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Nonlocal biased random walks and fractional transport on directed networks
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In this paper, we study nonlocal random walk strategies generated with the fractional Laplacian matrix of
directed networks. We present a general approach to analyzing these strategies by defining the dynamics as a
discrete-time Markovian process with transition probabilities between nodes expressed in terms of powers of
the Laplacian matrix. We analyze the elements of the transition matrices and their respective eigenvalues and
eigenvectors, the mean first passage times and global times to characterize the random walk strategies. We apply
this approach to the study of particular local and nonlocal ergodic random walks on different directed networks;
we explore circulant networks, the biased transport on rings and the dynamics on random networks. We study
the efficiency of a fractional random walker with bias on these structures. Effects of ergodicity loss which occur
when a directed network is not any more strongly connected are also discussed.
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I. INTRODUCTION

The study and understanding of dynamical processes tak-
ing place on networks have a significant impact in science and
engineering with important applications in physics, biology,
social and computer systems, among many others [1,2]. In
particular, the diffusion problem associated to the dynamics of
a random walker that hops visiting the nodes of the network
following different strategies is an important and challenging
field of research due to connections with interdisciplinary
topics like ranking and searching on the web [3–5], aging
and accumulation of damage [6], the understanding of hu-
man mobility in urban settlements [7–11], epidemic spread-
ing [12,13], algorithms for extracting useful information from
data [14], just to mention a few examples. Several types of
random walk strategies on networks have been introduced in
recent decades, some of them only require local information
of each node and in this way, the walker moves from one
node to one of its nearest neighbors [15–17], whereas in other
cases, the total architecture of the network comes into play
and nonlocal strategies can use all this information to define
long-range hops between distant nodes [18,19].

In addition to the nonlocal random walks mentioned
before, we have the fractional diffusion on undirected
networks [20–29], a process associated with a Lévy-like
dynamics where the transition probabilities between nodes
are defined in terms of powers of the Laplacian matrix of the
network [20,27,28]. This mechanism to generate nonlocality
combines the information of all possible paths connecting two
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nodes on the network [21] improving the capacity to visit the
nodes, a result that offers a significant advantage in networks
with large average distances between nodes like lattices and
trees but that also is evident in small-world networks [20].
Beyond the study of nonlocal dynamical processes on
networks; recently, the concept of fractional Laplacian of a
network has been implemented in semi-supervised learning
algorithms for the classification of data structures [30]. Other
potential applications of nonlocal dynamics on networks
require the extension of all this formalism to the case of
directed weighted networks [31].

It is important to notice that in a connected undirected net-
work and in a strongly connected directed graph the fractional
Laplacian matrix (i.e., the matrix function that is generated by
fractional powers of the Laplacian matrix) generates a fully
connected topology corresponding to a network with connec-
tions between all nodes of the network with characteristic
asymptotic power-law decay. An undirected graph is referred
to as “connected” if between any pair of nodes exists a path of
finite length. A directed graph is called “strongly connected”
if for any pair of nodes (i j) there are directed paths i → j
and j → i or, in other words, any node can be reached from
any other node by a finite number of steps (see Ref. [31] for
definitions and outline of properties). Connected undirected
and strongly connected directed graphs fulfill the condition
of aperiodic ergodicity. Conversely aperiodic ergodic graphs
always are either connected undirected networks or strongly
connected directed graphs. The fractional Laplacian contains
the complete information on the topology of the network.
For an outline how long-range interactions of asymptotic
power-law decay in harmonic systems modify their spectral
properties and universal features, we refer to Ref. [32]. The
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spectral dimension of general networks is analyzed in the
seminal paper [33] and applications of this approach in spin
models on graphs is outlined in the article [34], the Laplacian
spectrum of simplicial complexes using the renormalization
group is discussed in Ref. [35]. For a general analysis of the
spectral dimension of (unbiased) Lévy flights in the Rd we
invite the reader to consult Chapter 8 in Ref. [28].

In the present paper, we explore the dynamics of a random
walker with transition probabilities defined in terms of the
elements of the fractional Laplacian matrix in directed net-
works. In the first part, general definitions and properties of
the fractional transport, ergodicity, and emergence of nonlo-
cality on strongly connected directed networks are discussed.
The formalism generalizes different results and techniques
developed in the context of the fractional Laplacian of an
undirected graph [28]. In contrast to the unbiased transport
defined through symmetric weighted matrices [36], in the
directed case the eigenvalues of fractional transition matrices
are complex numbers. We explore different types of directed
structures, especially circulant directed networks such as di-
rected rings, but also random directed networks of the Erdős-
Rényi type. In the case of directed rings, we show analytically
the connection of fractional dynamics with nonlocal random
walks similar to Lévy flights where the property of strong
connectivity generates aperiodic ergodicity in the fractional
walk. We demonstrate that in directed networks which are not
strongly connected the fractional Laplacian has zero matrix
elements, and conversely if the fractional Laplacian matrix
has uniquely nonzero entries, the directed graph is strongly
connected where the resulting walk is aperiodic ergodic.

We also analyze the efficiency of fractional random walk
strategies that emerge in directed networks using mean-first
passage times and global times that characterize the trans-
port. The implementation of these measures allows identi-
fying cases where the combination of biased transport and
nonlocality is an inefficient strategy to explore a network;
this particular result is in contrast with the efficiency on
undirected networks for which the fractional dynamics always
improve the speed of the exploration in comparison with a
local random walker [28]. The general approach introduced
reveals several cases where the combination of nonlocal dis-
placements and the bias generated by the directions of lines
produce a global effect that can either reduce or improve the
efficiency of a random walker to visit all the nodes or reach a
particular target on the network.

II. FRACTIONAL LAPLACIAN OF
DIRECTED NETWORKS

In this section, we introduce a generalization of the frac-
tional Laplacian of undirected networks (see Refs. [20,27,28])
to a general class of directed weighted networks. In terms of
this operator, we define transition probabilities of a Markovian
random walker associated to the biased fractional transport on
networks.

We consider directed weighted networks with N nodes
i = 1, . . . , N . The topology of the network is described by an
adjacency matrix A with elements Ai j = 1 if there is an edge
between the nodes i and j and Ai j = 0 otherwise. In addition
to the network structure, we have a N × N matrix of weights
� with elements �i j � 0. The matrix � can include informa-

tion of the structure of the network or incorporate additional
data describing the flow capacity of each link [6,36,37]. In the
simplest case, � coincides with the adjacency matrix A.

