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The empirical velocity of a reaction-diffusion front, propagating into an unstable state, fluctuates because
of the shot noises of the reactions and diffusion. Under certain conditions these fluctuations can be described
as a diffusion process in the reference frame moving with the average velocity of the front. Here we address
pushed fronts, where the front velocity in the deterministic limit is affected by higher-order reactions and is
therefore larger than the linear spread velocity. For a subclass of these fronts—strongly pushed fronts—the
effective diffusion constant Df ∼ 1/N of the front can be calculated, in the leading order, via a perturbation
theory in 1/N � 1, where N � 1 is the typical number of particles in the transition region. This perturbation
theory, however, overestimates the contribution of a few fast particles in the leading edge of the front. We suggest
a more consistent calculation by introducing a spatial integration cutoff at a distance beyond which the average
number of particles is of order 1. This leads to a nonperturbative correction to Df which even becomes dominant
close to the transition point between the strongly and weakly pushed fronts. At the transition point we obtain a
logarithmic correction to the 1/N scaling of Df . We also uncover another, and quite surprising, effect of the fast
particles in the leading edge of the front. Because of these particles, the position fluctuations of the front can
be described as a diffusion process only on very long time intervals with a duration �t � τN , where τN scales
as N . At intermediate times the position fluctuations of the front are anomalously large and nondiffusive. Our
extensive Monte Carlo simulations of a particular reacting lattice gas model support these conclusions.
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I. INTRODUCTION

Effects of shot noise on the propagation of macroscopic
reaction-diffusion fronts have attracted much attention in
physics, chemistry, and biology [1,2]. The shot noise is a
natural consequence of the discreteness of the constituent
particles and of the randomness of elemental processes of
reactions and diffusion. The shot noise causes a systematic
shift in the mean front position, compared with the determin-
istic prediction, and position fluctuations around the mean.
Typical fluctuations of the front position around the mean can
be usually described in terms of front diffusion [2]. A natural
question then is how the corresponding diffusion constant D f

scales with the characteristic number N � 1 of particles in
the transition region of the front. The answer to this question
strongly depends on whether the front propagates into an
unstable or a metastable (that is, linearly stable but nonlinearly
unstable) state of the underlying deterministic theory [1,2].
For fronts propagating into a metastable state, D f exhibits the
a priori expected 1/N scaling [2–4], and it can be calculated
by using a stochastic reaction-diffusion equation, that governs
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the system, in conjunction with a perturbation expansion in
1/N � 1 [3]. At the other extreme one finds pulled fronts.
For this subclass of fronts, propagating into an unstable state,
the asymptotic front velocity, as predicted by the underlying
deterministic theory, is determined by the leading edge of the
front, and it is equal to the linear spread velocity [1]. The
pulled fronts are extremely sensitive to the shot noise in their
leading edge [1,2,5–9]. For such fronts the front diffusion
constant D f scales as ln−3 N [7], that is it is rather large.

There is, however, an intermediate class of fronts that has
received much less attention. These are pushed fronts propa-
gating into an unstable state [1]. Their asymptotic velocity, as
predicted by the deterministic theory, is affected by the higher-
order reactions and, as a result, exceeds the linear spread
velocity [1]. The effects of shot noise on the propagation of
such fronts have been recently studied by Birzu et al. [10].
They described pushed fronts by a simplified stochastic partial
differential equation (sPDE) which accounts for the shot noise
of the particle reactions, but not of the particle diffusion.
They observed that the pushed fronts can be divided into two
subclasses—which we will call strongly pushed and weakly
pushed—in their relation to the perturbation theory of Ref. [3].
For the strongly pushed fronts the spatial integrals, entering
the perturbative expression for D f in Ref. [3], are convergent,
and one obtains the same scaling behavior D f ∼ 1/N as in
the well-studied metastable case [10]. For the weakly pushed
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fronts the perturbative expression for D f in Ref. [3] is diver-
gent, signaling a much larger, nonperturbative contribution to
D f coming from the leading edge of the front [10].

In this paper we deal with fluctuations of the strongly
pushed fronts, leaving the weakly pushed fronts for a future
work. As in our previous works on fluctuating reaction-
diffusion fronts [3,4,8,9], we consider a class of reacting
lattice gas models which involve random walk on a one-
dimensional lattice and onsite reactions among a single
species of particles. Our analysis applies, in a proper parame-
ter region, to many sets of reactions for which the continuous-
in-space deterministic limit of the model—a deterministic
reaction-diffusion equation—describes a pushed front prop-
agating into an unstable state. Upon a proper rescaling, this
equation has a single dimensionless parameter of order unity
which we call γ . This parameter affects the asymptotic prop-
agation velocity of the front and determines whether the front
is strongly or weakly pushed. Taking into the account the
shot noises of particle reactions and diffusion, one can obtain
an sPDE [3], where the noise terms are small when N � 1.
For the strongly pushed fronts, which we focus on here, the
perturbative expression [3] for D f turns out to be convergent,
as in the simplified model of Ref. [10]. However, by extending
the spatial integration in that perturbative expression into the
region where the average number of particles drops below
O(1), this calculation significantly overestimates D f . To begin
with, the sPDE [3] is not expected to be correct there. But
even if it were correct, this region is dominated by noise
and, regardless of N , there is no reason to believe that the
perturbation theory [3] remains applicable.

