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A quantum Otto engine using two-interacting spins as its working medium is analyzed within framework of
stochastic thermodynamics. The time-dependent power fluctuations and average power are explicitly derived
for a complete cycle of engine operation. We find that the efficiency and power fluctuations are affected
significantly by interparticle interactions, but both of them become interaction-independent under maximal
power via optimizing the external control parameter. The behavior of the efficiency at maximum power is further
explained by analyzing the optimal protocol of the engine.
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I. INTRODUCTION

A heat engine working between a hot and a cold bath with
constant inverse temperatures of βh and βc(> βh), bounded
by the Carnot efficiency ηC = 1 − βh/βc due to the second
law of thermodynamics, is an energy converter composed of
different consecutive nonequilibrium processes, allowing us
to understand the thermodynamics of quantum systems. As a
cyclic engine in practice should take finite time to implement
the processes for completing a cycle, its working system
should always stay in nonequilibrium states during these ther-
modynamic processes. Nonequilibrium thermodynamics and
statistics in quantum systems, together with the experimental
realization of open quantum systems such as trapped particles
[1–5], quantum dots [6], and molecules [7,8], have ignited
much effort to study performance of quantum heat engines un-
der interparticle interactions [9,10], quantum effects [11–18],
nonthermal baths [19–23], and fluctuations [21,24]. Although
these effects may cause novel performance of quantum heat
engines beyond their classical counterparts [12,21,23,25],
there has been evidence that quantum and classical heat
engines share the same universal behaviors in certain regimes.
For instance, in the linear response regime, heat engines rang-
ing from microscale to macroscale have the universality of ef-
ficiency at maximum power: η∗ = ηC + η2

C/8 + O(η3
C ) [9,25–

35], which is exactly the same as the second-order expansion
of the so-called Curzon-Ahlborn (CA) efficiency [36] ηCA =
1 − √

βh/βc = 1 − √
1 − ηC . The investigation on possible

bounds of the efficiency at maximum power has recently seen
increased interest triggered by the low-dissipation Carnot-like
model [37], showing that the efficiency for engines under
maximal power must be situated between the upper and lower
limits [34,37].

Different theoretical frameworks of thermody-
namics were used to investigate the performance of
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the models of (quantum) heat engines, such as finite-
time (quantum) thermodynamics [26,38], irreversible
thermodynamics [25,26,35,39,40], and stochastic
thermodynamics [25,41]. The relationship between finite-time
and irreversible thermodynamics was examined by studying
the finite-power performance of heat engines with their
working substance ranging from classical to quantum
systems [26,35]. In most studies of quantum heat engines,
the time evolution of the working system was examined
to obtain the finite-time performance of quantum heat
engines[13,14,26,30,38] within the framework of quantum
thermodynamics. However, the dynamics for a quantum
system weakly coupled to a heat reservoir could be stochastic
and classical, but the energy levels of the systems are
quantized and thus some quantum effects are maintained
in these systems [42,43]. As far as we know, there has
been no comprehensive discussion of cyclic quantum heat
engines under interparticle interactions from the stochastic
thermodynamic point of view, in which the fluctuating
macroscopic quantities describing engine performance can be
obtained.

In the present paper, we consider the performance in finite
time of a quantum Otto engine which uses two interacting
spins as its working substance. The time-duration-dependent
expressions of efficiency and power as well as power fluctu-
ations are derived analytically via a stochastic dynamical de-
scription of the system based on weak system-bath coupling.
We find that the efficiency and power fluctuations can be
increasing or decreasing by tuning the strength of interparticle
interactions, but the efficiency at maximum power is shown
to be independent of interparticle interaction and identical
to that obtained [26,30] from quantum heat engines within a
framework of quantum thermodynamics. The physical impli-
cation of the efficiency at maximum power is discussed via
optimization on minimal irreversible entropy production.

The paper is organized as follows. In Sec. II we derive the
expressions of power and efficiency as well as power fluctua-
tions by using the stochastic master equation and cyclic (peri-
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odic) constraint, and we find that the interparticle interactions
can enhance the efficiency at the price of increasing power
fluctuations. We then determine the efficiency at maximum
power in Sec. III. Next, using the strategy of optimization
based on the Euler-Lagrange equation, we show in Sec. IV
that the heat engine under the optimal protocol of minimal
irreversible entropy production falls into the low-dissipation
model, thereby confirming the universality of efficiency at
maximum power in linear responses. Finally, a discussion and
conclusions are given in Sec. V.

II. DYNAMICAL ANALYSIS OF A QUANTUM OTTO
ENGINE BASED ON TWO INTERACTING SPINS

A. Motion equation of the system

The working substance of the heat engine under consider-
ation consists of a system of two interacting spins [44], with
its Hamiltonian being

Ĥ (ω) = Ĥ int + Ĥ ext (ω). (1)

Ĥ int is the internal part of the Hamiltonian, which denotes
the interaction between the two spins, and Ĥ ext (ω) represents
the control Hamiltonian that depends on the external control
field ω. The internal interaction Hamiltonian and the external
Hamiltonian for the system of two coupled spins can be given
by (h̄ ≡ 1)

Ĥ int = 1

2
j
(
σ̂ 1

x ⊗ σ̂ 2
x − σ̂ 1

y ⊗ σ̂ 2
y

) ≡ jB̂2, (2)

