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Effective diffusion in one-dimensional rough potential-energy landscapes
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Diffusion in spatially rough, confining, one-dimensional continuous energy landscapes is treated using
Zwanzig’s proposal, which is based on the Smoluchowski equation. We show that Zwanzig’s conjecture agrees
with Brownian dynamics simulations only in the regime of small roughness. Our correction of Zwanzig’s
framework corroborates well with numerical results. A numerical simulation scheme based on our coarse-grained
Langevin dynamics offers significant reductions in computational time. The mean first-passage time problem
in the case of random roughness is treated. Finally, we address the validity of the separation of length scales
assumption for the case of polynomial backgrounds and cosine-based roughness. Our results are applicable to
hierarchical energy landscapes such as that of a protein’s folding and transport processes in disordered media,
where there is clear separation of length scale between smooth underlying potential and its rough perturbation.
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I. INTRODUCTION

Diffusion in rough potential energy landscapes has been
of interest for many years because its study offers insight
into fields from transport processes in disordered media [1–6]
to protein folding [7,8] and the study of glassy systems
[9–12]. In one dimension, a wide range of behaviors exist,
reflecting the many ways in which an energy landscape can
be constructed. When working with unbiased potentials, if the
energy barriers are of equal height, then the long-time motion
is diffusive; if the heights are exponentially distributed, then a
transition between diffusive and subdiffusive behavior occurs
as the mean height is increased [13,14].

Working in one dimension, Lifson and Jackson derived an
expression for the effective diffusion coefficient D∗, which
captures the retarding effect of homogeneous energy bar-
riers upon the macroscopic diffusive motion: 〈x2〉 = 2D∗t ,
where D∗ � Dfree = kBT/γ , the ratio of the thermal energy
to the damping coefficient [15]. Their expression has attracted
widespread usage and undergone modification so that it can
be used to model disordered systems [16]. In particular, the
case of Gaussian-distributed amplitudes has received much
attention: Zwanzig proposed an expression for the effective
diffusion coefficient, D∗ = Dfree/e(ε/kBT )2

, where ε is the root-
mean-square roughness [17]. This result has been demon-
strated not to hold for the case of motion on a discrete lattice;
an even more heavily suppressed diffusion coefficient is ob-
tained [18]. However, when Brownian dynamics simulations
are performed on a continuous Gaussian surface good agree-
ment with Zwanzig’s unamended expression is observed. This
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difference is attributed to spatial correlations: their presence
brings about a smoothing of the potential energy landscape,
removes the deep “Three Site Traps,” and thereby leads to the
reduction to Zwanzig’s result [18]. The case of diffusion in
a one-dimensional piecewise-defined energy landscape made
up of triangular sections with Gaussian-distributed heights
was studied and agreement with Zwanzig’s result was ob-
tained in the limit of large thermal energies [19]. In this regime
the effect of the presence of three site traps upon the motion
will not be significant. These two results appear to show that
the meaningful presence of three site traps determines whether
or not Zwanzig’s result applies.

Returning to lattices, further work built upon the one-
dimensional results by considering motion on a d-dimensional
lattice with Gaussian disorder. By using an effective medium
approximation an expression for the diffusion coefficient was
obtained and found to be in good agreement with the results of
numerical simulations [20,21]. However, in this work we wish
to focus upon the primary thrust of Zwanzig’s paper, namely,
his attempt to construct a theoretical framework within which
diffusion in rough energy landscapes can be treated more
directly than is possible with the usual Smoluchowski equa-
tion (SE). In particular, rough energy landscapes where the
background need not be flat.

Zwanzig’s framework has potential application in the study
of hierarchical energy landscapes such as that of a protein’s
potential surface [22–28]. Zwanzig conjectured that diffusion
in rough energy landscapes can be described by the usual sym-
bolic form of the SE, but with modifications to both the diffu-
sion coefficient and the energy landscape, in order to account
for the roughness properly [17]. In this paper, we demon-
strate that Zwanzig’s proposal works: overdamped Brownian
motion in rough energy landscapes can be modeled using a
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modified form of the SE, but a different modification to the
potential energy landscape is required if the formalism’s pred-
ications are to agree with the results of numerical simulations.