To obtain a better approximation for D f , we introduce an
integration cutoff at a distance beyond which the average
number of particles is of order 1. The cutoff leads to a
negative nonperturbative correction to D f which scales as
N−1−ν , where the parameter 0 < ν < 1 depends only on
γ . The nonperturbative correction is much larger than the
expected 1/N2 correction that would come from the second
and third orders of the perturbation theory of Ref. [3]. Even
more importantly, it becomes dominant close to the transition
point between the strongly pushed and weakly pushed fronts.
At the transition point we obtain a logarithmic correction to
the 1/N scaling: D f ∼ ln N/N .

We also find a striking additional effect of the few fast
particles at the leading edge of the front, and this effect is
exclusive to pushed fronts. As we show here, the position
fluctuations of the strongly pushed fronts can be described as
diffusion in the moving frame only when they are observed
over very long time intervals, �t � τN , where the charac-
teristic time τN scales as N . At intermediate times the front
position fluctuations in the moving frame are nondiffusive.
Remarkably, they are almost independent of N and therefore
very large.

Our theoretical results are supported by extensive Monte-
Carlo simulations, which we performed in the region of
parameters where the front is (i) strongly pushed and (ii)
relatively close to the transition point between the strongly
and weakly pushed fronts.

The remainder of the paper is organized as follows. In
Sec. II we formulate the model, present the governing equa-
tions and evaluate the diffusion coefficient D f of the strongly
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FIG. 1. The density profile of a propagating stochastic pushed
front on the lattice with lattice constant h = 1. Shown is the sim-
ulated number density of the particles (the number of particles per
site) as a function of the integer coordinate X = i. The smooth curve
is the theoretical deterministic profile (10), shifted to match the
simulated front. The parameters are: α = 1, β = 2/45, σ = 1/900,

and D0 = 50. For these parameters K = 60, γ = 1.5, and N = 300.

pushed fronts. In Sec. III we discuss the large deviation func-
tion of the front velocity fluctuations and the fluctuations of
the empiric velocity at intermediate times. Section IV presents
our simulation method and a comparison of simulation results
with theory. Section V contains a brief summary and discus-
sion of our results.

II. THEORY

A. Model and governing equations

The departure point of our analysis is a microscopic model
which involves a single species of particles, which we call
A, residing on a one-dimensional lattice with lattice constant
h. The number of particles ni on each lattice site i varies in
time as a result of two types of Markov stochastic processes:
onsite reactions among the particles, and independent random
walk (where a particle hops with equal probabilities to any
of the two adjacent sites) with the rate constant D0. A simple
and generic example, that we will be mostly working with,
includes three onsite reactions: the branching A → 2A with
the rate constant α, and the reactions 2A → 3A with the
rate constant β and 3A → 2A with the rate constant σ . We
will assume a strong rate disparity, D0 � α � β � σ , and
introduce two dimensionless parameters K = 3β/(2σ ) � 1
and γ = 8ασ/(3β2), which we will assume to be O(1) [11].
The characteristic steady-state population size on a single site
scales as K . The parameter γ determines the front type, as
we will see shortly. A snapshot of such a stochastic front is
shown in Fig. 1. We obtained it in Monte Carlo simulations,
described in Sec. IV.

As D0 is very large compared with α, the random walk on
the lattice can be approximated by the continuous Brownian
motion on the line, with the diffusion constant D = D0h2/2.
In this regime, and for typical (not large) fluctuations around
the deterministic front, one can derive a continuous sPDE for
the rescaled particle density u(x, t ) = ni/K as a function of
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rescaled time t and coordinate x [3,12]:

∂t u(x, t ) = α f (u) + D∂2
x u +

√
αg(u) h

K
η(x, t )

+ ∂x

[√
2u(x, t ) Dh

K
χ (x, t )

]
, (1)

where η(x, t ) and χ (x, t ) are independent Gaussian noises
which are δ-correlated both in space and in time with zero
mean and unit magnitude:

〈η(x, t )η(x′, t ′)〉 = 〈χ (x, t )χ (x′, t ′)〉= δ(x − x′) δ(t − t ′). (2)

Further, for the three reactions that we have introduced,

f (u) = u + 2u2

γ
− u3

γ
, (3)

g(u) = u + 2u2

γ
+ u3

γ
. (4)

The terms with η(x, t ) and χ (x, t ) describe the shot noises
of the particle reactions and of the particle diffusion, respec-
tively. In Ref. [10] the noise of the random walk was not
taken into account. This omission is not essential, except for
numerical factors, in the description of the effective diffusion
of the front. The omission becomes, however, crucial in the
description of the positive fluctuations of the front velocity,
coming from a few particles outrunning the front. As we show
here, at intermediate times these fluctuations become very
important, as they determine typical fluctuations of the front
velocity. To describe them, however, we will have to abandon
the sPDE (2) altogether and return to the microscopic model;
see Sec. III.