Since the matrix of weights in general is not symmetric, we
define two types of degrees associated to each node. First, we
have the in-degree given by

k(in)
i =

N∑
l=1

�li. (1)

This degree determines the total flow to reach the node i from
all the nodes. In a similar way, we have the out-degree

k(out)
i =

N∑
l=1

�il , (2)

that quantifies the total flow from the node i to all the nodes in
the network. Without loss in the generality of the formalism,
we assume also that �ii = 0 for i = 1, 2, . . . , N . In the fol-
lowing, we consider connected directed networks for which
k(out)

i > 0 for all the nodes.
In terms of the matrix of weights, we define the Laplacian

matrix L with elements i, j, given by

Li j = k(out)
i δi j − �i j, (3)

where δi j denotes the Kronecker’s δ. Equation (3) is a gen-
eralization of the Laplacian matrix for binary undirected
networks [38–40], to include the possibility of weights in
the connections and asymmetry in the flow on some lines,
for these particular connections �i j �= � ji. It is noted that
dynamical processes in directed networks have a greater
variety than in the undirected case. For example, for the
matrix L, the diagonal could be defined in terms of the in-
degree in Eq. (1) producing a different process. Our choice
in Eq. (3) is motivated by diffusive transport and the effect
of nonlocality, similar nonlocal effects have been found in
human mobility in different types of transport described by
directed networks [9–11].

In the context of the fractional diffusion on networks is
introduced the fractional Laplacian matrix Lγ , where γ is a
real number (0 < γ < 1). The resulting operator models the
fractional dynamics on general networks [20,27,28]. Using
Dirac’s notation for the eigenvectors, we have a set of right
eigenvectors {|� j〉}N

j=1 that satisfy the eigenvalue equation
L|� j〉 = μ j |� j〉 for j = 1, . . . , N . With this information,
we define the matrix Q with elements Qi j = 〈i|� j〉 and the
diagonal matrix � = diag(μ1, μ2, . . . , μN ). These matrices
satisfy L Q = Q �, therefore,

L = Q�Q−1, (4)

where Q−1 is the inverse of Q. Using the matrix Q−1, we
define the set of left eigenvectors {〈�̄i|}N

i=1 with components
〈�̄i| j〉 = (Q−1)i j . Therefore,

Lγ = Q�γ Q−1 =
N∑

m=1

μγ
m|�m〉〈�̄m|, (5)

where �γ = diag(μγ

1 , μ
γ

2 , . . . , μ
γ
N ) for 0 < γ � 1. It is suffi-

cient here for our aims to consider uniquely the diagonalizable
cases. For an outline where the Laplacian has Jordan canoni-
cal form we refer to the article [31].
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FIG. 1. Fractional Laplacian of directed networks with N = 10 nodes. Graphs formed with two directed rings and (a) a directed edge from
5 to 6 and (b) a symmetric link connecting these two nodes. For each network we present the Laplacian matrix (local limit with γ = 1) and the
fractional Laplacian Lγ with γ = 0.5, the values of entries i, j are codified in the colorbar. For the fractional Laplacian γ = 0.5, we evaluate
numerically Eq. (5).

In Fig. 1, we show the fractional Laplacian Lγ for directed
networks with N = 10. In this case, we choose � as the
adjacency matrix of the network. These graphs are formed by
two directed rings (the first ring with nodes 1 to 5 and the
second one with nodes 6 to 10) and a directed line connecting
the two rings [see Fig. 1(a)] or a symmetric link between
nodes 5 and 6 [as depicted in Fig. 1(b)]. The network in
Fig. 1(a) is not (strongly) connected, see for example that
there are no paths starting from one of the nodes 6 to 10 ending
in nodes 1 to 5, in these cases the distances between nodes are
infinite. In this directed graph, we observe that the respective
elements of the fractional Laplacian are also null (i.e., the
block (Lγ )rl = 0 for r = 6, . . . , 10 and l = 1, . . . , 5), this is
a consequence of the fact that (Lγ )i j incorporates information
of all the possible paths connecting i with j, then when
distance di j → ∞, (Lγ )i j = 0 for 0 < γ � 1 (see Ref. [28]).
In contrast, the structure in Fig. 1(b) is strongly connected,
hence, there is a path of finite length connecting any pair of
nodes of the network, in this case, we see that all the elements
of (Lγ )i j are nonnull, drawn for γ = 0.5, as a result of the full
connectivity of that network.

Back to the general case with strongly connected networks,
due to the asymmetry of �, the eigenvalues μl can take
complex values. However, as a consequence of

∑N
l=1 Lil = 0,

the definition of the out-degree in Eq. (2) and the conditions
Lii > 0, Li j � 0 for i �= j, the fractional Laplacian Lγ of a
directed weighted network has real entries and fulfills the
following properties for 0 < γ � 1:

(i) For the fractional out-degree, we have

k(γ )
i ≡ (Lγ )ii = −

∑
m �=i

(Lγ )im. (6)

Condition (i) reflects the property that the zero eigenvalue of
the Laplacian matrix is conserved by the fractional Laplacian
(where the corresponding eigenvector has constant compo-
nents).

(ii) The diagonal elements of Lγ are positive real values;
in this way k(γ )

i > 0 for i = 1, 2, . . . , N .
(iii) The nondiagonal elements of Lγ are real values satis-

fying (Lγ )i j � 0 for i �= j. See Refs. [27,28,31] for a detailed
discussion on these properties for undirected and directed
networks, respectively.

Considering the following integral representation of the
fractional Laplacian matrix [27,28],

Lγ = − 1

�(−γ )

∫ ∞

0
t−γ−1 (I − e−Lt ) dt, 0 < γ < 1,

(7)

[−�(−γ ) = �(1−γ )
γ

> 0] shows that the properties (i)–(iii) of
L are conserved in the interval of convergence γ ∈ (0, 1)
of Eq. (7) (see Appendix A for a brief demonstration). In
this relation I = (δi j ) indicates the N × N identity matrix
and �(..) stands for the Gamma-function. We observe that
in the fractional interval γ ∈ (0, 1) all matrix elements of
the fractional Laplacian in Eq. (7) are strictly nonzero if and
only if the directed network is strongly connected which is
true for the graph in Fig. 1(b); however, it is not true for the
graph in Fig. 1(a), which is not strongly connected where
some elements of the fractional Laplacian matrix are zero.
The fractional Laplacian of a strongly connected structure
for γ ∈ (0, 1) fulfills (Lγ )ii > 0 and (Lγ )i j < 0 (for i �= j)
where all entries are strictly nonzero. The characteristics of
the fractional Laplacian matrix allow to define the fractional
diffusion on directed weighted networks as a discrete-time
Markovian process determined by a transition matrix W(γ )

with elements w
(γ )
i→ j representing the probability to hop from i

to j given by

w
(γ )
i→ j = δi j − (Lγ )i j

k(γ )
i

0 < γ � 1. (8)
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Above properties (i)–(iii) of the fractional Laplacian matrix
indeed guarantee stochasticity of the fractional transition ma-
trix Eq. (8) in the interval 0 < γ � 1. Further, for a strongly
connected directed network it follows from the above con-
sideration that in the fractional interval 0 < γ < 1 all off-
diagonal elements of the transition matrix w

(γ )
i→ j > 0 (∀i �= j)

of the fractional walk are strictly positive (with w
(γ )
i→i = 0

per construction) and hence W(γ ) fulfills the condition of
aperiodic ergodicity.