Ĥ ext (ω) = 1

2
ω

(
σ̂ 1

z ⊗ Î2 + Î1 ⊗ σ̂ 2
z

) ≡ ωB̂1, (3)

where σ̂ represents the spin-Pauli operator, and j scales the
interaction strength between two spins. We assume j to be
constant for a given external control filed with constant ω.
Diagonalizing the Hamiltonian (1), we find that the set of
energy eigenvalues reads

ε−1 = −�, ε0 = ε0 = 0, ε1 = �, (4)

where � ≡
√

ω2 + j2. The dynamics of the occupations at
these states can be described via a master equation

ṗ = Rp, (5)

where R is the stochastic transition matrix. It is well known
that the systems under an external drive do not necessarily
reach the thermal equilibrium even after an infinite long
time. These may be an integrable system which is in contact
with thermal baths [45], and an ergodic nonintegrable system
[46,47] in which a subsystem is acted upon by the rest of the
system playing the role of a heat bath. As the external drive is
set to be frozen when the system is coupled to a heat reservoir
of constant inverse temperature β with β = 1/T (kB ≡ 1), this
system would be reach the thermal equilibrium after infinite
long time. At thermal equilibrium, the occupation probabil-
ities pn must achieve their equilibrium values πn, which are
obtained by the steady-state solution of Eq. (5) and given by
the Boltzmann distribution:

πn(β ) = e−βεn

Zβ

, (6)

where Zβ = ∑
n e−βεn is the canonical partition function and

the energy εn of state n was given by Eq. (4). The average
population 〈n〉eq for the system at thermal equilibrium can
be calculated as 〈n〉eq = ∑

n nπn(β ) = − tanh(β�/2). We as-
sume that the elements Rnm which denote the transition rate
from state m to n fulfill the detailed balance, Rnme−βεm =
Rmne−βεn , such that the system can asymptotically achieve the
thermal equilibrium in a specific manner, and Rmn are in the
Arrhenius form of

Rmn =
{
γ e−β(Bmn−En ) m �= n
−∑

l �=n Rln n = m, (7)

where γ > 0 is a constant rate for these transitions and
Bmn = Bnm is the energy barrier between states m an n. From
Eq. (7), the stochastic transition matrix for the system under
consideration is obtained as

R =

⎛
⎜⎝

−2k↑ k↓ k↓ 0
k↑ −(k↑ + k↓) 0 k↓
k↑ 0 −(k↑ + k↓) k↓
0 k↑ k↑ −2k↓

⎞
⎟⎠, (8)

where k↑ and k↓ are parameterized by k↑ = γ

2 (1 + 〈n〉eq ) and
k↓ = γ

2 (1 − 〈n〉eq ).

B. Stochastic analysis of a quantum Otto cycle

Now we consider the time evolution of the probability for
the quantum Otto engine per cycle in advance. Throughout
the paper we call the engine a “quantum Otto engine” just
because of the discrete energy spectrum (4), meaning that any
genuine quantum is not considered in our approach. During a
cycle, the interacting spin system as the working substance is
alternatively coupled to two heat baths at inverse temperatures
βc and βh(< βc), with the external control field ω(t ) changing
between ωh and ωc(< ωh). The interaction strength j is set to
be j = jh and j = jc for the hot (ω = ωh) and cold (ω = ωc)
isochoric processes, respectively. The four consecutive steps
in a single cycle are described as follows.

(1) Isochoric heating: The frequency ω is fixed at constant
value ωh and thus no work is produced. For this step the
system is coupled to the heat reservoir at temperature βh in a
period τh. We assume the initial time of the isochoric heating
to be zero. From Eq. (5), the probabilities p(t ) at any instant
of the isochore (0 � t � τh) can be obtained as

p(t ) = exp(Rht )p(0), (9)

where

Rh = γh

2

⎛
⎜⎝

−2〈n〉+h −〈n〉−h −〈n〉−h 0
〈n〉+h −2 0 −〈n〉−h〈n〉+h 0 −2 −〈n〉−h

0 〈n〉+h 〈n〉+h 2〈n〉−h

⎞
⎟⎠, (10)

where 〈n〉eq
h = − tanh(βh�h/2), with �h =

√
ω2

h + j2
h . Here

and hereafter we define 〈n〉+ν ≡ 〈n〉eq
ν + 1, and 〈n〉−ν ≡ 〈n〉eq

ν −
1, with ν = c, h.

(2) Adiabatic expansion: Along this isentropic branch,
where the system is isolated from the hot reservoir, the fre-
quency changes from ωh to ωc in a period τhc. Constancy of
entropy leads to constant probabilities,

p(t ) = p(τh), (11)
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with τh � t � τh + τhc. We should keep in mind that the forms
[Eqs. (9) and (11)] of time evolution in the adiabatic and
isochoric process are applicable only for the system with
long-time scales under consideration. These forms should not
hold in general, especially on short-time scales, since quantum
interference of the system might suppress some transitions.

(3) Isochoric cooling: The system with ω = ωc is coupled
to a cold reservoir at inverse temperature βc in a time of τc,
and its probabilities p(t ) evolve as

p(t ) = exp(Rct )p(τh + τhc), (12)

where

Rc = γc

2

⎛
⎜⎝

−2〈n〉+c −〈n〉−c −〈n〉−c 0
〈n〉+c −2 0 −〈n〉−c
〈n〉+c 0 −2 −〈n〉−c

0 〈n〉+c 〈n〉+c 2〈n〉−c

⎞
⎟⎠, (13)

with 〈n〉eq
c = − tanh(βc�c/2) and �c = √

ω2
c + j2

c .

