − n′γ

n − n′ [·, N]nn′ . (B7)

Finally, the representation of ei� in the eigenbasis of N gives
the relation in Eq. (B4):

([ei�, Nγ ])nn′ = [(n − 1)γ − nγ ]δn,n′+1. (B8)

APPENDIX C: QUANTIZATION OF THE POWER
POTENTIAL

1. Quantization of the integrable part

We look at the general classical Hamiltonian

Hcl,int = p2

2m
+ αqν . (C1)

The action variable of this Hamiltonian can be calculated
explicitly [32]:

I (Hcl,int ) = s(ν)α−1/ν
√

mH
2+ν
2ν

cl,int, (C2)

where s(ν) = √
8π

�(1/ν+1)
�(1/ν+3/2) with the � Euler function. This

gives

Hcl,int(I ) = sγ (ν)α1−γ /2m−γ /2Iγ ≡ K (m, α, ν)Iγ , (C3)

with γ ≡ 2ν
2+ν

. Quantization of the classical Hamiltonian
can be obtained by a rescaling procedure: we substi-
tute q → (h̄/b)q, p → bp, and we require that Hcl,int =
f (α, ν, m, h̄)(p2 + qν ). One finds the rescaling parameter

b = (mαh̄ν )
1

2+ν = (mα)
2−γ

4 h̄
γ

2 , (C4)

and accordingly we can write f (α, ν, m, h̄) ≡ h̄ω0H̃ (N ) with

ω0 ≡ α1− γ

2 m− γ

2 h̄γ−1, (C5)

having dimensions of time−1. Therefore, a quantization of the
integrable Hamiltonian is simply

H = h̄ω0H̃ (N ). (C6)

In the semiclassical limit, according to the Bohr-
Sommerfeld quantization we shall substitute I = h̄N in
Eq. (C3), which gives H̃ (N ) = Nγ . Finally, let us note that
since 0 < ν < ∞ we have that 0 < γ < 2. For Harmonic
oscillator we have ν = 2, γ = 1, and for the infinite potential
well ν → ∞, γ = 2.

2. Quantization of the perturbation part

For the stochastic perturbation of the Hamiltonian we
assume the classical form ε1/2qη(t ), where η(t ) has units
of time−1. Therefore, the dimensions of ε1/2 are energy ×
time1/2 × length−1. Inserting the rescaling parameter b for the
coordinate variable, we have

Hint + ε1/2qη(t ) = ω0 h̄

[
H̃int(N ) + ε1/2

m
2−3γ

4 α
3
4 (2−γ )h̄

3γ

2 −1
q̃η(t )

]
.

(C7)

Finally, we rescale time t → ω−1
0 t , such that η(t ) → ω

1/2
0 η(t ),

to find

Hint + ε1/2qη(t )

= ω0h̄

[
H̃0(N ) +

(
ε

m1−γ α2−γ h̄2γ−1

)1/2

q̃η(t )

]
, (C8)

where q̃ = q̃(N, ei�) is a adimensional operator. Let us check
the dimensions of the factor that normalizes ε: by writing the
dimension of m as energy × time2 × length−2 and recalling
that the dimension of α is energy × length−ν , we find that the
factor scales as it should be

(energy × time2 × length−2)1−γ (energy × length
2γ

γ−2 )2−γ

× (energy × time)2γ−1 = energy2 × time

length2 .

In the Bohr-Sommerfeld quantization we can find how the
perturbation part q̃(N, ei�) depends on N . From the derivation
of the explicit action variable, given in Eq. (C3), we know that

q ∝ (Hcl,int/α)1/ν ∝ (αm)
γ−2

4 I
2−γ

2 ≡ v(m, α, ν)Iμ, (C9)

with μ = 2
2+ν

= 2−γ

2 . Therefore, in the Bohr-Sommerfeld
quantization, I = h̄N , we have

q̃(N, ei�) ∝ Nμ. (C10)

APPENDIX D: FOKKER-PLANCK EQUATION
FOR TIME AVERAGING

This Appendix contains some detailed calculations which
were used in the derivation of Eq. (45). In order to avoid
confusion, we use the following summation law: all indices
with enumerated subscript (n1, n2, n3 . . . , except of n0 which
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is defined in the text) are summed over, whereas all the others
(n, n′, m, etc.) are free.