It is worth noticing the role of the nonlocality generated by
Lγ . If the local random walker (γ = 1) can reach any node
in the network in a finite number of steps starting from any
node (ergodic condition), then Lγ combines the information
of all these trajectories in the directed network to define a new
nonlocal process that maintains ergodicity. However, this is
not the case when the process with γ = 1 is not ergodic as we
saw in the example in Fig. 1(a). For this reason, in the next
part, we maintain our discussion only for strongly connected
weighted networks for which W(γ ) defines ergodic processes
(see Appendix A for a proof of aperiodic ergodicity in con-
nected undirected and strongly connected directed graphs).
Here we consider Markovian memoryless walks on directed
graphs where at each time instant t = 0, 1, 2, . . . the fractional
random walker makes a jump from one to another node on
the network in a process without memory. The probability
Pi j (t ; γ ) to start at time t = 0 on node i and to reach the node
j at time t satisfies the master equation [16,17,28]

Pi j (t + 1; γ ) =
N∑

m=1

Pim(t ; γ )w(γ )
m→ j . (9)

In the following sections, we analyze the consequences of the
fractional dynamics defined by Eqs. (8) and (9) on different
directed weighted networks that include circulant directed
networks, biased transport on rings and random networks. We
explore the characteristics of the eigenvalues of the transition
matrix, the probabilities of transition in Eq. (8), mean first
passage times and global times that describe the efficiency of
the random walker to reach any node on the network.

III. FRACTIONAL RANDOM WALKS ON DIRECTED
CIRCULANT NETWORKS

In this section, we explore the fractional transport with
transition probabilities given by Eq. (8). We analyze directed
networks defined by matrices of weights � with a circulant
matrix structure.

A. Circulant matrices

A circulant matrix C is an n × n matrix with the
form [41,42]

C =

⎛
⎜⎜⎜⎜⎝

c0 cn−1 cn−2 . . . c1

c1 c0 cn−1 . . . c2

c2 c1 c0 . . . c3
...

...
...

. . .
...

cn−1 cn−2 cn−3 . . . c0

⎞
⎟⎟⎟⎟⎠, (10)

with elements Ci j . Thus, each column has real elements
c0, c1, . . . , cn−1 ordered in such a way that c0 describes the
diagonal elements and Ci j = c(i− j)mod n. In addition to C, the

elementary circulating matrix E is defined, which has all its
null elements except c1 = 1. From E, the integer powers El

for l = 0, 1, 2, . . . , n − 1 are also circulant matrices with null
elements except cl = 1. Therefore, Eq. (10) can be expressed
as [42]

C = c0I + c1E + c2E2 + . . . + cn−1En−1 =
n−1∑
m=0

cmEm,

(11)

where I = E0 is the n × n identity matrix. Furthermore, the
relation En = I requires that the eigenvalues ν of E satisfy
νn = 1; therefore, those eigenvalues are given by [42]

νl = ei 2π (l−1)
n for l = 1, . . . , n, (12)

with i ≡ √−1. The respective eigenvectors {|�m〉}n
m=1 have

the components 〈l|�m〉 = 1√
n
e−i 2π

n (l−1)(m−1) (see Ref. [42] for
details). Now, using Eq. (11), the eigenvectors |�l〉 satisfy
C|�l〉 = ηl |�l〉, where the eigenvalues ηl are given by [42]

ηl =
n−1∑
m=0

cmei 2π
n (l−1) m, (13)

for l = 1, 2, . . . , n. This result defines the eigenvalues of C in
terms of the coefficients c0, c1, . . . , cn−1.

B. Directed circulant networks

The circulant matrix C defined in Eq. (10) allows us to
explore different directed structures with N nodes and an ad-
jacency matrix A with specific values c1, c2, . . . , cN−1 equal
to 0 or 1, the result is a network with a periodic structure.
When nonnull elements appear in pairs ci and cN−i (i =
1, 2, . . . , N − 1) in the adjacency matrix, the structure is an
undirected network with symmetric A. Fractional dynamics
on undirected circulant networks has been studied in detail
for continuous-time random walks [21,28], quantum trans-
port [22], and diffusion on multilayer networks [29].

In the following, we explore cases when the matrix of
weights � that defines the Laplacian in Eq. (3) is � = A, this
adjacency matrix is not symmetric with a net direction in some
lines. For example, the particular network with nonnull c1 = 1
(or cN−1 = 1) produces a directed ring. In Fig. 2, we illustrate
several directed circulant structures with N = 10 nodes. In
Fig. 2(a) we have a directed ring, whereas in Figs. 2(b)–2(f)
other networks are generated by adding new sets of lines
defined with nonnull elements ci (i = 1, 2, . . . , N − 1). In
some cases, two nodes are connected with links in both
directions. We represent this particular type of connection
with lines between nodes as shown in Figs. 2(d)–2(f).

The advantage in the study of the fractional dynamics on
circulant networks is that we know all the eigenvalues and
eigenvectors of the Laplacian matrix L, since this is also a
circulant matrix. In addition, circulant networks are regular
with the same fractional out-degree k(γ ) = 1

N

∑N
m=1 μ

γ
m for all

the nodes. Therefore, the eigenvalues of the transition matrix
W(γ ) = I − Lγ

k(γ ) in Eq. (8) for a fractional random walker are

λ
(γ )
i = 1 − μ

γ
i

k(γ )
i = 1, 2, . . . , N, (14)
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FIG. 2. Circulant directed networks with N = 10 nodes. We
define cyclic structures using circulant adjacency matrices A with
particular nonnull elements in Eq. (10). For each network we indicate
the coefficients ci (i = 0, 1, . . . , N − 1) taking the value 1. Arrows
represent the direction of each edge, and connections including both
directions are represented with a line.

where, applying the result in Eq. (13) for a network defined
by A with a set of lines with a particular sequence of values
0 and 1 for the coefficients {cm}N−1

m=1, the eigenvalues of the
Laplacian matrix L are

μl = c0 −
N−1∑
m=1

cmei 2π
N (l−1) m, (15)

where the diagonal element c0 ≡ ∑N−1
m=1 cm is the out-degree

of each node.
The result in Eq. (15) shows that in circulant directed

networks the eigenvalues of the Laplacian matrix are complex
numbers and, as a consequence, the eigenvalues of W(γ ) in
Eq. (14) are also complex numbers. In Fig. 3, we illustrate
the effect of the fractional parameter γ on the eigenvalues
λ

(γ )
i in Eq. (14) for different structures with topologies similar

to the networks in Fig. 2. We show the real and imaginary
parts of λ

(γ )
i for directed networks with N = 100 nodes and

0 < γ � 1.