(4) Adiabatic compression: The frequency ω changes back
(as in the adiabatic expansion) to its initial value, with cor-
responding time duration τch. When the time t satisfies τh +
τhc + τc � t � τh + τhc + τc + τch, we have

p(t ) = p(τh + τhc + τc). (14)

When the time evolution is described by Eqs. (12) and
(14), the system evolution along the adiabatic and isochoric
processes should be within long-time scales. By combining
Eqs. (9), (11), (12), and (14), we find that⎛

⎜⎝
p−1(τcyc)
p0(τcyc)
p0(τcyc)
p1(τcyc)

⎞
⎟⎠ = M

⎛
⎜⎝

p−1(0)
p0(0)
p0(0)
p1(0)

⎞
⎟⎠, (15)

where M = exp(Rcτc) exp(Rhτh) is the transition matrix for
the interacting system proceeding a cycle and τcyc = τh +
τhc + τc + τch denotes the cycle time. Since the cyclic engine
is a periodic steady state, namely, p(0) = p(τcyc), the proba-
bilities p(0) at the initial instant in a cycle is obtained by using
Eq. (15),

⎛
⎜⎜⎜⎝

p−1(0)

p0(0)

p0(0)

p1(0)

⎞
⎟⎟⎟⎠ = G

4

⎛
⎜⎜⎜⎜⎝

[xh
(〈n〉eq

h − 〈n〉eq
c + xc〈n〉−c

) − 〈n〉−h ]2[〈n〉−h − xh
(〈n〉eq

h + xc〈n〉−c − 〈n〉eq
c

)][
xh

(〈n〉eq
h − 〈n〉eq

c + xc〈n〉+c
) − 〈n〉+h

][〈n〉−h − xh
(〈n〉eq

h + xc〈n〉−c − 〈n〉eq
c

)][
xh

(〈n〉eq
h − 〈n〉eq

c + xc〈n〉+c
) − 〈n〉+h

]
[〈n〉+h − xh

(〈n〉eq
h − 〈n〉eq

c + xc〈n〉+c
)]2

⎞
⎟⎟⎟⎟⎠, (16)

where G = (xcxh − 1)−2 with xh ≡ eγhτh and xc ≡ eγcτc . A combination of Eqs. (9) and (16) gives rise to the probabilities at time
t = τh, p(τh), which take the form⎛

⎜⎜⎜⎝
p−1(τh)

p0(τh)

p0(τh)

p1(τh)

⎞
⎟⎟⎟⎠ = G

4

⎛
⎜⎜⎜⎜⎝

[
xc

(〈n〉eq
c − 〈n〉eq

h + xh〈n〉−h
) − 〈n〉−c

]2[〈n〉−c − xc
(〈n〉eq

c + xh〈n〉−h − 〈n〉eq
h

)][
xc

(〈n〉eq
c − 〈n〉eq

h + xh〈n〉+h
) − 〈n〉+c

][〈n〉−c − xc
(〈n〉eq

c + xh〈n〉−h − 〈n〉eq
h

)][
xc

(〈n〉eq
c − 〈n〉eq

h + xh〈n〉+h
) − 〈n〉+c

]
[〈n〉+c − xc

(〈n〉eq
c − 〈n〉eq

h + xh〈n〉+h
)]2

⎞
⎟⎟⎟⎟⎠. (17)

Since for each cycle the work is produced only in the two
adiabatic processes, the stochastic work done by the system is
the total work produced along the two adiabatic microscopic
trajectories, implying that the stochastic work should be

w[|n(τh)〉; |n(τcyc − τch)〉]
= (�h − �c)[n(τh) − n(τcyc − τch)], (18)

where n(t )(= −1, 0, 0, 1) is a quantum number indicating the
state that the system is occupying at time t . The states |n(τh)〉
and |n(τcyc − τch)〉 can be assumed to be independent since the
system would relax to the equilibrium in an isochoric process
if the time duration is long enough. The probability density of
the work w is then given by

p(w) =
∑

n

pn(τh)pn(τcyc − τch)δ{w − w[|n(τh)〉;

× |n(τcyc − τch)〉]}, (19)

where δ(· · · ) is the Dirac’s δ function. Using 〈n(t )〉 =∑
n npn(t ), the average work output per cycle is

obtained as

W ≡ 〈w〉 =
∫

wp(w) dw = (�h − �c)[〈n(τh)〉 − 〈n(0)〉],
(20)

where we have used 〈n(0)〉 = 〈n(τcyc − τch)〉 holding in the
adiabatic compression. In the isochoric process, the heat
absorbed by the system leads to an increase in its internal
energy because no work is done. That is, the heat input into
the system along the hot isochoric process is given by

Qh = 〈Ĥ (τh)〉 − 〈Ĥ (0)〉 = �h[〈n(τh)〉 − 〈n(0)〉]. (21)