After recapping Zwanzig’s conjecture, we will restrict
our focus to confining background energy landscapes with
constant roughness and use the configurational partition func-
tion to derive the mean potential energy in equilibrium.
Numerical simulations reveal disagreement with Zwanzig’s
proposal but good agreement with our theory’s predictions.
Comparing the two approaches enables us to suggest a differ-
ent modification to the energy landscape and bring Zwanzig’s
proposed formalism into agreement. Using the modified SE to
study the approach to equilibrium in a quadratic background,
it becomes clear that Zwanzig’s modification to the diffusion
coefficient is better understood as a modification to the damp-
ing γ . Consequently, we propose a modified overdamped
Langevin equation (LE), from which we derive a Brownian
dynamics simulation scheme. Good agreement between re-
sults obtained from this “modified” scheme and the “original”
scheme (based upon the unmodified LE) is observed. The
modified scheme enable the time step to be increased with
increasing roughness—in stark contrast to the original scheme
where the time step must be decreased—thereby affording
potentially significant reductions in computational time. We
consider the case of piecewise-defined roughness, where the
amplitude of each section is taken from a probability distri-
bution. The corresponding modified LE is derived, and the
results of numerical simulations for the case of exponen-
tially distributed amplitudes are presented: good agreement
is observed over a range of mean amplitudes. Finally, we
address the question of when this modified equation can be
used and calculate the form of the boundary between validity
and invalidity for the case of polynomial backgrounds and
cosine-based roughness. This can be reformulated in terms
of the characteristic length scales of the smooth background
and the superposed roughness. Separation of these length
scales, as invoked in Zwanzig’s work, is shown to be a looser
condition than might first be supposed. Throughout this work
we will restrict our attention to cases where the amplitude of
the roughness, Q, is not a function of position.

II. ZWANZIG’S PROPOSAL

Consider a particle diffusing in an energy landscape
U (x) = U0(x) + U1(x), where U0(x) is a smooth background
of characteristic length scale L0, and U1(x) is a rough pertur-
bation of characteristic length scale L1. Zwanzig conjectured
that, provided L0 � L1, the behavior is governed by the usual
form of the SE [17]

∂ρ

∂t
= −∂J

∂x
, (1)

J = −D∗e−βUZ(x) ∂

∂x

[
ρ eβUZ(x)], (2)

where β = 1/kBT ,

D∗ = Dfree

eψ+eψ− , (3)

is the redefined diffusion coefficient, Dfree = kBT/γ is the free
diffusion coefficient, eψ±

are given by

eψ± = 〈
e±βU1(x)

〉
x, (4)

〈(·)〉x = 1
L1

∫ L1

0 dx (·) denotes spatial averaging (over the char-
acteristic length scale of the roughness), and

UZ = U0 − ψ−

β
(5)

is the redefined potential energy landscape proposed by
Zwanzig. Since ψ± are independent of x, D∗ is independent
of position and UZ is simply U0 shifted by a constant. Be-
cause the energy landscape enters the SE via its gradient,
the position-independent offset in Eq. (5) will not affect the
motion.

The equilibrium solution to the unmodified SE is the
Boltzmann distribution ρ(x) = e−βU (x)/Z , where the config-
urational partition function Z is

Z =
∫

dx e−βU0 e−βU1 . (6)

Under the assumption of separation of length scales [17], the
partition function can be approximated as

Z ≈ 〈e−βU1〉x

∫
dx e−βU0 . (7)

This approximation coarse grains the effects of the roughness.
Provided that the amplitude of the roughness does not vary
with position, the mean potential energy in equilibrium is

〈UZ〉 =
∫

dx UZ(x)ρ(x) ≈ 〈U0〉0 − ψ−

β
, (8)

where

〈(·)〉0 =
∫

dx e−βU0(x)(·)∫
dx e−βU0(x)

(9)

indicates averaging with respect to the equilibrium distribu-
tion in the smooth background U0.