C. Long-range dynamics and Lévy flights

We have analyzed the spectral properties of circulant ma-
trices associated to the Laplacian L and fractional transition
probabilities W(γ ). In the following part, we calculate the
probabilities w

(γ )
i→ j and the relation with the distance di j that

gives the shortest-path length between nodes i and j. Using
Eq. (15) and the respective eigenvectors of circulant matrices,
we have for the fractional Laplacian

(Lγ )i j =
N∑

l=1

μ
γ

l 〈i|�l〉〈�l | j〉 = 1

N

N∑
l=1

μ
γ

l ei 2π
N (l−1)( j−i).

(16)

Here, we use the fact that left eigenvectors in circulant ma-
trices satisfy 〈�̄l | = (|�l〉)†, where † denotes the Hermitian
conjugate. Therefore, the elements of the fractional transition

matrix W(γ ) = I − Lγ

k(γ ) are

w
(γ )
i→ j = δi j −

∑N
l=1 μ

γ

l ei 2π
N (l−1)( j−i)∑N

l=1 μ
γ

l

. (17)

With the spectral characteristics of the eigenvalues μ
γ

l and
the respective λ

(γ )
l illustrated in Fig. 3, the sums in Eq. (17)

in the interval 0 < γ � 1 produce well-defined probabilities
of transition between nodes. In Fig. 4 we present the tran-
sition probabilities w

(γ )
i→ j for circulant networks with N =

104 nodes. Probabilities are presented as a function of the
distance di j connecting the nodes i and j (di j is the length
of the shortest path on the directed structure). In the case
of the directed ring [Fig. 4(a)], we see the relation w

(γ )
i→ j ∝

d−1−γ
i j , a power-law decay also observed in the large-world

network explored in Fig. 4(b) and exemplified in Fig. 2(b).
This particular relation between transition probabilities and
distances show an emergent dynamics generated through the
fractional Laplacian related with a Lévy-like dynamics in
directed structures. Lévy flights in undirected networks have
been explored in a series of works [18–20,24,25,28,29,43–
45], revealing that long-range displacements in undirected
networks always improve the capacity to explore a network
by inducing dynamically the small-world property [18,20].
Similar long-range strategies have been identified in human
mobility [9], in the movement of cyclists between stations in
bike-sharing systems in Chicago and New York [10], in taxi
trips in New York City [11], and in the infection spreading
through the United States’ highly connected air travel net-
work [46].

D. Infinite directed ring

Now, we explore the fractional Laplacian matrix and transi-
tion probabilities in a directed ring. This network is illustrated
in Fig. 2(a), in the limit N → ∞. In the particular case of a
directed ring with N nodes, Eq. (16) takes the form (we use
the value cN−1 = 1)

(Lγ )i j = 1

N

N∑
l=1

(
1 − e−i 2π

N (l−1)
)γ

ei 2π
N (l−1)( j−i). (18)

However, in the limit of N large, we can define a continuous
variable ϕ = 2π

N (l − 1) and dϕ = 2π
N . Therefore, the elements

of the fractional Laplacian matrix for an infinite directed ring
are given by

(Lγ )i j = 1

2π

∫ 2π

0
(1 − e−iϕ )γ eiϕ( j−i)dϕ, γ ∈ (0, 1]

= (−1) j−i+1 csc(πγ )
sin[π ( j − i − γ )]�( j − i − γ )

�(−γ )�( j − i + 1)

= �( j − i − γ )

�(−γ )�( j − i + 1)
, j � i. (19)

In particular, (Lγ )i j = 0 for j < i and (Lγ ) j j = 1 for the di-
agonal elements. The fractional Laplacian (19) of the infinite
ring is an upper triangular matrix where all entries below
the diagonal are null. The infinite ring of our example hence
is (unlike the finite ring) not any more strongly connected
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FIG. 3. Eigenvalues of the transition matrix W(γ ) for circulant directed networks with N = 100 represented in the complex plane. Each
eigenvalue λ

(γ )
i , i = 1, 2, . . . , N , is determined by Eq. (14) with eigenvalues μl given by Eq. (15). In panels (a–f) we specify the nonnull

coefficients cm = 1 that define the adjacency matrix of the network. For each γ , we have N = 100 points and, the effect of the fractional
parameter γ modifies the set of eigenvalues represented with different colors codified in the colorbar in the interval 0 < γ � 1. The studied
networks have a similar topology to those presented in Fig. 2.

and hence not any more ergodic, and the corresponding
fractional walk on the infinite ring allows only jumps into
the positive integer-direction [having a triangular transition
matrix given in Eq. (B11)]. Indeed this is a strictly increasing
walk into the positive integer direction and can be identi-
fied with the so-called Sibuya walk (see Appendix B for
some derivations and for a profound analysis of properties
consult [47]).

In the limit j � i, using the relation �(n + α) ≈ �(n)nα

for n large, we have for Eq. (19)

(L)γi j ∼ 1

�(−γ )

1

( j − i)1+γ
for j � i, (20)

where in this relation γ ∈ (0, 1). Mention worthy in this
relation is the local limit γ → 1−, which becomes ( j − i = x)

lim
γ→1−

(Lγ )i j = lim
γ→1−

− γ

�(1 − γ )
x−γ−1

= lim
γ→1−

d

dx

x−γ

�(1 − γ )
= d

dx
δ(x) = 0, x large.

(21)

The asymptotic result in Eq. (20) shows analytically that
the fractional dynamics in the infinite directed ring produces
transition probabilities w

(γ )
i→ j ∝ d−1−γ

i j for j � i with dis-
tances di j = j − i, this relation is also valid for networks with
N large but not necessarily infinite (see Appendix B for a
detailed discussion). The behavior observed differs from the
undirected ring, where a similar analysis reveals a Lévy-like
dynamics with w

(γ )
i→ j ∝ d−1−2γ

i j (see Refs. [20,21,27]), a result
that in the general case of undirected n-dimensional lattices is
w

(γ )
i→ j ∝ d−n−2γ

i j [24,26,28].