The machine efficiency can be given by

η = W
Qh

= 1 − �c

�h
= 1 − ωc

√
1 + j2

c /ω
2
c

ωh

√
1 + j2

h/ω
2
h

, (22)

which simplifies to η0 = 1 − ωc/ωh in the absence of interac-
tion. The efficiency η can be increased or decreased by tuning
the strength of interaction jc and jh, as shown in Fig. 1(a),
where we set jh = 1. For jc/ jh < ωc/ωh, interparticle
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FIG. 1. Efficiency η (normalized to the noninteracting value η0) versus the ratio of jc to jh (with jh = 1 being adopted). For given ωh = 2,
the values of ωc are adopted, blue solid line: ωc = 1.6; and red dashed line 1.4, respectively.

interaction can significantly enhance the efficiency in mag-
nitude as compared to noninteracting value η0. We also note
that the interaction reduces the efficiency for jc/ jh > ωc/ωh

and has no effects on the efficiency when jc/ jh = ωc/ωh.
The relation between the probabilities of initial and fi-

nal states along an isochoric thermalization process can be
identified for the cyclic engine. Combining Eqs. (9) and
(16) [Eqs. (12) and (17)], we find that, for the hot (cold)
isochore with 0 � t � τh (τh + τhc � t � τcyc − τch), the in-
stantaneous average population 〈n(t )〉 satisfies the relation

〈n(t )〉 = 〈n〉eq
ν + [〈n(ti )〉 − 〈n〉eq

ν

]
e−γν t . (23)

This formula, obtained at steady state via use of periodic
boundary conditions (15), has been derived previously using
the Lindblad master equation [11,26]. While describing quan-
tum dynamics of an open system a Lindblad approach must
go beyond the classical treatment as presented in Eq. (5),
both these approaches for the system weakly coupled to a
heat reservoir are expected to give the same evolution of
the average population when neglecting the quantum effects
(like quantum coherence) which cause the system state to be
nondiagonal.

Setting the derivatives of 〈n(t )〉 in Eq. (23) with respect to
t , we find the solution at

〈ṅ(t )〉 = −γ (〈n〉 − 〈n〉eq ), (24)

where γ was defined in Eq. (7). Substituting 〈n(τh)〉 =
〈n(τh + τhc)〉 and 〈n(0)〉 = 〈n(τcyc − τch)〉 required by quan-
tum adiabatic condition into Eq. (23), we obtain

〈n(τh)〉 − 〈n(0)〉 = 
neqF (xc, xh), (25)

where we defined the scaled time allocations F (xc, xh) =
(xc − 1)(xh − 1)/(xhxc − 1) and 
neq = 〈n〉eq

h − 〈n〉eq
c . Then

the total work (20) done by the system after a complete cycle
becomes

W = F (xc, xh)(�h − �c)
neq. (26)
Using 〈n2〉 = ∑

n2 pn and δw2 = 〈w2〉 − 〈w〉2, the work fluc-
tuations can be obtained as

δw2 = (�h − �c)2[〈n2(τh)〉 − 〈n(τh)〉2+〈n2(τc)〉 − 〈n(τc)〉2].

(27)

The work fluctuations are rewritten as a function of time
allocations (τh and τc),

δw2 = (�h − �c)2
{[

2 − (〈n〉eq
h

)2 − (〈n〉eq
c

)2]A
−B − C

(〈n〉eq
h

)2 − D
(〈n〉eq

c

)2 − N 〈n〉eq
h 〈n〉eq

c

}
, (28)

where A ≡ (xcxh)2G/2, B ≡ G(2xcxh − 1), C ≡ G(1 − 2xh

+ x2
c + x2

h − 2x2
c xh)/2, D ≡ G(1 − 2xc + x2

c + x2
h − 2x2

hxc)/2,
and N ≡ G(xc + xh − x2

h − x2
c − 2xcxh + xhx2

c + xcx2
h ), with

G being defined in Eq. (16). Because the stochastic power
output is ẇ[|n(τh)〉; |n(τcyc − τch)〉] = w[|n(τh)〉; |n(τcyc −
τch)〉]/τcyc, with τcyc being the total cycle time, the relative
fluctuations of the power are equivalent to corresponding
those of work. From Eqs. (26) and (28), one derives the
relative power fluctuations as

fẇ =
[
2 − (〈n〉eq

h

)2 − (〈n〉eq
c

)2]A − B − C
(〈n〉eq

h

)2 − D
(〈n〉eq

c
)2 − N 〈n〉eq

h 〈n〉eq
c

F2(xc, xh)(
neq )2
. (29)

We numerically calculate fẇ/ f 0
ẇ [with f 0

ẇ ≡ fẇ( jc = jh =
0)] as a function of jc/ jh along the finite-time cycle dura-
tion. The results are shown in Fig. 1(b). In the numerical

calculation, we choose xh = 2, xc = 1.2, βh = 1, βc = 2, and
set jh = 1. As compared to noninteracting value f 0

ẇ, the
relative power fluctuations can be increased or decreased by
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FIG. 2. Contour plot of the relative power fluctuations fẇ in the
effective time duration (xh, xc ) plane for the quantum Otto engine
model with βh = 0.4, βc = 1, �h = 1, and �c = 0.8.

tuning the strength of jc and jh. The relative power fluctua-
tions fẇ in Fig. 1(b) are shown to decrease monotonically with
increasing jc/ jh, and thus they behave in a similar manner to
the machine efficiency η in Fig. 1(a). Because of the trade-off
between efficiency and power fluctuations, the price for en-
hancing the efficiency by tuning the interaction strength is that
the relative power fluctuations are increased.