However, if we consider the mean potential energy in
equilibrium 〈U 〉 = −∂lnZ/∂β, we find that

〈U 〉 ≈ −∂ψ−

∂β
− ∂

∂β
ln

(∫
dx e−βU0

)

= 〈U0〉0 − ∂ψ−

∂β
, (10)

which suggests that the energy landscape should be modified
to

U ∗ = U0 − ∂ψ−

∂β
, (11)

with corresponding current density

J = −D∗e−βU ∗(x) ∂

∂x

[
ρ eβU ∗(x)

]
. (12)

III. CONSTANT ROUGHNESS

To test our theory against Zwanzig’s proposal, we
will consider a sample energy landscape: U (x) = α

m |x|m +
Q[1 − cos(nπx)], where the first and second terms are the
confining (α, m > 0) background U0, and the rough addition
U1, respectively. In this case, it can be shown that 〈U0〉0 = kBT

m

and eψ± = e±βQI0(βQ), where I0 is the zeroth-order modified
Bessel function of the first kind. Inserting these results into
Eqs. (8) and (10) gives the following predictions for the mean
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FIG. 1. The mean potential energy in equilibrium is plotted as a
function of Q for two background energy landscapes: the uppermost
dashed and solid lines represent m = 2, while the lowermost repre-
sent m = 10.

potential energy in equilibrium:

Zwanzig:〈UZ〉 = kBT

m
+ Q − ln(I0(βQ))

β
, (13)

Partition :〈U 〉 = kBT

m
+ Q

[
1 − I ′

0(βQ)

I0(βQ)

]
. (14)

Brownian dynamics simulations were performed with an
ensemble of 105 particles and unit values of thermal energy
and damping for two backgrounds: m = 2 and m = 10. The
time step was 10−4 for Q � 2.5, and 5 × 10−5 thereafter.
To a reasonable approximation, the combination α = 4, n =
4 satisfied the condition of separation of length scales—a
point to which we will return in a later section. Once the
system had fully equilibrated, as determined by comparison
of the mean-squared displacement to the theoretical value,
the mean potential energy was calculated by averaging over
the ensemble of particles. Figure 1 shows that the simulation
results agree with Zwanzig’s proposed formalism for only the
smallest values of Q. In contrast, good agreement between
the results and our theory is observed for all amplitudes
considered. We conclude that Zwanzig’s framework is correct
provided we use Eqs. (11) and (12) instead of Eqs. (2)
and (5).

IV. LANGEVIN DYNAMICS

We will now use the amended formalism to study the
approach to equilibrium. The SE can be solved analytically
for quadratic (m = 2) background energy landscapes: for a
system initialised to x = 0, the probability distribution ρ

evolves as

ρ(x, t ) = 1√
2π f (t )

exp

[ −x2

2 f (t )

]
, (15)

where

f (t ) = 1

αβ
[1 − e−2D∗αβt ]. (16)

The mean-squared displacement is

〈x2(t )〉 =
∫

dx x2ρ(x, t ) = 1

αβ
[1 − e−2D∗αβt ]. (17)

We are, in effect, considering diffusion in a smooth quadratic
well, a problem that can be addressed with the overdamped
LE,

γ
dx

dt
= −dU0

dx
+ ξ (t ), (18)

where ξ (t ) is the usual thermal noise with zero mean 〈ξ (t )〉 =
0 and covariance 〈ξ (t )ξ (t ′)〉 = 2γ kBT δ(t − t ′). The mean-
squared displacement of a particle initialized to x = 0 in the
energy landscape U0 = α

2 x2 can be derived from Eq. (18):

〈x2(t )〉 = 1

αβ
[1 − e−2αt/γ ]. (19)