E. Efficiency of the fractional transport in circulant structures

In connected circulant networks, each node has the same
fractional degree k(γ ). In addition, if the structure is strongly
connected, then we have only one eigenvalue λ

(γ )
1 = 1 and, in

this particular case, the ergodic condition is fulfilled since, for
sufficiently large time, the random walker can reach any node
of the network independently of the initial node. Therefore,
well-known results for the mean first passage time 〈Ti j〉, which
gives the average number of steps of a discrete-time random
walker to start in node i and reach for the first time j, still
apply for circulant directed structures [2].
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FIG. 4. Transition probabilities w
(γ )
i→ j between two nodes as a function of the distance di j in directed circulant networks with N = 104

nodes. (a) A directed ring defined with cN−1 = 1, (b) a network with cN−1 = cN−2 = 1. The probabilities w
(γ )
i→ j are deduced from the analytical

relation in Eq. (17) defined in terms of the eigenvalues in Eq. (15) for γ = 0.25, 0.5, 0.75 and γ = 0.9. Dashed lines represent the inverse
power-law relation w

(γ )
i→ j ∝ d−1−γ

i j .

In terms of the left and right eigenvectors (〈φ̄l | and |φl〉,
respectively) of the transition matrix W of a Markovian
random walker and the associated eigenvalues λl (we denote
λ1 = 1), we have for i �= j [6,18,27,28]

〈Ti j〉 =
N∑

l=2

1

1 − λl

〈 j|φl〉〈φ̄l | j〉 − 〈i|φl〉〈φ̄l | j〉
〈 j|φ1〉〈φ̄1| j〉 , (22)

and the mean first return time 〈Tii〉 = (〈i|φ1〉〈φ̄1|i〉)−1. In
addition, in structures with the same fractional degree we have
the global time [6,18,27,28]

T =
N∑

l=2

1

1 − λl
. (23)

This is the Kemeny’s constant that quantifies the capacity of
the process to explore the network in regular structures and
only depends on the eigenvalues of the transition matrix W.

In the fractional transport on circulant networks, the eigen-
vectors of L, the fractional Laplacian Lγ and the transi-
tion probability matrix W(γ ) coincide, since all of them
are circulant matrices. Hence, 〈i|φl〉〈φ̄l | j〉 = 〈i|�l〉〈�l | j〉 =
1
N ei 2π

N (l−1)( j−i). Then, for the fractional transport in circulant
networks, Eq. (22) takes the form (i �= j)

〈Ti j (γ )〉 =
N∑

l=2

1

1 − λ
(γ )
l

[
1 − ei 2π

N (l−1)( j−i)
]
,

and 〈Tii(γ )〉 = N , λ
(γ )
l is given by Eq. (14). Therefore,

〈Ti j (γ )〉 =
(

1

N

N∑
m=2

μγ
m

)
N∑

l=2

1 − ei 2π
N (l−1)( j−i)

μ
γ

l

, (24)

where we use the result μ1 = 0. In a similar way, we obtain
for the Kemeny’s constant in Eq. (23),

T (γ ) =
(

1

N

N∑
m=2

μγ
m

)
N∑

l=2

1

μ
γ

l

. (25)

Our findings in Eqs. (24) and (25) are valid for directed
and undirected connected circulant networks and allow to
calculate analytically the mean first passage time (MFPT)
and the Kemeny’s constant through the specification of the
coefficients c0, c1, . . . , cN−1 in Eq. (15). In Fig. 5, we depict
the MFPT for a directed ring and an undirected ring, both with
N = 104 nodes. The results illustrate a completely different
behavior in the fractional dynamics in directed and undirected
rings. First of all, as we can see in Fig. 5(a), for the directed
ring defined with an adjacency matrix cN−1 = 1, the results
show that for γ = 1 and i �= j, 〈Ti j (γ = 1)〉 = di j , where
di j = j − i for j � i. In the directed ring, the value γ = 1 pro-
duces a deterministic dynamics where at each step the walker
visits a new adjacent node with a cover time N . However, in
the interval 0 < γ < 1, the temporal evolution is stochastic
with a biased Lévy like dynamics increasing the MFPT but
maintaining these times below or equal to the value N . The
results for the biased transport that emerge in the fractional
dynamics on the directed ring agree with previous studies
showing that Lévy flights do not always optimize the search
problem in the presence of an external drift [48]. In Fig. 5(b),
we present the results for times 〈Ti j (γ )〉 in a symmetric ring.
In this case, the fractional dynamics with Lévy flights reduce
the MFPT found in the local limit γ = 1 for which the random
walker at each step moves with probability 1/2 from a node
to one of its two neighbors.

Finally, it is important to have a global time that character-
izes the capacity of the random walker to explore the network.
In structures such as circulant networks, the Kemeny’s con-
stant T (γ ) defined in Eq. (25) gives a global value quantifying
the efficiency of the fractional random walker to reach all the
nodes. In Fig. 6, we present the values of T (γ ) as a function
of γ (0 < γ � 1) in circulant networks with N = 104 nodes.
We explore different directed structures with topologies and
properties discussed in Figs. 2 and 3. In Fig. 6, the curve
(a) describes a fractional random walker in a directed ring
with cN−1 = 1. We can see that the best strategy to explore
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FIG. 5. Mean first passage time 〈Ti j (γ )〉 as a function of the distance di j in circulant networks with N = 104 nodes. (a) A directed ring
defined with cN−1 = 1, (b) an undirected ring with cN−1 = c1 = 1. Numerical values are obtained from Eq. (24) defined in terms of the
eigenvalues in Eq. (14). We codified in the colorbar the different values 0 < γ � 1.

the network is defined by γ = 1. This is a deterministic limit
where the walker visits a new node at each step. With the
introduction of Lévy flights through the fractional dynamics
with 0 < γ < 1, the stochastic transport increases the time
T (γ ) and in the limit γ = 0 we have Tcomplete = (N − 1)2/N
also obtained for a complete network [28]. In curve (b) we
have a structure defined with the elements cN−1 = cN−2 = 1,
we observe a similar behavior with an optimal value in the
local-limit γ → 1. In directed structures with more lines like
in curves (c)–(f) we see a different behavior where a partic-
ular value of γ � < 1 produces a maximum in the Kemeny’s

FIG. 6. Kemeny’s constant T (γ ) as a function of γ for
different directed networks with N = 104 nodes. The net-
works have a topology similar to those in Fig. 2 and are
defined with the particular set of coefficients equal to 1:
(a) {cN−1}, (b) {cN−1, cN−2}, (c) {cN−1, c2}, (d) {cN−1, c1, cN−2}, (e)
{cN−1, cN−2, c2}, (f) {cN−1, c1, cN−2, c2, cN−3}. The results were ob-
tained with Eq. (25) and the Laplacian eigenvalues in Eq. (15).
The dashed horizontal line represents Tcomplete = (N − 1)2/N for a
random walker in a complete (fully connected) network.

constant; however, with the reduction of γ in the limit γ → 0
all the cases approach to the value Tcomplete. The results show
particular cases where the combination of nonlocal displace-
ments and the bias generated by the directions of the lines
produce a global effect that reduces the efficiency to visit all
the nodes of the network.