It is convenient to work in rescaled coordinates. Let us
measure time in units of 1/α and the coordinate x in units of
the diffusion length

√
D/α. As a result, the units of velocity

are
√

αD, and the units of diffusion constants are D. The
rescaled form of Eq. (2) is

∂t u(x, t ) = f (u) + ∂2
x u(x, t ) + 1√

N
R(x, t, u), (5)

where

R(x, t, u) =
√

g(u) η(x, t ) + ∂x[
√

2u χ (x, t )], (6)

and N � 1, the characteristic number of particles in the
transition region of the front, is formally defined as N =
K

√
D/αh2 ≡ K

√
D0/2α. The rescaled noises η(x, t ) and

χ (x, t ) obey Eq. (2), but with the rescaled coordinate and time.
In the absence of the noise terms, Eq. (5) is a well-known

deterministic reaction-diffusion equation,

∂t u = f (u) + ∂2
x u. (7)

For our particular set of reactions the polynomial f (u) has two
nonnegative roots: a stable one,

u = U0 = 1 +
√

1 + γ , (8)

and an unstable one, u = 0. Suppose that the boundary condi-
tions are u(x → −∞, t ) = U0 and u(x → ∞, t ) = 0. Equa-
tion (7) has a traveling-front solution (TFS) u(x, t ) = U (ξ ),
ξ = x − c0t , which obeys the ordinary differential equation

(ODE)

U ′′ + c0U
′ + U + 2U 2

γ
− U 3

γ
= 0. (9)

The solution of this ODE, subject to the boundary conditions,
is unique up to translations in ξ , and quite simple:

U (ξ ) = U0

1 + eλξ
. (10)

The spatial decay rate of the front, λ, is equal to

λ =
√

γ + 1 + 1√
2γ

, (11)

and the (deterministic) front velocity is

c0 = 3
√

γ + 1 − 1√
2γ

> 0. (12)

Importantly, Eqs. (10)–(12) correctly describe an asymptotic
front, developing from a localized initial condition for Eq. (7),
only when the front is pushed, that is c0 > 2, see, e.g., Ref. [1].
This occurs at λ > 1 or, in terms of γ , at 0 < γ < 8. For
λ < 1, or γ > 8, the front is pulled: here Eqs. (10)–(12) are in-
applicable, and the correct asymptotic front velocity c0 is not
affected by the nonlinear terms of the function f (u). Rather,
it coincides with the linear spread velocity for Eq. (7) which,
for f (u) from Eq. (3), is equal to 2. The present paper deals
only with the pushed fronts. Figure 1 shows a comparison of
Eq. (10) with a snapshot of simulated stochastic front.

B. Diffusion of strongly pushed stochastic fronts

Now let us return to the sPDE (5). Using the small param-
eter N−1/2 � 1, the authors of Ref. [3] (see also earlier works
[13–15] on qualitatively similar front models) developed a
perturbation theory for a model similar to Eq. (5), but where
the front propagates into a metastable state. In the first order
in N−1/2 � 1 one obtains a closed-form analytic result for
the effective diffusion constant D f , which describes typical
fluctuations of the front position around its mean [3]:

D f = A∞
N

, (13)

where

A∞ = J1(∞) + J2(∞)

J2
3 (∞)

, (14)

and the functions J1(ξ ), J2(ξ ), and J3(ξ ) are given by the
following expressions:

J1(ξ ) = 1

2

∫ ξ

−∞
g[U (ξ )][U ′(ξ )ec0ξ ]2 dξ, (15)

J2(ξ ) =
∫ ξ

−∞
U (ξ )[(U ′(ξ )ec0ξ )′]2 dξ, (16)

J3(ξ ) =
∫ ξ

−∞
[U ′(ξ )]2ec0ξ dξ . (17)

For a front propagating into a metastable state, all three quan-
tities J1(∞), J2(∞), and J3(∞) are finite, and the perturbation
theory [3] is consistent. When applying Eqs. (14)–(17) to the
pushed fronts propagating into an unstable state, one can see
that the quantity J3(∞) is finite for all pushed fronts [10], that
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is for 0 < γ < 8. The quantities J1(∞) and J2(∞), however,
are finite only for c0 > 3/

√
2 or 0 < γ < 16/9: these are

the strongly pushed fronts. For c0 < 3/
√

2, or γ > 16/9
(the weakly pushed fronts) the quantities J1(∞) and J2(∞)
are infinite, leading to a divergent expression for D f [10].
This formal divergence signals a much larger, nonperturbative
contribution to D f for the weakly pushed fronts, coming from
the leading edge of the front.