The same general form of Eqs. (17) and (19) leads us to
conclude that the effect of the roughness can be accounted
for by modifying the damping γ . This can be seen most easily
by using Eq. (3) to rewrite the exponent in Eq. (17) in terms
of the damping: −2αt/(γ eψ+

eψ−
). Comparison with Eq. (18)

reveals equivalence under

γ 	→ γ ∗ = γ eψ+
eψ−

. (20)

This expression, in conjunction with the modified energy
landscape in Eq. (11), leads us to propose the following: when
considering the diffusive motion of Brownian particles in
energy landscapes comprising a confining background U0(x)
and a superposed roughness U1(x), provided that the length
scale of the roughness is sufficiently smaller than that of the
background (L1 � L0), the dynamics can be described by the
modified LE,

γ ∗ dx

dt
= −dU ∗

dx
+ ξ ∗(t ), (21)

where U ∗ and γ ∗ are as before, and ξ ∗ has zero mean
〈ξ ∗(t )〉 = 0 and the following covariance:

〈ξ ∗(t )ξ ∗(t ′)〉 = 2γ ∗kBT δ(t − t ′). (22)

Modifying the damping coefficient means that the fluctuation-
dissipation relationship must also change, as can be seen in
Eq. (22). This ensures that the behavior of a free particle in
the modified regime is the same as the long-time behavior
of a particle navigating a rough energy landscape in the
original regime: the diffusion coefficients must agree. The
coarse-grained effect of the roughness is captured by the
dimensionless number eψ+

eψ−
.

Equation (21) is analogous to Zwanzig’s modified SE. One
of the most significant implications of this modified frame-
work is found in the numerical simulation of motion in rough
energy landscapes. Consider the following two discretized
expressions—one for the original LE, one for the modified
LE—which give the change in a particle’s position at each
time step of its simulated motion:

�xO = −d[U0(x) + U1(x)]

dx

�t

γ
+

√
2kBT

γ
�t N (0, 1) (23)
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TABLE I. The ratio of the time steps for the original “O” and
modified “M” simulation schemes is given as a function of the
amplitude of the roughness Q for the case U1(x) = Q(1 − cos(nπx)).
The thermal energy kBT = 1.

Q �tM
�tO

= I2
0 (βQ)

1 1.6
2 5.2
5 740
10 7.9 × 106

and

�xM = −dU0(x)

dx

�t

γ eψ+eψ− +
√

2kBT

γ

�t

eψ+eψ− N (0, 1),

(24)

where the subscripts “O” and “M” refer to the “original” and
“modified” LEs, respectively, �t is the time step, and N (0, 1)
is a normal distribution with zero mean and unit variance
sampled at each time step.

In order for the simulation schemes to work well, �t must
be small enough to resolve motion on the smallest length
scale present in the system. The original scheme contains both
the background U0 and the roughness U1, while the modified
scheme contains only U0. Taken with the requirement for
separation of length scales, this implies that a larger time
step can be used in the modified scheme than in the original
scheme. Depending upon the form of the roughness (specified
by Q and n in the above case), this factor can be between 50-
and 100-fold.

Note also that eψ+
eψ−

is an increasing function of the
amplitude of the roughness, often rapidly so. In the modified
scheme the ratio �t/eψ+

eψ−
decreases with increasing am-

plitude, thereby increasing the accuracy of the simulations.
Conversely, one could increase the time step in line with
eψ+

eψ−
without losing accuracy. Combining these two factors,

the possibility of significant increases in simulation speed
becomes apparent. For large amplitudes of roughness, where
equilibrium is established only very slowly, and the original
scheme requires a yet-smaller-still time step to counterbalance
the increase in amplitude, the modified approach represents a
significant improvement.