IV. BIASED TRANSPORT ON RINGS

In the previous section, we studied random walks on cir-
culant directed networks for which we considered the weights
� = A. We are now interested in the effects of the fractional
transport when the matrix � describes some type of bias de-
termined by weights in the links. We explore the transport on
a ring with transition probabilities different from the directed
and undirected rings studied before.

Let us now consider a probability 0 � p � 1 and a ring
with N nodes which are connected only to their first neigh-
bors. In addition, the coefficients �i j are defined by a circulant
matrix with nonnull elements c1 = p and cN−1 = 1 − p. In
this way, we have the probability p to hop in one direction,
and 1 − p to the opposite direction. Using Eq. (15) for the
eigenvalues of the Laplacian matrix, and c0 = c1 + cN−1 = 1,
we have

μl = 1 − peiϕl − (1 − p)e−iϕl , (26)

where ϕl ≡ 2π
N (l − 1) and 1 � l � N .

In the general case, the eigenvalues λ
(γ )
l of the fractional

transition matrix W(γ ) are complex values. By applying
Eq. (14), we obtain

λ
(γ )
l = 1 − 1

k(γ )
[1 − peiϕl − (1 − p)e−iϕl ]γ , (27)

with a fractional degree

k(γ ) = 1

N

N∑
l=1

[1 − peiϕl − (1 − p)e−iϕl ]γ . (28)
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FIG. 7. Eigenvalues of the transition matrix W(γ ) for biased
fractional transport on a ring with N = 100 nodes. For γ = 1, the
transition probabilities to the two nearest neighbors are p to move
in one direction and 1 − p in the opposite direction. We explore the
effect of γ and p in the eigenvalues of W(γ ) for p = 0.9, 0.8, 0.7, 0.6.
Each color represents a different set of eigenvalues, obtained with a
given γ codified in the colorbar. The eigenvalues are calculated with
Eq. (27). The limit p = 1 represents a directed ring with eigenvalues
analyzed in Fig. 3(a).

In particular, for p = 1/2 and γ = 1, we recover the eigenval-
ues λ

(γ=1)
l = cos (ϕl ) for the local random walk in a symmet-

ric ring.
In Fig. 7 we show the eigenvalues λ

(γ )
l of the transition

matrix W(γ ) for the biased fractional transport in a ring
with N = 100 nodes. The particular limit p = 1 recovers
the transport on the directed ring presented in Fig. 3(a). We
see how the bias modeled with the parameter 0.6 � p � 0.9
reduces the imaginary component of the eigenvalues when
p → 1/2. In the limit p = 1/2 all the eigenvalues are real. We
obtain similar results for 0 � p � 0.5 since, in this interval,
the random walker has the same dynamics but with a change
in all the directions of the walker.

Once deduced the eigenvalues of the Laplacian matrix, we
can quantify globally the capacity of the fractional random
walker to explore the network. Since the fractional degrees
are the same for all the nodes, we use the relation for the
Kemeny’s constant in Eq. (25). Therefore,

T (γ ) = 1

N

N∑
l=2

N∑
m=2

[
1 − peiϕl − (1 − p)e−iϕl

1 − peiϕm − (1 − p)e−iϕm

]γ

, (29)

for 0 < p � 1 and 0 < γ � 1. In particular, in the limit p =
1/2 we recover the result for the symmetric ring

TS(γ ) = k(γ )
N∑

m=2

(
1

1 − cos ϕm

)γ

, (30)

FIG. 8. Kemeny’s constant T (γ ) as a function of γ for biased
fractional transport on a ring with N = 104 nodes. The times T (γ )
are calculated with the analytical result in Eq. (29). We explore
different values of the bias parameter p in the interval 0.5 � p � 1
codified in the colorbar. The case p = 1/2 recovers a symmetric
random walker with Lévy flights whereas the limit p = 1 describes
the transport on a directed ring. These two limits are explored in
Figs. 4 and 5. In the inset we present the value γ �, as a function of p,
that maximizes T (γ ) and is obtained numerically with Eq. (31).

with the fractional degree k(γ ) = 1
N

∑N
l=2 (1 − cos ϕl )γ . The

global time TS(γ ) is analyzed in detail in Ref. [28] to charac-
terize the fractional transport on undirected rings.

In Fig. 8 we present the results obtained with Eq. (29)
for the Kemeny’s constant describing the fractional transport
with bias in rings for different values of p. We observe in the
behavior of the Kemeny’s constant that, for p in the interval
0.53 � p � 0.96, T (γ ) presents a maximum for a particular
value γ denoted as γ ∗. Calculating d

dγ
T (γ )|γ=γ � = 0, we

obtain that the value γ ∗ maximizing the Kemeny’s constant
satisfies

N∑
l,m=2

log(zl )

(
zl

zm

)γ �

=
N∑

l,m=2

log(zm)

(
zl

zm

)γ �

, (31)

with zl ≡ 1 − peiϕl − (1 − p)e−iϕl . In the inset in Fig. 8, we
show the values γ ∗ as a function of p, calculated numerically
with Eq. (31). This result determines which Lévy flight strat-
egy is the least efficient to explore the network, i.e., for which
value of γ the Kemeny’s constant T (γ ) has a maximum in the
interval 0 < γ < 1.

V. DIRECTED RANDOM NETWORKS

In this section, we explore the fractional transport on
directed networks generated stochastically with an algorithm
similar to the Erdős-Rényi (ER) model [49]. For N nodes
we have an adjacency matrix A and, in each nondiagonal
entry Ai j , we decide to include the value 1 or 0 randomly
with probabilities p and 1 − p, respectively. However, the
difference with the traditional ER model is that the choice of
Ai j is independent of Aji and, as a result, A is the nonsym-
metric matrical representation of a directed network where
pN (N − 1) is the average number of links in this structure.
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FIG. 9. Fractional transport on directed networks with N = 50 nodes generated randomly with a probability p = 0.04 that define the
probability to create a connection between two nodes. In panels (a)–(c) we present three connected networks with the respective eigenvalues
of the transition matrix W(γ ) in the complex plane. For each γ codified in the colorbar in the interval 0 < γ � 1, we obtain N = 50 points
representing the eigenvalues of W(γ ); the eigenvalues for γ = 1 are presented with black dots. In (d) we explore the numerical values of the
global time 〈T(γ )〉 in Eq. (32) for the three networks. The inset shows the results for the Kemeny’s constant T (γ ).