To see the effects of finite time duration on the power fluc-
tuations, a three-dimensional diagram (xc, xh, fẇ ) for given
parameters (βh, βc, �c, and �h) is plotted in Fig. 2, where
βh = 0.4, βc = 1, �h = 1, and �c = 0.8. It shows that the
relative fluctuations fẇ are increasing with decreasing inter-
action interval (τh or τc) of the system-bath interaction and
vice versa. Physically, this behavior follows from the fact that
the system increasingly deviates form thermal equilibrium as
τh (or τc) decreases and vice versa. The quasistatic limit of
xc, xh → ∞, leads to the facts that parameters A → 1/2, B,
C, D, and N are vanishing, and that the work fluctuations
become

δw2 = (�h − �c)2

[
1 −

(〈n〉eq
h

)2

2
−

(〈n〉eq
c

)2

2

]
. (30)

Unlike in the quantum engines working with Bose systems
[21] or classical systems [48], where the work fluctuations
may not be bounded from above due to the divergence of
specific heat in the phase transition point, for quantum spin
heat engines the work fluctuations are bounded from above by
(δw2)+ = (�h − �c)2. In the quasistatic limit when xc,h →
∞, these relative fluctuations approach their lower limit,

f −
ẇ = 2 − (〈n〉eq

h

)2 − (〈n〉eq
c

)2

2
(〈n〉eq

h − 〈n〉eq
c

)2 <
(�h − �c)2

(�h − �c)2
(〈n〉eq

h − 〈n〉eq
c

)2 .

(31)
From Eq. (56) in the following Sec. III, we will prove for

the cyclic engine that (�h − �c)(〈n〉eq
h − 〈n〉eq

c ) 
 (1/βh −
1/βc)
S, where 
S is the protocol-independent entropy
change. When the engine efficiency (22) is close to the Carnot
value ηC , βh�h tends to be βc�c. It follows, together with
formula (31), that the relative power fluctuations for the

engine working at any finite temperatures must satisfy the
constraint: √

f −
ẇ < βh

�h


S
. (32)

In contrast to the steady-state heat engines where the trade-
off between power and efficiency is overcome by increasing
power fluctuations [49,50], the quantum Otto engine based on
interacting spin systems can operate in the state of efficiency
η asymptotically closing to ηC at finite power, with small
and even vanishing power fluctuations. This agrees with the
result obtained previously from a cyclic heat engine based on
either a classical simplified system [48] or a (noninteracting)
harmonic system [21].

III. ANALYTIC EXPRESSION OF EFFICIENCY AT
MAXIMUM POWER

Having obtained average heat and work per cycle, one can
maximize the power output to determine the corresponding
efficiency. With consideration of Eq. (26), the power output
can be given by

P = F (τc, τh)�hη
neq, (33)

where we have used F (τh, τc) = F (xc, xh)/τcyc. An exact
analytical analysis on power optimization seems to be difficult
at first sight, as power is a complicated function of the time-
dependent protocols in the hot and cold isochoric branches.
This optimization can, however, be present in two consecutive
steps. First, we fix parameter values ωh and ωc to maximize
the power with respect to the time durations of τh and τc. The
second step is that we further maximize the power by tuning
the remaining degrees of freedom ωc and ωh. From Eq. (33),
we see that maximizing power P with respect to τh and τc is
equivalent to maximizing F with respect to τh and τc.

In the sudden limit [11] where the time required for an
adiabatic process is negligible, the extremal conditions of
∂F/∂τc = 0 and ∂F/∂τh = 0 yield the optimal allocation
between the hot and cold isochoric branches as follows:
γh[cosh(γcτc − 1)] = γc[cosh(γhτh − 1)]. The optimal time
allocations on the isochores simplify to τh = τc, when and
only when γh = γc. In the second step we maximize the power
output by setting ∂P/∂ωc = 0 and ∂P/∂ωh = 0, leading to

βcχc(�h − �c)

χc + 1
= χh − χc

χh + 1
, (34)

βhχh(�h − �c)

χh + 1
= χh − χc

χc + 1
, (35)

where χc = e−�cβc and χh = e−�hβh . Based on Eqs. (34) and
(35), one can easily prove [26] that the efficiency at maximum
power can be well approximated by

η∗ = η2
C

ηC − (1 − ηC ) ln(1 − ηC )
, (36)

which is identical to that obtained from various heat en-
gine models [26,27,29] based on noninteracting systems.
Expanding η∗ up to the third term of ηC results into η∗ =
ηC/2 + η2

C/8 + 7η3
C/96 + O(η4

C ), which agrees well with the
expansion of the CA efficiency ηCA, with ηCA = ηC/2 +
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η2
C/8 + 16η3

C/96 + O(η4
C ). Consequently, in the linear re-

sponse regime where the relative difference of temperatures
is small, both η∗ and ηCA have the same universality of
ηC/2 + η2

C/8.