Table I illustrates the scale of improvements possible when
the roughness is given by U1(x) = Q(1 − cos(nπx)). Figure 2
shows good agreement between the trajectories produced by
the original and modified simulation schemes. It is important
to note that the modified scheme is not valid on the shortest
timescales. This can be seen most easily from its failure to
follow the original scheme’s mean potential energy trajectory
upwards from zero, starting instead at Q[1 − I ′

0(βQ)/I0(βQ)].
However, this failure is not unexpected: in the modified
scheme, the effects of the roughness are manifest through its
spatial average. Physically, this averaging is the spreading out
of the particle ensemble into minima adjacent to the global
minimum. Only when a sufficient fraction of the ensemble
has made this jump does the modified scheme become valid.
This takes some time, hence the discrepancy at the start of the
motion.

FIG. 2. The equilibration of an ensemble of 105 particles in a
quartic background (α = 4, n = 4.3, Q = 2) is simulated using the
original and modified schemes with kBT = γ = 1. �tO = 10−4 and
�tM = 5 × 10−3. The uppermost lines are the mean potential energy;
the lowermost the mean-squared displacement. The inset presents
the approach to equilibrium of the mean-squared displacement on
logarithmic scales so that the differing short-time behavior of the
simulation schemes can be appreciated.

The inset of Fig. 2 hints at underoptimization of the modi-
fied scheme: the red, dashed line extends to the left of the point
at which the two schemes first coincide. A further doubling
of the time step used in the modified simulations ought to
be possible, giving an overall 100-fold increase in simulation
speed.

V. RANDOM ROUGHNESS

Let us now turn to the case of piecewise-defined rough-
ness, where the amplitude of each section is taken from a
probability distribution. Zwanzig developed his formalism by
considering the mean first-passage time from one point in
an energy landscape to another. By relating the mean first-
passage times in the presence and absence of roughness with
a multiplicative factor, he deduced Eq. (3), the effect of the
roughness upon the diffusion coefficient.

If the width of each section of the roughness is L, then the
mean first-passage time to move from x = 0 to x = NL, i.e.,
across N full sections, is given by [29]

τ = 1

D

∫ NL

0
dy eβU

∫ y

0
dz e−βU , (25)

which, upon breaking up the integrals into their component
parts across each section of the energy landscape, can be
written as

τ = 1

D

N∑
i=1

∫ iL

(i−1)L
dy eβU0 eβU1,i

∫ y

(i−1)L
dz e−βU0 e−βU1,i

+ 1

D

N∑
i=2

N−1∑
j=1

∫ iL

(i−1)L
dy eβU0 eβU1,i

∫ jL

( j−1)L
dz e−βU0 e−βU1, j .

(26)

Assuming separation of length scales, we can replace the
terms involving the rough part of the energy landscape by
their spatial average and hence remove them from within the
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integrals. Doing so, we find

τ = 1

D

N∑
i=1

eψ+
i eψ−

i

∫ iL

(i−1)L
dy eβU0

∫ y

(i−1)L
dz e−βU0

+ 1

D

N∑
i=2

N−1∑
j=1

eψ+
i eψ−

j

∫ iL

(i−1)L
dy eβU0

∫ jL

( j−1)L
dz e−βU0 .

(27)

The amplitudes characterizing the roughness are distributed
according to a probability distribution p(Q), which means that
the averaged mean first-passage time is given by

τ =
∫

dQ1 · · · dQN p(Q1, . . . , QN )τ (Q1, . . . , QN ). (28)

The separability of the joint probability distribution
p(Q1, . . . , QN ) into a product of individual probability dis-
tributions p(Q1) . . . p(QN ) means that Eq. (28) can be rear-
ranged into the following form:

τ = 1

D

N∑
i=1

[ ∫
dQi p(Qi )e

ψ+
i eψ−

i

]

×
∫ iL

(i−1)L
dy eβU0

∫ y

(i−1)L
dz e−βU0

+ 1

D

N∑
i=2

N−1∑
j=1

[ ∫
dQi p(Qi )e

ψ+
i

][ ∫
dQj p(Qj )e

ψ−
j

]

×
∫ iL

(i−1)L
dy eβU0

∫ jL

( j−1)L
dz e−βU0 . (29)