For the strongly pushed fronts, a convergent expression for
D f gives a valid leading-order behavior of D f at N → ∞.
However, extending the spatial integration into the leading-
edge region, where there are only a few particles, or no
particles at all, one overestimates D f . To obtain a more
accurate expression for D f , we will estimate a nonperturbative
negative correction to the leading-order expression, described
by Eqs. (13) and (14). We will achieve it by introducing
an integration cutoff in Eqs. (15)–(17) at a distance beyond
which the average number of particles is O(1). As we will see
shortly, this nonperturbative correction for the strongly pushed
fronts scales with N as N−1−ν , where 0 < ν < 1 depends only
on γ . The correction is much larger than the expected O(N−2)
correction that would come from the perturbation theory [3]
in 1/N , extended to second and third orders. The N−1−ν

correction becomes quite significant in comparison with the
leading order term N−1 even for large N , when we approach
the transition point between the strongly and weakly pushed
fronts, where ν tends to zero.

Implementing this program, we truncate the integrals in
Eqs. (14)–(17) at the point ξ0 where the average rescaled
particle density U (ξ ) is equal to 1/(kN ), where k = O(1). We
obtain

D f = A(N )

N
, where A(N ) = J1(ξ0) + J2(ξ0)

J2
3 (ξ0)

, (18)

ξ0 is the root of the algebraic equation

U (ξ0) = 1

kN
, (19)

and N � 1. We can write

Ji=1,2,3(ξ0) = Ji(∞) −
∫ ∞

ξ0

. . . dξ . (20)

As ξ0 � 1, the integrals from ξ0 to ∞ can be evaluated by
using the leading-edge asymptotic of U (ξ ) from Eq. (10):

U (ξ ) � U0e−λξ . (21)

In addition, we can set there g(U ) � U . As a result,

J1(ξ0) � J1(∞) − U 3
0 λ2

2(3λ − 2c0)
e−(3λ−2c0 )ξ0

� J1(∞) − U 3
0 λ2

2(3λ − 2c0)
(U0kN )−(3λ−2c0 )/λ, (22)

J2(ξ0) � J2(∞) − U 3
0 λ2(λ − c0)2

3λ − 2c0
e−(3λ−2c0 )ξ0

� J2(∞) − U 3
0 λ2(λ − c0)2

3λ − 2c0
(U0kN )−(3λ−2c0 )/λ, (23)

J3(ξ0)� J3(∞) − U 2
0 λ2

2λ − c0
e−(2λ−c0 )ξ0 , (24)

FIG. 2. ν versus γ (top) and versus c0 (bottom), as described by
Eqs. (27) and (28), respectively.

where λ and c0 are given by Eqs. (11) and (12), respectively,
and

ξ0 � 1

λ
ln(U0kN ), (25)

as obtained from Eq. (19). Since γ > 0, the factor 2λ − c0

in the exponent of the subleading term in Eq. (24) is larger
than the factor 3λ − 2c0 in the exponents of the subleading
terms in Eqs. (22) and (23). Therefore, the subleading term in
Eq. (24) should be neglected to avoid excess of accuracy, and
we obtain

A(N ) � A∞ − U 3
0 λ[1 + 2(λ − c0)2]

2νJ2
3 (∞)

(U0kN )−ν, (26)

where

ν = 3 − 2c0

λ
= 8

√
γ + 1 − 3γ − 8

γ
, 0 < γ <

16

9
. (27)

As γ increases from 0 to 16/9, ν decreases from 1 to 0, see
the top panel of Fig. 2.

Importantly, the following relationship between λ and c0,

λ =
c0 +

√
c2

0 − 4

2
, (28)

holds for all pushed fronts. This formula is independent of
the particular three-reaction model. Indeed, it is obtained by
solving the following generic equation:

U ′′ + c0U
′ + U = 0 (29)
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[a linearized version of Eq. (9)], and choosing, among the two
exponential solutions, the one with the higher decay rate [1].
Using Eq. (28), we can express the exponent ν through c0 in a
model-independent form:

ν = c0

√
c2

0 − 4 − c2
0 + 3; (30)

see the bottom panel of Fig. 2. The other coefficients in
Eq. (26)—A∞,U0, and J3(∞)—are model-dependent. The
condition ν > 0 guarantees that the correction O(N−ν ) in
Eq. (26) is small at large N . This condition is equiva-
lent to c0 > 3/

√
2 = 2.12132 . . . ; it defines the strongly

pushed fronts. In our particular three-reaction model it reads
γ < 16/9.

The exponent ν becomes small as one approaches the
strong-weak transition point c0 = 2.12132 . . . , or γ = 16/9.
Therefore, at not too large values of N , the correction ∼N−ν

in Eq. (26) (and the corresponding correction ∼N−1−ν to D f )
can be quite significant.