IV. OPTIMAL PROTOCOL BY MINIMIZING
IRREVERSIBLE ENTROPY PRODUCTION

According to stochastic thermodynamics, the irreversible
entropy production rate [51] of the system and the heat
reservoir can be expressed by

Ṡir
ν =

∑
m,n

Rν
mn pn ln

Rν
mn pn

Rν
nm pm

=
∑
m<n

(
Rν

mn pn − Rν
nm pm

)
ln

Rν
mn pn

Rν
nm pm

, (37)

where ν = h, c is used for the hot and cold isochoric pro-
cesses, respectively. Ṡir

ν must be non-negative, and it becomes
vanishing when and only when the thermal equilibrium is
reached for the system in which the detailed balance is sat-
isfied, Rν

mn pn = Rν
nm pm. The irreversible entropy production

along the hot (cold) isochoric process with the initial time ti
and final time t f is therefore given by


Sir
ν =

∫ t f

ti

Ṡir
ν (t ) dt . (38)

Inserting Eq. (37) into Eq. (38) and considering Eq. (7), we
can obtain the irreversible entropy production as


Sir
ν = −βν

∫ t f

ti

∑
n

ṗn(t )εn dt + 
Sν . (39)

Here we define the entropy change 
Sν ≡ 
S(ti, τν ) =
S(t f ) − S(ti ), where τν = t f − ti is the time duration for the
hot (ν = h) or cold (ν = c) isochoric process, and the von
Neumann entropy S(t ) = −∑

n pn(t ) ln pn(t ). S(t ) is thus a
state variable and

S(t ) = −[(1 − 〈n〉) ln(1 − 〈n〉)

+ (1 + 〈n〉) ln(1 + 〈n〉)] + 2 ln 2 (40)

for the system under consideration. It shows from Eq. (39) that
minimizing the irreversible entropy production is equivalent
to maximizing the heat absorbed by the system along a pro-
cess with duration τν . Since the change in the probabilities of
pn (n = −1, 0, 0, 1) accounts for the heat exchanged, d−Q =∑

n ṗnεn, one finds

βνQν = βν

∫ t f

ti

�(t )〈ṅ(t )〉 dt . (41)

We can determine the optimal protocol minimizing irre-
versible entropy production, using the Euler-Lagrange ap-
proach [30,34], to search for the optimal schedule n(t ) and
ṅ(t ), both of which are functionals of �(t ). From Eqs. (24)
and (41), we can obtain

βνQν =
∫ t f

ti

L(〈n〉, 〈ṅ〉) dt, (42)

where

L = 〈ṅ〉 ln

(
γν − γν〈n〉 − 〈ṅ〉
γν + γν〈n〉 + 〈ṅ〉

)
. (43)

By integrating the Euler-Lagrange equation, we have L −
〈ṅ〉∂L/∂〈ṅ〉 = Kν , with the constant Kν of integration, we
obtain

2γν〈ṅ〉2

(γν − γν〈n〉 − 〈ṅ〉)(γν + γν〈n〉 + 〈ṅ)〉 = Kν . (44)

Its solution for ṅ(t ) can be derived as

〈ṅ〉
γν

= −Kν〈n〉 ∓ √
2γνKν + K2

ν − 2γνKν〈n〉2

2γν + Kν

, (45)

where the plus sign (+) refers to the upward process with
rising quantum level, and the minus sign (−) to the down-
ward process. With consideration of Eqs. (45) and (24), the
explicit expression for instantaneous mean populations can be
obtained as

〈n(t )〉 = 〈n〉eq ±
√

Kν

2γν

[1 − (〈n〉eq )2]. (46)

When Kν = 0, the system achieves the thermal equilibrium
state and 〈n(t )〉 tends to be 〈n〉eq = 〈n(t → ∞)〉, thereby
implying that Kν = 0 represents the quasistatic limit. When
Kν �= 0, the system evolves in finite time and it deviates from
the thermal equilibrium. For the hot (cold) isochoric process
where 〈n〉 < 〈n〉eq (〈n〉 > 〈n〉eq), the constant Kν indicates
how far the thermodynamic process is away from the qua-
sistatic limit.

We can solve Eq. (45) by separating the variables 〈n〉 and t
to obtain

γν (t − ti ) = G[〈n(t )〉;Kν] − G[〈n(ti)〉;Kν], (47)

where

G[〈n〉;Kν] = − ln (1 − 〈n〉) +
√

2γν

Kν

arcsin

(√
2γν

2γν + Kν

〈n〉
)

+ 1

2
ln

[
Kν + 2γν (1 − 〈n〉) +

√
Kν (2γν + Kν − 2γν〈n〉2)

Kν + 2γν (1 + 〈n〉) +
√
Kν (2γν + Kν − 2γν〈n〉2)

]
.

(48)

When we restrict our analysis to a long (but not infinite)
time duration of the system-bath interaction, we can use a

perturbation method by assuming very small Kν . The first-
order term of the Taylor expansion of G[〈n〉;Kν] with respect
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to
√
Kν is obtained as

G[〈n〉;Kν] =
√

2γν

Kν

arcsin 〈n〉. (49)

It is therefore indicated that, for the process of duration τν ,
Eq. (47) can be approximated by γντν = ϕν/

√
Kν , where

ϕν ≡ √
2[arcsin 〈n(t f )〉 − arcsin 〈n(ti )〉], and ϕc = −ϕh due

to 〈n(τh)〉 = 〈n(τh + τhc)〉 and 〈n(0)〉 = 〈n(τcyc − τch)〉.
Assuming that the heat engine works in the linear
response regime where the difference between the
temperatures of the hot and cold reservoirs is small, the
difference of the equilibrium populations, 
neq, must
be very small. With consideration of Eq. (25), we can
obtain the quadratic approximation to the expression
of

√
2[arcsin 〈n(t f )〉 − arcsin 〈n(ti )〉] about 〈n〉eq

c by
making Taylor series expansion in isochoric heating

process, leading to ϕh = 
neqF (xc, xh)/[1 − (〈n〉eq
h )2]

1
2 −

〈n〉eq
h (
neq )2F2(xc, xh)/2[1 − (〈n〉eq

h )2]
3
2 + O[(
neq )3].