Finally, by denoting the three integrals involving the prob-
ability distribution as follows:

∫
dQi p(Qi )e

ψ+
i eψ−

i = eψ+eψ−
,∫

dQi p(Qi )e
ψ±

i = eψ±
, (30)

we are able to rewrite the expression for the averaged mean
first-passage time more compactly as

τ = eψ+eψ−

D

N∑
i=1

∫ iL

(i−1)L
dy eβU0

∫ y

(i−1)L
dz e−βU0

+ eψ+ × eψ−

D

N∑
i=2

N−1∑
j=1

∫ iL

(i−1)L
dy eβU0

∫ jL

( j−1)L
dz e−βU0 .

(31)

The mean first-passage time from x = 0 to x = NL in the
smooth background U0 alone is given by

τ0 = 1

D

∫ NL

0
dy eβU0

∫ y

0
dz e−βU0 , (32)

FIG. 3. The mean potential energy in equilibrium is plotted as
a function of a. Good agreement between numerical simulations
based upon the “original” LE and our theory is observed for a > 5.
The inset shows an example energy landscape (a = 8) in which the
ensemble equilibrated.

which can be separated in exactly the same way as Eq. (26) to
give

τ0 = 1

D

N∑
i=1

∫ iL

(i−1)L
dy eβU0

∫ y

(i−1)L
dz e−βU0

+ 1

D

N∑
i=2

N−1∑
j=1

∫ iL

(i−1)L
dy eβU0

∫ jL

( j−1)L
dz e−βU0 . (33)

Isolating the second term in the above and substituting it into
Eq. (31) produces the following expression for the averaged
mean first-passage time:

τ = eψ+ × eψ−
τ0 + 1

D
[eψ+eψ− − eψ+ × eψ− ]

×
N∑

i=1

∫ iL

(i−1)L
dy eβU0

∫ y

(i−1)L
dz e−βU0 , (34)

which now contains τ0. Unlike the case of constant-amplitude
roughness, the averaged mean first-passage time cannot in
general be related to the mean first-passage time in the ab-
sence of roughness τ0 by a multiplicative factor.

In the limit of large N the first term in Eq. (34) dominates
the averaged mean first-passage time because the number of
terms in the formula for τ0 grows as N2. This enables us to
make the following approximation:

τ ≈ eψ+ × eψ−
τ0. (35)

For a physical system, this limit corresponds to a sufficiently
short length scale of roughness when compared to the smooth
background for the effect of the roughness upon the smooth
background to be felt in many sections. An example of what
is meant by this can be seen in the inset of Fig. 3, where
rough features are observed some distance away from the
global minimum. If we use this approximate relationship as
our starting point, then, by following Zwanzig’s reasoning, the
equivalent of Eq. (20) for the case of random roughness is

γ 	→ γ = γ eψ+ × eψ−
. (36)
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In order to create a modified LE, we must specify the mod-
ified energy landscape. For the case of constant roughness,
we found that U ∗ = U0 − ∂ψ−/∂β gives a mean potential
energy in equilibrium consistent with simulation results. Let
us propose, therefore, that

U ∗ =
∫

dQ p(Q)U ∗ = U0 −
∫

dQ p(Q)
∂ψ−

∂β
(37)

and

〈ξ (t )ξ (t ′)〉 = 2γ kBT δ(t − t ′) (38)

is the correct form. Equations (36) and (37) define the modi-
fied LE for random roughness,

γ
dx

dt
= −dU ∗

dx
+ ξ (t ). (39)

When each section of the roughness has the form
Q[1 − cos(nπx)], and the amplitudes are distributed exponen-
tially p(Q) = aβe−aβQ, we find

γ = γ
a2√

(a − 1)2 − 1
√

(a + 1)2 − 1
(40)

and

U ∗ = U0 + a
∫ ∞

0
d (βQ) e−aβQ

[
1 − I ′

0(βQ)

I0(βQ)

]
. (41)

To test our hypotheses, Brownian dynamics simulations
were performed using an ensemble of 104 particles and
unit values of the thermal energy and damping. The back-
ground energy landscape and roughness are described by
m = 1.5, α = 0.1, and n = 4.0, respectively. Motion was sim-
ulated for a range of values of a (one energy landscape for
each value), and good agreement between the mean potential
energy in equilibrium and Eq. (46) was found for a � 5.
The discrepancy for a � 5 is due to the breakdown of the
assumptions that allowed us to write Eq. (35).