1. γ = 3/2, or c0 = 2.1612 . . .

As a particular example, let us evaluate A(N ) from Eq. (26)
for γ = 3/2. Here λ � 1.4902, U0 � 2.5811, and ν �
0.09941. A numerical evaluation of the integrals J1,2,3 yields
J1(∞) � 114.66, J2(∞) � 118.86 and J3(∞) � 8.42097. As
a result, A∞ � 3.2931, and Eq. (26) yields

A(N ) � 3.2931 − 3.1438(kN )−0.09941. (31)

The exponent ν � 0.09941 is very small, so the correction is
quite significant. In this approximate theory the parameter k =
O(1) is arbitrary, and it can serve as an adjustable parameter.
In Sec. IV B we will compare the prediction of Eq. (31) with
Monte Carlo simulations of the three-reaction system on the
lattice.

2. Approaching the strong-weak transition

All the three integrals J1,2,3(∞) depend on γ . In particular,
the integrals J1,2(∞) diverge at infinity at the transition point
γ = 16/9. Let us approximately evaluate A(N ) and, therefore,
the diffusion constant D f of the front, in the vicinity of the
transition point, and see the effect of cutoff there.

As γ approaches 16/9 from below, the integrals J1,2(∞)
are dominated by the region ξ � 1, where we can again use
the large-ξ asymptotic of U (ξ ) from Eq. (21). As a result, we
find that J1,2(∞) behave as

J1(∞) = U 3
0 λ2

2

∣∣∣∣
γ=16/9

1

3λ − 2c0
+ . . . , (32)

J2(∞) = U 3
0 λ2(λ − c0)2

∣∣
γ=16/9

1

3λ − 2c0
+ . . . . (33)

As γ → 16/9, the denominator 3λ − 2c0 vanishes, and
J1,2(∞) diverge. The dots . . . in Eqs. (32) and (33) denote
subleading constant terms. These can be neglected, because
their contribution to D f scales as 1/N , which is small com-
pared with the correction O(N−ν ), coming from the integra-
tion from ξ0 to ∞.

In contrast to J1,2(∞), the integral J3(∞) is well-behaved
at γ = 16/9. Moreover, using Eq. (24), we can evaluate it

exactly:

J3(∞)
∣∣
γ=16/9 = 8

9

∫ ∞

−∞
e

3ξ√
2 sech4

(
ξ√
2

)
dξ

= 20
√

2π

9
= 9.87307 . . . . (34)

The other parameters at the transition point are c0 = 3/
√

2,
λ = √

2, and U0 = 8/3. The evaluation of the subleading
correction term is straightforward, and we obtain

A(N ) = λ[1 + 2(λ − c0)2]U 3
0

2J2
3 (∞)

∣∣∣
γ= 16

9

1 − (U0kN )−ν

ν
+ · · ·

= 48
√

2

25π2

1 − (U0kN )−ν

ν
+ · · ·

= 0.27511 . . .
1 − (U0kN )−ν

ν
+ · · · , (35)

where one can put ν = 2
√

2(c0 − 3/
√

2). Since

lim
ν→0

1 − (U0kN )−ν

ν
= ln(U0kN ),

we obtain the following asymptotic behavior of A(N ), and
hence of D f (N ), exactly at the strong-weak transition point:

D f (N )
∣∣
γ=16/9 � 48

√
2

25π2

ln[(8/3)kN]

N
. (36)

The numerical coefficient in Eq. (36) is model-dependent.
However, the ln N/N scaling of D f at the transition between
the strongly pushed and weakly pushed fronts is universal.

Going back to Eq. (35), we notice that, at |ν| � 1, A(N )
is an analytic function of ν. This suggests that Eq. (35) is
also correct for small negative ν, that is for the weakly pushed
fronts close to the transition point.

III. FAST PARTICLES, LARGE FLUCTUATIONS,
AND LONG TRANSIENT

We have argued in the previous section that a few parti-
cles in the leading edge of the front introduce an important
correction to the front diffusion constant. These particles also
play an additional, and a truly dramatic, role at intermediate
times, 1 � �t � N . To see it, let us introduce the probability
distribution P(c,�t, N ) of observing a specified empirical
velocity of the front c = �X/�t , on the time interval �t .
Here �X = Xf − X0 is the displacement of the front during
this time interval. Let us denote the average value of the
empirical velocity (which is the typical velocity of the front)
by c̄; it differs from c0 by a correction which vanishes as
N → ∞. At �t � 1, the probability of observing any value
of c different from the average value c̄ is exponentially small,
and P(c,�t, N ) exhibits a large-deviation behavior,

− ln P(c,�t, N ) � �t r(c, N ), (37)

with a rate function r(c, N ). This rate function has been un-
known except its asymptotic at |c − c̄| � c̄. This asymptotic
corresponds to the typical fluctuations of the front, which are
describable by the perturbation theory in 1/N , see Sec. II B.
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In this regime, and not too close to the strong-weak transition,
r(c, N ) is a parabolic function of c:

r(c, N ) � (c − c̄)2

4D f
= N

4A(N )
(c − c̄)2. (38)

The function A(N ) is given by Eq. (26) but, for the purpose
of this section, it will suffice to neglect the cutoff-induced
correction and set A(N ) � A∞ = const. Notice that, as N � 1,
the parabola (38) is very steep.