Since function F (xc, xh) decreases exponentially to
approach its maximum value 1 as time duration τh

or τc increases, for the long duration of system-bath
interaction, we have the approximation −ϕc = ϕh 


neq/[1 − (〈n〉eq

h )2]
1
2 − (
neq )2〈n〉eq

h /2[1 − (〈n〉eq
h )2]

3
2 . It

follows, using Eq. (47), that for the isochoric process of time
duration τν ,

√
γντν = ϕν√

Kν

. (50)

As emphasized, in deriving formula (50) we also used the
condition that the heat engine runs in the linear response
regime.

Using Eq. (46) and βνQν = ∫ 〈n(t f )〉
〈n(ti )〉 βν� d〈n〉, the entropy

change due to heat exchange can be rewritten as

βνQν = S̃[〈n(t f )〉;Kν] − S̃[〈n(ti)〉;Kν], (51)

where

S̃[〈n〉;Kν] = −2 ln(1 − 〈n〉) + ln

[
Kν + 2γν (1 − 〈n〉) +

√
Kν (2γν + Kν − 2γν〈n〉2)

Kν + 2γν (1 + 〈n〉) +
√
Kν (2γν + Kν − 2γν〈n〉2)

]

+〈n〉 ln

[
γν + Kν − γν〈n〉2 −

√
Kν (2γν + Kν − 2γν〈n〉2)

γν (1 + 〈n〉)2

]
−

√
2Kν

γν

arcsin

(√
2γν

2γν + Kν

〈n〉
)

. (52)

Making the first-order Taylor expansion of S̃[〈n〉;Kν] with
respect to

√
Kν gives rise to S̃[〈n〉;Kν] = −[(1 − 〈n〉) ln(1 −

〈n〉) + (1 + 〈n〉) ln(1 + 〈n〉)] − √
2Kν/γν arcsin(〈n〉), which,

together with Eq. (40), leads to


S̃ν = 
Sν − 
Sir
ν , (53)

where


Sir
ν =

√
2Kν

γν

[arcsin 〈n(t f )〉 − arcsin 〈n(ti )〉] (54)

represents the irreversible entropy production. While 
Sν is a
state variable depending on only the initial and final states of
the process, 
Sir

ν is a protocol-dependent quantity indicating
the deviation from the quasistatic limit. From Eqs. (37) and
(53), we find that, under the optimized protocol above, the
irreversible entropy production in stochastic thermodynamics
can be approximated by


Sir
ν =

∫ t f

ti

∑
m,n

Rν
mn pn ln

Rν
mn pn

Rν
nm pm

dt = ϕ2

γντν

, (55)

where we have used ϕ = ϕh = −ϕc, thereby confirming the
low dissipation assumption [30,34,37]. For the quantum Otto
engine, the two individual isochoric processes are connected
by the two adiabatic, isentropic processes, meaning that 
S ≡

Sh = −
Sc. Therefore, the heats transferred along the hot
and cold isothermal contact of the engine cycle are given by

Qh = 
S

βh
− ϕ2

γhβhτh
, Qc = −
S

βc
− ϕ2

γcβcτc
. (56)

Maximizing power P = (Qh + Qc)/(τc + τh) with respect to
τh and τc, we obtain the efficiency at maximum power as

η∗ = ηC

2 − rηC
, (57)

where we use r = (1 + √
γhβh/γcβc)−1. This optimal effi-

ciency η∗ is thus situated between ηC/2 � η∗ � ηC/(2 −
ηC ) [37]. The upper and lower bounds are achieved in the
asymmetric limits γh/γc → 0 and γh/γc → ∞, respectively.
The CA efficiency ηCA = 1 − √

βh/βc is recovered in the
symmetric case of γh = γc. When γhβh = γcβc leads to r =
1/2, we can obtain η∗ = ηC/2 + η2

C/8 + O(η3
C ), recovering

the universal behavior in the linear response regime.

V. DISCUSSION AND CONCLUSIONS

Consider an engine with working substance consists of N
spin−1/2 particles with cluster interactions. If such a system
falls into the one-dimensional spin-1/2 XX model [52], its
Hamiltonian can be given by

Ĥ = �

N∑
i=1

(
σ̂ x

i σ̂ x
i+1 + σ̂

y
i σ̂

y
i+1

)

+ J
N∑

i=1

(
σ̂ x

i σ̂ z
i+1σ̂

x
i+2 + σ̂

y
i σ̂ z

i+1σ̂
y
i+2

)
, (58)

where � > 0 denotes the antiferromagnetic exchange cou-
pling which depends on the external control parameter ω

and j interaction between two spins, and J > 0 presents the
strength of the cluster interaction. As a specific example, for
a system of three spins (i.e., N = 3) the eigenvalues are in
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FIG. 3. Efficiency η (normalized to the efficiency η0
II without

three-spin interaction) versus the ratio of Jc to Jh for Jh = 1, βh = 1,
βc = 2, and �h = 2. The values of �c are adopted: blue solid line:
�c = 1.6, and red dashed line 1.4, respectively.

the form of ε1 = ε2 = 0, ε3 = −ε4 = J
4 , ε5 = −ε6 = 1

8 (J −

), ε7 = −ε8 = 1

8 (J + 
), with 
 ≡ √
32�2 + J2. The oc-

cupation probabilities for this system at thermal equilib-
rium are then πn = 1

Zβ
e−βεn , with the partition function Zβ =

4 cosh ( βJ
8 )[ cosh ( βJ

8 ) + cosh ( β


8 )]. In the hot (cold) iso-
choric process, � = �h and J = Jh (� = �c and J = Jc).