In Fig. 9, we explore three random networks with size N =
50 generated with the value p = 0.04, following the same
approach presented for the analysis of regular topologies.
We use connected networks for all the nodes to analyze the
modifications in the eigenvalues introduced by the fractional
transport. The eigenvalues of the transition probabilities and
the respective networks are shown in Figs. 9(a)–9(c). In this
representation, for each value γ , we calculate numerically the
fractional Laplacian matrix given by Eq. (5), and in this way,
we have the elements that define the transition matrix W(γ ),
for which we calculate the eigenvalues λ

(γ )
l . Due to the con-

nectivity of the network, in the cases explored, the eigenvalue
λ

(γ )
1 = 1 is unique for all γ . The remaining eigenvalues are

represented as black dots in the complex plane for γ = 1,
and with different colors we show how the reduction of γ

concentrates the eigenvalues around the origin with λ
(γ )
l =

−1/(N − 1) for l = 2, 3, . . . , N in the limit γ → 0.
In addition to the eigenvalues, it is useful to quantify the

capacity of the fractional random walker to explore the whole
network. In this case, we use the global MFPT 〈T(γ )〉, defined
as

〈T(γ )〉 = 1

N2

N∑
i=1

N∑
j=1

〈Ti j (γ )〉, (32)

that gives the average of the mean first passage time 〈Ti j (γ )〉
considering all the initial nodes i and all the nodes target j.
In Fig. 9(d), we show the results obtained with the numerical

values of the eigenvalues and left and right eigenvectors of the
transition matrix W(γ ) for 0 < γ � 1. In addition, in the inset
in this figure, we include the values of the Kemeny’s constant

T (γ ) = ∑N
l=2 (1 − λ

(γ )
l )

−1
that only includes information of

the eigenvalues of W(γ ).
The results in Fig. 9 illustrate the different cases that can

appear in the fractional transport on directed structures for the
same type of random network. In the information in Fig. 9(d),
the global MFPT 〈T(γ )〉 shows that in some cases, like in
the network in Fig. 9(a), the effect of γ can improve the
efficiency of the random walker to reach a target, in compar-
ison with the normal random walk γ → 1. In the networks
in Figs. 9(b) and 9(c) we see two cases where the long-
range dynamics increases the values of 〈T(γ )〉 in comparison
with the normal dynamics. In addition, the eigenvalues in
Figs. 9(a)–9(c) reveal different spectral properties with the
change of γ . However, in contrast with the regular cases
explored with circulant matrices, in this case the Kemeny’s
constant is not a good descriptor of the global activity in the
fractional transport, revealing that in the networks analyzed
the eigenvectors of W(γ ) contain important information for a
global characterization of the dynamical process.

VI. CONCLUSIONS

In this work, we presented a general approach to examining
ergodic Markovian nonlocal random walks generated through
the fractional Laplacian of directed networks. This formalism
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is explored for different types of strongly connected networks
defined in terms of circulant matrices and also for random
directed networks. We analyzed the eigenvalues of transition
matrices that define the random walk and the effect of the
fractional dynamics in the spectrum, showing how eigenval-
ues are modified in the complex plane. In addition, for regular
networks, we analyze the Kemeny’s constant, which gives a
good description of the global dynamics. With this global
time, defined only in terms of the eigenvalues, we analyzed
the effect of biased nonlocal transport, showing that the explo-
ration of the network can be more effective in some particular
cases reducing Kemeny’s constant. We also identified differ-
ent configurations for which the capacity of the fractional
random walker to reach any node is reduced in comparison
with a random walker with hops to neighbor nodes. This is a
fundamental difference with the results observed in undirected
networks where the fractional dynamics always improve the
transport through long-range displacements. Finally, we ex-
plored the transport of random directed networks; in this
case, the global activity is analyzed using the average of the
mean first passage time to all the nodes considering all the
initial conditions. This quantity depends on the eigenvalues
and eigenvectors of the transition matrix that defines the
process. Our findings and methods introduced are general
and pave the way to further extensions for the exploration
of fractional dynamical processes on directed structures with
possible applications in the understanding of human mobility,
data analysis, synchronization, among others.

APPENDIX A: PROPERTIES OF THE FRACTIONAL
LAPLACIAN

In this Appendix, we demonstrate briefly that the es-
sential good properties (i)–(iii) of the Laplacian in Eq. (3)
are conserved by the fractional Laplacian matrix Lγ in the
interval 0 < γ � 1 to guarantee that the fractional transi-
tion matrix Eq. (8) is stochastic, i.e., 0 � w

(γ )
i→ j � 1 with∑N

l=1 w
(γ )
i→l = 1. By the same demonstration we show that

for the class of strongly connected directed graphs (i.e.,
between each pair of nodes i, j at least one incoming and one
outgoing connecting path of finite length exists i ↔ j [31])
described by a Laplacian matrix of the form of Eq. (3)
the fractional walk with transition matrix Eq. (8) is aperi-
odic ergodic. To this end let us introduce � > max(k(out)

i ),
thus the matrix �I − L has uniquely nonnegative entries
(� − k(out)

i )δi j + �i j � 0. Then it follows that (�I − L)n and
hence et (�I−L) = ∑∞

n=0
t n

n! (�I − L)n = e�t e−tL (t > 0) also
conserve this property (where for a strongly connected struc-
ture there exists a n0 such that all entries [(�I − L)n]i j > 0
(n � n0) are strictly positive, for nonconnected structures the
inequality [(�I − L)n]i j � 0 remains true for all n. Then
for a strongly connected structure since e�t > 0 the matrix
exponential (e−tL)i j > 0. It follows then that the nondiagonal
elements (I − e−tL)i j = −(e−tL)i j < 0 (i �= j) are uniquely
negative (in a nonconnected structure nonpositive). Since the
zero eigenvalue to the constant eigenvector 〈i|�1〉 = 1√

N
of

L is conserved by the matrix function (I − e−tL)|�1〉 = 0, it

follows that

(I − e−tL)ii = −
N∑

j �=i

(I − e−tL)i j > 0 (A1)

in a strongly connected directed graph. Applying Eq. (7)
on both sides of this relation yields Eq. (6) and conserves
the signs in Eq. (A1), i.e., k(γ )

i = (Lγ )ii > 0 together with
(Lγ )i j < 0 for i �= j in strongly connected directed graphs.
If the graph is disconnected, then properties (i)–(iii) still hold;
however, the Laplacian matrix contains blocks of zero valued
nondiagonal entries which are conserved by all integer powers
of the Laplacian matrix and hence also by the matrix exponen-
tial e−tL leading by virtue of Eq. (7) that these blocks of zero-
entries are still conserved in the fractional Laplacian matrix,
and hence in the resulting fractional walk ergodicity is lost.
Compare especially the Laplacian and fractional Laplacian,
respectively, in Figs. 1(a) and 1(b). In Fig. 1(a) the block of
zero entries of the nonstrongly connected Laplacian matrix
is conserved by the fractional Laplacian where zero valued
nondiagonal entries at i j tell us that there are no finite paths
i → j.