The large-deviation regime of positive velocity fluctua-
tions, c − c̄ � c̄, is dominated by a very few particles, out-
running the front. Here the sPDE (5) is inapplicable, and
we should return to the microscopic model. Because of the
disparity of rates, we can account only for the random walk
and the branching reaction A → 2A in this region of space and
neglect the higher-order reactions 2A → 3A and 3A → 2A.
Since the hopping rate D0 is very large, the branching ran-
dom walk is equivalent to the branching Brownian motion
(BBM). In the rescaled variables the branching rate and the
diffusion constant of the particles are both equal to 1. The
large-deviation properties of the BBM are quite well known
[16,17]. The probability density of the empirical velocity has
the form of Eq. (37) with the rate function

r(c, N ) � c2

4
− 1, c − c̄ � 1. (39)

To remind the reader: at large N c̄ is close to c0 and larger than
2 for the pushed fronts that we are studying. We emphasize
that the parabola (39) is independent of N .

In the large-deviation regime of negative velocity fluctua-
tions, c̄ − c � c̄, the physics is very different. To significantly
decelerate the front, the shot noise has to modify the density
profile in the whole transition region. Similar situations were
previously studied for the fronts propagating into a metastable
state [3,4], and for the pulled fronts [8,9]. Here one can
apply the optimal fluctuation method (other names: WKB
approximation, instanton method, etc.) [3,8,9]. For our present
purposes it suffices to know that the rate function r(c, N ) is
proportional to N in this regime and very steep.

The asymptotics (38) and (39) of the rate function r(c, N )
are schematically depicted in Fig. 3. Both are parabolas, but
the parabola (38) is much steeper: it strongly depends on
N � 1, whereas the parabola (39) does not depend on N in

FIG. 3. A schematic plot of the rate function r(c, N ), see the text
around Eqs. (37)–(39).

the leading order. The behavior of r(c, N ) in the intermediate
region c − c̄ ∼ c̄ is presently unknown. An upper bound
for r(c, N ) [which gives a lower bound for the probability
distribution P(c,�t, N )] can be obtained via a tangent con-
struction: we draw a straight line, tangent to both parabolas;
see Fig. 3. Let us denote the tangency points by c1 and
c2, so that c1 < c2. Since N � 1, the tangency point c1 is
very close to c̄. A point on the tangent line corresponds
to a front history where the front moves with velocity c1

during the time �t1, and with velocity c2 during the time �t2,
where

�t1 = �t
c2 − c

c2 − c1
, and �t2 = �t

c − c1

c2 − c1
,

so that �t1 + �t2 = �t .
Now we can look into the role of large deviations or, more

precisely, of unusually fast particles outrunning the front, in
the fluctuations of the empirical velocity of the front. For that
purpose let us define the apparent diffusion constant of the
front during the time interval �t in the following way:

D∗(�t, N ) = 1
2σ 2

c (�t )�t, (40)

where

σ 2
c (�t, N ) =

∫ ∞

−∞
dc(c − c̄)2P(c,�t, N ) (41)

is the variance of the empirical velocity of the front c =
�X/�t .

When the integral in Eq. (41) is dominated by the Gaussian
asymptotic (38), the variance σ 2

c is inversely proportional to
�t and, by virtue of Eq. (40), the apparent diffusion constant
D∗ becomes independent of �t , and equal to the diffusion
constant of the front D f . For this to happen, �t must be
sufficiently large, so that the effective integration length in
Eq. (41) is within the applicability of the perturbation theory
of Sec. II B. This immediately leads to the strong inequality
�t � N .

At intermediate times 1 � �t � N , the variance σ 2
c is

dominated by the positive large-deviation tail of the distribu-
tion P(c,�t, N ), which is almost independent of N . This fact
has two important consequences. First, the apparent diffusion
constant D∗ in Eq. (40) does depend on time. Therefore,
the fluctuations of the empirical velocity of the front in this
regime are nondiffusive. Second, these fluctuations are very
large (almost independent of N). Strikingly, the larger N is,
the longer is the transient regime where the fluctuations of the
front position are anomalously large and nondiffusive.

Finally, the positive large-deviation tail of the distribution
P(c,�t, N ) is insensitive (in the leading, zeroth order in 1/N)
to whether the front is strongly or weakly pushed. Therefore,
the same intermediate-time anomalies should be also observed
for weakly-pushed fronts.