Since an analytical analysis of the finite-power engine
with three interacting spins (N = 3) becomes a formidable
task, we assume that the system with constant � and J
equilibrates with the hot and the cold reservoir, respectively.
Under this assumption, the heat injection and heat
rejection along the hot and the cold isochoric process is
Qh = ∑

n εn(�h, Jh)[πn(βh,�h, Jh) − πn(βc,�c, Jc)] and
Qc = ∑

n εn(�c, Jc)[πn(βh,�h, Jh) − πn(βc,�c, Jc)], from
which we can numerically determine the machine efficiency,
η = 1 − Qc/Qh. It can simplify to η = η0

II ≡ 1 − �c/�h

if only two-spin interaction is considered (Jh = Jc = 0).
The effects of three-spin interaction on the efficiency are
shown in Fig. 3, where βh = 1, βc = 2, Jh = 1, and �h = 2.
Figure 3 shows that, only except for 0.51 � Jc/Jh � 0.80
(0.51 � Jc/Jh � 0.70) at �c = 1.6(�c = 1.4), the
normalized efficiency η/η0

II is smaller than 1. In contrast
to the interacting system with particle number N = 2, the
interaction among a many-body system (N � 3) would
bring down the efficiency. Physically, for large-scale
systems interactions generically result in quantum chaos,
and uncontrolled increase of entropy is inevitable, thereby
leading to a decrease in the efficiency. For the heat engine
operating with many-body interacting system (N � 3), the
Floquet techniques in suppressing quantum chaos and entropy
growth [46,47] may be used in order for the engine to run
efficiently.

When the time allocations to the four processes of the
cycle are given, the maximal power output can be obtained
by differentiating work with respect to the frequencies �h

and �c. The efficiency at maximum power for three-particle
system, which is not plotted in this article, is numerically
shown to be weakly dependent on the interaction strength J .

While for the two-particle system the expressions of P and
η in the interacting case ( j �= 0) take the same forms as the
corresponding those of noninteracting spins ( j = 0) as long
as replacing � with ω, for the many-body system (N � 3)
this is not the case, and thus the efficiency at maximum power
depends on the cluster interaction strength J [though it is
still situated between the lower bound ηC/2 and upper bound
ηC/(2 − ηC )].

As a final remark, our approach can be directly used to
analyze how entanglement of the interacting system behaves
in the engine under finite power. We use concurrence di-
rectly as the measurement of entanglement, since the con-
currence is a monotone of the entanglement of formation.
The entanglement of the interacting spin system at the final
states of hot and cold isochoric processes is represented by
C1[≡ C(τh)] and C2[≡ C(τcyc − τch)], respectively. It was
shown in Refs. [53,54] that the concurrence can be determined
according to

C1 =
{ sinh[β(τh )�h]−1

cosh[β(τh )�h]+1 β(τh)�h > arcsinh(1)

0 β(τh)�h � arcsinh(1)
(59)

and

C2 =
{ sinh[β(τcyc−τch )�c]−1

cosh[β(τcyc−τch )�c]+1 β(τcyc − τch)�c > arcsinh(1)

0 β(τcyc − τch)�c � arcsinh(1)
.

(60)

The power output (33) and efficiency (22) can be rewritten
in terms of the entanglement, P = √

2(
√

1 + Cc −√
1 + Ch)[ 1

βc
ln (−1 +

√
2

1+Cc
) − 1

βh
ln (−1 +

√
2

1+Ch
)]

F (τc, τh). Maximizing power with respect to Ch and
Cc can therefore reproduce the optimal efficiency
(36) at the interaction-independent value of Ch/Cc =
{1+cosh[1− ln(1−ηC )

ηC
]}{−1+sinh[1− (1−ηC ) ln(1−ηC )

ηC
]}

{−1+sinh[1− ln(1−ηC )
ηC

]}{1+cosh[1− (1−ηC ) ln(1−ηC )
ηC

]} , where Ch =
C1|β(τh→∞)=βh

, and Cc = C2|β(τc→∞)=βc
.

We have examined the finite-power thermodynamics of
a quantum Otto engine using two interacting spins as its
working substance. From the stochastic master equation, ex-
plicit expressions were derived analytically for the power and
(relative) power fluctuations as functions of the time durations
and control variable. We found that, for the engine under
finite (but not maximal) power, the interactions can enhance
the machine efficiency via tuning strength of interactions
between particles, but with the sacrifice of increasing power
fluctuations. We showed that the relative power fluctuations
were bounded by the upper limit and the engine can be
close to the Carnot efficiency at finite and even vanishing
relative power fluctuations. The efficiency at maximum power
for the engine was derived analytically, and it has the same
universality as ηCA in a linear response regime. The physical
implication of the efficiency at maximum power was given by
minimizing irreversible entropy production (subject to finite
time cycle duration) based on the Euler-Lagrange approach,
which confirms the universality of efficiency at maximum
power in linear responses.
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