In this way we have demonstrated that the good prop-
erties (i)–(iii) of L are indeed conserved by the fractional
Laplacian matrix Lγ in the interval of convergence 0 < γ < 1
of the integral representation in Eq. (7) where for strongly
connected directed graphs the fractional Laplacian generates
an aperiodic ergodic walk. In this proof we did not make use
of whether or not the Laplacian matrix of a directed graph
is diagonalizable. It includes therefore also the cases where
the Laplacian matrix has Jordan canonical form. For a more
detailed analysis (however focused on undirected graphs) we
refer to Ref. [28].

APPENDIX B: FRACTIONAL LAPLACIAN FOR
DIRECTED RINGS

In this Appendix, we analyze the elements of Lγ for a
directed ring of finite size N where N is not necessarily large.
Let us consider the Laplacian L for a directed ring defined
with elements c0 = cN−1 = 1 and cm = 0 for m = 1, 2, N −
2. Using Eq. (15) we have the eigenvalues

μ� =
N∑

m=1

cm(1 − eiϕ�m), ϕ� = 2π

N
(� − 1). (B1)

Therefore, the Laplacian eigenvalue is given by

μ� = 1 − eiϕ�(N−1) = 1 − e−iϕ� . (B2)

In addition, the elements of the fractional Laplacian matrix
given by Eq. (18) for 0 < γ � 1 are determined by

(Lγ )pq = (Lγ )q−p =
N∑

�=1

μ
γ

� 〈p|��〉〈��|q〉

= 1

N

N∑
�=1

(1 − e−iϕ� )γ eiϕ�(q−p). (B3)
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Now we can expand the fractional Laplacian eigenvalue μ
γ

� as
(this series is converging)

μ
γ

� = (1 − e−iϕ� )γ =
∞∑

m=0

(−1)m

(
γ

m

)
e−iϕ�m =

N−1∑
s=0

e−iϕ�sA(γ )
s ,

(B4)

with

A(γ )
s = (−1)s+Nt

∞∑
t=0

(
γ

s + Nt

)
. (B5)

In this result, we put m = s + Nt and apply the
N-periodicity condition e−iϕ�m = e−iϕ�(s+Nt ) = e−iϕ�s (with
e−iϕ�Nt = e−2π i(�−1)t = 1). We see especially that Eq. (B5)
indeed holds for finite N � 2.

Now, using the orthogonality property

1

N

N∑
�=1

ei(q−p−s)ϕ� = δq−p,s, s = 0, . . . N − 1, (B6)

and combining Eqs. (B2)–(B6), we obtain the decomposition
of the elements of the circulant fractional Laplacian matrix
Eq. (B3), i.e., the fractional Laplacian matrix for the finite ring
in Eq. (18), for N finite but not necessarily large

(Lγ )pq = 1

N

N∑
�=1

(1 − e−iϕ� )γ eiϕ�(q−p) (B7)

= A(γ )
q−p = (−1)q−p+Nt

∞∑
t=0

(
γ

q − p + Nt

)
, (B8)

for q − p = 0, . . . , N − 1. Hence, we get

(Lγ )pq = A(γ )
q−p = (−1)q−p

(
γ

q − p

)

+ (−1)q−p+Nt
∞∑

t=1

(
γ

q − p + Nt

)
, γ ∈ (0, 1]

(B9)

(circulant). For the finite directed ring all matrix elements of
the fractional Laplacian are nonvanishing, i.e., this structure
hence is strongly connected and hence aperiodic ergodic. We
see in this result for the finite ring that the first term in the
series (t = 0), namely,

(Lγ )(∞)
pq =

{
(−1)q−p

(
γ

q−p

)
, q − p � 0,

0, q − p < 0
(B10)

is the matrix element of Eq. (19) for the directed infinite ring.
The fractional degree (Lγ )(∞)

qq = 1 and (Lγ )(∞)
pq < 0 for q > p

whereas (Lγ )(∞)
pq = 0 is null for q < p. Equation (B10) is an

upper triangular circulant matrix where all entries below the
main diagonal are null. The transition matrix for the infinite
ring then writes with Eq. (8)

w(γ ,∞)
p→q =

{
(−1)q−p−1

(
γ

q−p

)
> 0, q − p > 0,

0, q − p � 0,
(B11)

for γ ∈ (0, 1) where the local limit w(1,∞)
p→q = δq−p,1 gives the

deterministic walk where the walker in each step hops to its

right-sided next neighbor node. We observe that w
(γ ,∞)
p→q = 0

for q � p, i.e., for the infinite ring N → ∞ the walker can
only make jumps p → q such that q − p > 0 with strictly
increasing node numbers. Conversely to the finite ring, in
the infinite ring limit no return path exists, and hence the
infinite ring is not any more strongly connected thus ergodic-
ity is lost. Indeed, the fractional transition matrix Eq. (B11)
of the infinite directed ring is an upper triangular circulant
matrix where all elements above the main diagonal are strictly
positive whereas all entries below and in the main diagonal
are null. Equation (B11) for γ ∈ (0, 1) can be identified
with the transition probabilities of the Sibuya walk which is
a strictly increasing walk on the positive integer line. The
Sibuya walk is of utmost importance in models with power-
law distributed (fat-tailed) long-range jumps. We refer to the
recent article in Ref. [47] for a general outline and thorough
analysis of properties (and see also the references therein).
In Eq. (B7) additionally to the infinite ring elements we have
the image series

∑∞
t=1(. . .) where this additional contribution

of the image terms for N finite but large can be (roughly)
estimated as

∞∑
t=1

(Nt )−γ−1

�(−γ )
≈

∫ ∞

N

τ−γ−1

�(−γ )
dτ ∼ − N−γ

�(1 − γ )
. (B12)

It follows that the infinite ring matrix elements Eq. (19)
already are a good approximation for rings with N large but
not necessarily infinite. In Ref. [28], in section 6.2.3. Frac-
tional Laplacian of the finite ring, we consider the fractional
Laplacian of finite undirected rings and obtain analog results
[see there Eqs. (6.27)–(6.31)], where we employ the same
periodicity argument as here.
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