IV. SIMULATIONS

A. General

To test our theoretical predictions, we performed extensive
Monte Carlo simulations of the stochastic reacting lattice
gas model described above. We put particles on a one-
dimensional lattice with unit spacing such that every lattice
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site can be occupied by any number of particles. The length
L of the simulated system depended on the parameters. It
was chosen to allow for reliable measurements of the front
displacement for different time intervals in the steady-front
regime and varied from L = 2000 to L = 8000. The initial
particle density corresponded to the theoretical deterministic
profile (10).

Because of the single-step character of each of the three
processes, A → 0, 2A → 3A, and 3A → 2A, there is an ef-
fective birth-death process on each site and random walk
along the lattice. That is, a particle can be born with the
birth rate χ = α + β(ni − 1)/2, die with the death rate μ =
σ (ni − 1)(ni − 2)/6, or hop to any of the two neighboring
sites with the hopping rate D0. Since the number of particles
ni on each site is different, the rates change from site to
site.

To perform Monte Carlo simulations, we employed the
standard Gillespie algorithm [18]. First, a site was chosen with
probability proportional to the overall activity on that site,
which is computed as the number of particles on the site times
the sum of all the rates there. Notice that, when the hopping
rate D0 is much larger than the reaction rates, the sum of all the
rates is dominated by D0. Therefore, for a constant hopping
rate, the activity-based sampling can be simplified: a site can
be chosen with the probability proportional just to the number
of particles on that site [19].

Once a site is chosen, a particle on that site is chosen at
random, and it performs one of the three processes, with prob-
abilities proportional to the rates: phopping = D0/(D0 + χ + μ),
pbirth = χ/(D0 + χ + μ), and pdeath = μ/(D0 + χ + μ). If a
hopping process is chosen, a particle jumps to the right and to
the left with an equal probability of 1/2. After every single-
particle event, the time is advanced by

δt = 1

M(D0 + χ + μ)
,

where M is the total number of particles in the system. A no-
flux boundary condition was implemented at i = 0, and we
made sure that the position of the rightmost particle is always
smaller than the chosen system length L.

There are several practical methods of measuring the posi-
tion and empirical velocity of stochastic fronts. One method
[4] is to fit the instantaneous stochastic front to the theoretical
deterministic front solution (10), as shown in Fig. 1. The only
adjustable parameter here is the front position. In this work we
chose a more straightforward method by tracking the (integer)
position of the rightmost particle [20]. Denoting this position
by Xf (here we will use X instead of i for convenience), we
followed Xf in time and computed the empirical velocity of
the front on the time interval (t0, t f ) as �X/�t , where �X =
Xf − X0, X0 is the position of the front at time t0 (after the front
reached a steady state), Xf is the position at time t f > t0, and
�t = t f − t0. An example of such a measurement is shown in
Fig. 4. One can see the stochastic front in two positions: at t =
t0 = 20 and at t = t f = 440. The positions of the rightmost
particles are denoted by circles. In this particular simulation
the empirical velocity of the front is 2.1477, which is smaller
than the theoretical deterministic value c0 = 2.1613.

0 1000 2000 3000 4000 5000
X

0

10

20

30

40

n

FIG. 4. Measuring the empirical velocity of the front. Shown
is the number density of the particles versus the integer coordinate
X = i. The blue line corresponds to the reference time t0, the black
line corresponds to time t f . The positions of the rightmost particles
at these two time moments are denoted by circles. The parameters
are: α = 1, β = 4/15, σ = 9/225, D0 = 50, t0 = 20, t f = 440, and
L = 5200. For these parameters K = 10, γ = 3/2, and N = 50.

The two methods of measuring the front position can give
very different results at times shorter than, or comparable
with, the relaxation time of the front, which is O(1) in our
rescaled units. At long times, however, that we are interested
in in this work, the results should be very close. We compared
the two methods for N = 25 and N = 50 and found that they
indeed produced almost identical results. After averaging over
600 simulations, the difference in the front velocity, obtained
by the two methods in these two cases, was less than 0.1
percent, and the difference in the results for the front diffusion
coefficient was about one percent.

We performed a total of about 15 000 simulations with
different parameters. In each set of simulations for the same
parameters we computed the ensemble-average c̄ and the
standard deviation σc of the empirical velocity of the front
for different values of the time difference �t = t f − t0. Then
we analyzed the dependence of these two quantities on N
and on �t . As the computational cost of these simulations
scales as N3, we could reach only a limited range of N which,
nevertheless, was sufficient to give a strong evidence in favor
of our theory, as we will see shortly.

B. Simulations versus theory

Figures 5–7 summarize our simulation results on the de-
pendence of the fluctuations of the empirical velocity of the
front on the duration of the time interval �t . Figure 5 shows
the measured dependence of the apparent diffusion constant
D∗(�t, N ) from Eq. (40) on N for different values of �t .
As one can see, the N-dependence is strongly affected by the
choice of �t until sufficiently large values of �t are reached,
when D∗ becomes time-independent and approaches D f .