VI. VALIDITY

We have so far focused upon the implications of the
modified LE and neglected the important matter of its validity.
It is this topic to which we now turn. In moving from Eq. (6)
to Eq. (7) we assumed that the term involving the roughness
could be replaced by its spatial average and hence removed
from within the integral. Validity is thus a question of when
the difference between quantities derived from the exact and
approximate partition functions is deemed acceptably small.
This makes it hard to address in a satisfactory manner be-
cause the question is one of degree, not one of an absolute.
Nonetheless, by studying the mean-squared displacement in
equilibrium we hope to illustrate one way in which this
element of the work might be addressed.

The equilibrium probability distribution is given by ρ(x) =
e−βU0 e−βU1/Z . Hence, the exact expression for the mean-
squared displacement in equilibrium is

〈x2〉 =
∫

dx x2e−βU0 e−βU1∫
dx e−βU0 e−βU1

, (42)

FIG. 4. A phase space showing the boundaries between validity
and invalidity. The top three curves are for m = 10; the middle three
for m = 4; the bottom three for m = 2.

while the approximate expression—obtained by invoking sep-
aration of length scales—is

〈x2〉 ≈ 〈e−βU1〉x
∫

dx x2e−βU0

〈e−βU1〉x
∫

dx e−βU0
=

∫
dx x2e−βU0∫
dx e−βU0

. (43)

We decided that, for a given background energy landscape
and roughness, Zwanzig’s approach—and hence the modified
LE—would be deemed valid if the percentage difference
between the mean-squared displacement in equilibrium calcu-
lated using Eqs. (42) and (43) is less than 0.1%. Although this
threshold is essentially arbitrary, it is strict, which we believe
is a plus.

To study validity we used the same model energy landscape
as before, U (x) = α

m |x|m + Q(1 − cos(nπx)), and focused
upon three smooth backgrounds, m = 2, 4, and 10. For each
background, we selected an amplitude Q and a series of
values of α for which we sought to establish the value of n
beyond which the modified LE is deemed valid. In this way, a
“boundary” between validity and invalidity was established: n
as a function of α.

Figure 4 shows the behavior of these boundaries for each
background for three different amplitudes of roughness (Q =
1, 4, and 15), over a range of values of α. In each case the
boundary is well described by

n(α, m, Q) = C (Q, m)α1/m, (44)

where C is a constant for a given amplitude of roughness Q
and characteristic power m.

For the same values of α and Q, larger values of m require
larger values of n in order to reach the same threshold of
validity. Furthermore, for a given background energy land-
scape (α, m), larger amplitudes of roughness Q also demand
larger values of n: in other words C(Q, m) is an increasing
function of Q. However, note that this is an effect which
diminishes with Q—the lines representing Q = 4 and Q = 15
lie almost atop one another—but which does so less rapidly
for larger values of m. When m = 2 all three lines lie almost
on top of each other, but for both m = 4 and m = 10, there is
clear separation between the line for Q = 1 and the lines for
Q = 4, 15.
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FIG. 5. The exact mean-squared displacement is calculated as
a function of n for a quadratic background energy landscape. Q =
2, m = 2, α = 4.

Figures 5–7 show the behavior of the mean-squared dis-
placement calculated using the exact expression [Eq. (42)] as
a function of n for each of the different background energy
landscapes under study: m = 2, 4, and 10.