1. Fokker-Planck equation

The derivation of a Fokker-Planck equation from a
Langevin equation is a standard procedure. We find in the
Stratonovitch convention

∂P

∂t
=

[
−Ln1n2n3n4C

N
n4n3

∂

∂C�
n1n2

− iJn1n2n3n4

∂

∂C�
n1n2

C�
n4n3

+ ε̃

2
Fm1m2m3m4 (t )Fn1n2n3n4 (t )C�

n4n3
C�

m4m3

∂2

∂CN
n1n2

∂CN
m1m2

]
P.

(D1)

Since the equation is homogeneous in Cnn′ , we can multiply it
by Cnn′Cmm′ and take average over the noise to find a closed
set of equations:

d

dt

〈
CN

nn′CN
mm′

〉 = ε̃Fnn′n3n4 (t )Fmm′m3m4 (t )
〈
C�

n4n3
C�

m4m3

〉
, (D2)

d

dt

〈
C�

nn′C�
mm′

〉 = Lnn′n3n4

〈
CN

n4n3
C�

mm′
〉 + Lmm′m3m4

〈
C�

nn′CN
m4m3

〉
+ iJnn′n3n4

〈
C�

n4n3
C�

mm′
〉 + iJmm′m3m4

〈
C�

nn′C�
m4m3

〉
,

(D3)

d

dt

〈
CN

nn′C�
mm′

〉 = Lmm′m3m4

〈
CN

nn′CN
m4m3

〉 + iJmm′m3m4

〈
CN

nn′C�
m4m3

〉
.

(D4)

2. Magnus expansion

The growth of vectors and operators in the classical and
quantum tangent spaces are governed by linear relations:
Eq. (13) and Eqs. (40)–(43), respectively. These equations are
of the form ẋ2 = M(t )x2. We might relax the time depen-
dency of M(t ) by employing time-averaging if the resulting
growth rate, i.e., the Lyapunov exponent, is much smaller
than typical rate of M(t ), i.e., the frequency of motion around
the torus in the classical case. Technically, the elimination of

high-frequency terms is made in a systematic way with the
Magnus expansion, of which we need here only the first-order
correction. Quantum mechanically this is also possible, as
we show now. The main conclusion is the following: time-
averaging approximation is valid when λ̃Q 
 ωn0 and results
in neglecting all the oscillating terms of F (t )F (t ) in Eq. (40).

Formally, Eqs. (40)–(43) can be written as Ċ = S(t ) � C,
where C and S are respectively vector and matrix of superop-
erators. A formal solution to this equation is

C(t ) = T
{
e
∫ t

0 S(t ′ )�dt ′}
C(0).

The superoperators oscillate over time through the quantum
unitary evolution of ei�, given by the unperturbed Hamilto-

nian U †ei�U , with U ≡ ei
ω0 h̄H̃int (N )

h̄ ω−1
0 t . In principle, whenever

the term eim� appears it gives rise to

eim�
nn′ = ei(En−En−m )tδn,n′+m = ei

∑m−1
r=0 ωn−rtδn,n′+m

when evaluated in the unperturbed eigenbasis of N .
For simplicity, let us assume that there is only one fre-

quency ω, S(t ) = S(ωt ). Using the Magnus expansion, the
solution up to some finite time mT , with the period T =
2π/ω, is given by

�m
i=1eSav�,

where the averaged propagator is

eSav� = 1 +
∫ T

0
dt1S(ωt1)�

+ 1

2

∫ T

0
dt1

∫ t1

0
dt2[S(ωt1)�,S(ωt2)�] + · · · .

(D5)

If we rescale the time in the integral with ω, then the outer
integral runs from 0 to 2π and the nth term gives a factor
of ω−n. Therefore, for ω � λQ we can approximate eSav� ≈
1 + TS(t )�, and the corresponding general solution

C(t ) = eS(t )�C(0),

where the overline indicates taking only the nonoscillating
terms of the operation.
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