The dependence of D∗(�t, N ) on �t at fixed N = 50 is
shown in Fig. 6. One can see that D∗ ceases to depend on
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FIG. 5. The simulated apparent diffusion constant D∗(�t, N )
versus N for different values of �t . A log-scale is used for the vertical
axis.

�t , and approaches its asymptotic value D f , only when �t
is a few times larger than N . This agrees with our predicted
condition �t � N . This feature is in agreement with our
prediction that, at �t � N , the lower moments of the distri-
bution P(c,�t, N ) are determined by the typical, Gaussian
fluctuations, and the contribution of the few fast particles,
outrunning the front, is suppressed. Going back to Fig. 5,
we see that, for �t � N , when large positive deviations of
c contribute to the apparent diffusion constant D∗(�t, N ),
the dependence of D∗(�t, N ) on N is much weaker than
for �t � N . This supports our argument that the rate func-
tion r(c, N ) is almost independent of N at c − c̄ � c̄; see
Eq. (39).

Figure 7 focuses on the N-dependence of the true, long-
time diffusion constant of the front D f . The simulation results
are shown by the filled circles. The solid line shows the
prediction of Eqs. (18) and (31) with k = 8, showing a very
good agreement. For comparison, the red dash-dotted line
shows the leading-order prediction, Eq. (13), which ignores
the integration cutoff. Also, the black dashed line shows
the prediction of Eqs. (18) and (31) with k = 1. Here the
agreement is not as good, but still much better than with the
leading-order expression (13).

FIG. 6. The simulated apparent diffusion constant D∗(�t, N )
versus �t for N = 50. The dashed horizontal line shows our theo-
retical prediction: Eqs. (18) and (31) with k = 8. The log scale is
used for both axes.

FIG. 7. The diffusion constant of the front, Df , versus N . Shown
are (i) simulated points (the circles); (ii) predictions of Eqs. (18) and
(31) with k = 8 (the blue solid line), (iii) predictions of Eqs. (18)
and (31) with k = 1 (the black dashed line), and (iv) prediction of
Eq. (13) (the red dash-dotted line). The error bars of the simulated
points are not shown because they are smaller than the size of the
circles. The importance of the nonperturbative N−1−ν correction is
clearly seen.

V. SUMMARY AND DISCUSSION

We argued here, based on our theory and Monte Carlo
simulations, that fluctuations of the empirical velocity of
pushed fronts can be described in terms of effective diffu-
sion of the front only on anomalously long time intervals,
�t � τN , where τN scales as N , the characteristic number of
particles in the transition region of the front. For �t � τN the
fluctuations of the empirical velocity of the front are very large
(almost independent of N) and nondiffusive. This prediction is
striking and counterintuitive. Indeed, for macroscopic fronts,
the diffusion stage of the front propagation may never be
reachable, and the front fluctuations remain very large and
do not vanish “in the thermodynamic limit” N → ∞. This
anomaly is caused by a very few particles which outrun the
main front, branch, reconnect with the front, etc. This regime
requires a microscopic model for its description and cannot be
described by the stochastic PDE (5).

A long nondiffusive transient should occur for weakly
pushed fronts as well. The anomalously large duration of the
nondiffusive transient, when τN scales as a positive power
of N , is unique for the pushed fronts. Indeed, for the pulled
fronts, the large deviation form of Eq. (37) holds as well [7–9].
The rate function r(c, N ) in the region of typical fluctuations
behaves as [7]

r(c, N ) � (c − c̄)2

4D f
∼ ln3 N (c − c̄)2, (42)

and a similar argument leads to a much shorter transient, τN ∼
ln3 N , characterized by large fluctuations and a nondiffusive
behavior of the front. For fronts propagating into a metastable
state, the rate function r(c, N ) = Nφ(c) is proportional to N
for all c [3]. As a result, the nondiffusive transient is quite
short: its duration is of the same order of magnitude as the
relaxation time of the deterministic front to its asymptotic
shape, and is therefore independent of N .

In the asymptotic regime �t � τN the velocity fluctuations
of the strongly pushed front are small and diffusive. Here a
more careful treatment of a few first particles in the leading
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edge of the front yields a sizable nonperturbative negative cor-
rection to the diffusion coefficient of the front. This correction
becomes crucial close to the strong-weak transition and leads
to a logarithmic correction to the 1/N scaling of D f at the
transition point. By contrast, for the fronts propagating into an
empty region of space which is metastable deterministically,
a similar correction to D f is less significant. As one can show,
it is much smaller than 1/N2.

Finally, since the function A(N ), given by Eq. (35), is an
analytic function of ν at the transition point ν = 0 between the
strongly and weakly pushed fronts, we conjecture that Eq. (35)

remains valid for negative ν as well, once |ν| � 1. That is, we
expect that D f scales as N−1−ν for the weakly pushed fronts
close to the transition point.
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