The inset of each plot shows the same information as the
main plot, albeit with the range of mean-squared displace-
ments severely restricted to the region on immediately either
side of the value obtained using the approximate form of the
partition function [Eq. (43)]. Our condition for validity—a
difference of no more than 0.1% between the exact and ap-
proximate values of the mean-squared displacement—and the
approach towards it now becomes clearer. Note that for m > 2
the exact result enters and leaves the ±0.1% region multiple
times before settling to coincide with the approximate result
(see Figs. 6 and 7). Consequently care must be taken to
ensure that the search for validity finds the correct value of
n. For some potential energy landscapes it could be better to
search back-to-front by starting with very large values of n and
looking for the value of n below which disagreement exceeds
0.1%. These figures provide useful context for the boundaries

FIG. 6. The exact mean-squared displacement is calculated as a
function of n for a quartic background energy landscape. Q = 2, m =
4, α = 4.

FIG. 7. The exact mean-squared displacement is calculated as a
function of n for a 10th-power background energy landscape. Q =
2, m = 10, α = 4.

in Fig. 4 by showing how the approach to validity differs from
one background energy landscape to the next.

In establishing Eq. (44) as a good model for the boundary
between validity and invalidity we are in a position to under-
stand better what is meant by the separation of the length-scale
condition. Multiplying the expression for the potential energy
landscape by β to render it dimensionless and rewriting the
resulting expression in terms of constants with the dimensions
of length gives

βU (x) =
∣∣∣∣ x

L0

∣∣∣∣
m

+ βQ

[
1 − cos

(
2πx

L1

)]
, (45)

where L0 = (βα/m)−1/m and L1 = 2/n. Inserting these ex-
pressions into Eq. (44) we find

L0

L1
= C(Q, m)

2

(
m

β

) 1
m

. (46)

Evaluating Eq. (46) for Q = 1, β = 1 for each of the three val-
ues of m for which boundaries were calculated (m = 2, 4, 10)
gives the following constants: 2.5, 3.0, and 5.5, respectively. If
we can interpret L0 and L1 as characteristic length scales of the
background and the roughness, respectively, then it is possible
to pass comment upon the previously invoked separation of
the length-scale condition. Following Zwanzig’s work [17]
we wrote this condition as L0 � L1. However, the constants
obtained from Eq. (46) reveal that a high degree of validity can
be obtained for length scales rather closer to one another than
might be inferred from this form of the condition. Perhaps
all this serves to illustrate the difficulties associated with
making concrete statements on a topic which is by definition
a matter of degree. We nonetheless hope that this discussion
has offered some insights into how the question of validity
might be addressed. Likely the most important result is that
the shape of the boundary [Eq. (44)] is closely related to the
shape of the background energy landscape.

VII. CONCLUSIONS

Zwanzig proposed a formalism for modeling diffusion in
rough potential energy landscapes based upon a modified
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version of the Smoluchowski equation. We tested Zwanzig’s
proposal and found that its predictions disagreed with the
results of numerical simulations for all but the smallest
amplitudes of roughness. Using the configurational partition
function, we derived an alternative amendment to the energy
landscape, which brought Zwanzig’s formalism into agree-
ment with simulations. We proposed a modified version of
the overdamped Langevin equation, which coarse grained the
effects of the roughness, from which we constructed a simu-
lation scheme. Peculiarities of the scheme lead to potentially
significant reductions in computational time. We extended our
findings to the case of roughness with randomly distributed
amplitudes. We again proposed a modified Langevin equation
and observed good agreement with simulations for the case
of exponentially distributed amplitudes. Finally, the question
of when this scheme is valid was then addressed by studying

how the discrepancy between the mean-squared displacement
in equilibrium calculated using the exact and approximate
formulas changes as a function of the properties of the po-
tential energy landscape. Requiring a discrepancy of less than
0.1% enabled a boundary between validity and invalidity to be
drawn, which was then reinterpreted in terms of characteristic
length scales. Zwanzig’s separation of length scales condition
for validity was then examined and found to be satisfied more
readily than might first be supposed.
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