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Fractal geometry and the mapping of Efimov states to Bloch states
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Efimov states are known to have a discrete real-space scale invariance; working in momentum space we
identify the relevant discrete scale invariance for the scattering amplitude defining its Weierstrass function as
well. Through the use of the mathematical formalism for discrete scale invariance for the scattering amplitude we
identify the scaling parameters from the pole structure of the corresponding zeta function; its zeroth-order pole is
fixed by the Efimov physics. The corresponding geometrical fractal structure for Efimov physics in momentum
space is identified as a ray across a logarithmic spiral. This geometrical structure also appears in the physics of
atomic collapse in the relativistic regime connecting it to Efimov physics. Transforming to logarithmic variables
in momentum space we map the three-body scattering amplitude into Bloch states and the ladder of energies
of the Efimov states are simply obtained in terms of the Bohr-Sommerfeld quantization rule. Thus through the
mapping the complex problem of three-body short-range interaction is transformed to that of a noninteracting
single particle in a discrete lattice.
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I. INTRODUCTION

The quantum physics of three-body resonantly interact-
ing particles is known to generate a universal hierarchy of
shallow three-body states as originally established by Efimov
[1,2] for identical bosons. For a fairly recent review of the
more general problem, e.g., treating the three-fermion state,
the effect of dimensionality as well as an update on the
experimental side, see [3]. For particles interacting through
short-range attractive interactions that are nearly resonant the
number of bound three-particle states, Efimov states, becomes
infinite if at least two of the two-body interactions have an
infinite s-wave scattering length. Aside from the amazing fact
that these states are formed in a regime where two particles
cannot bind, exhibiting what is referred to as Borromean
binding, these three-particle bound states exhibit a discrete
scaling symmetry. The discrete symmetry is manifested in
the size Rn and binding energy En of the nth Efimov state,
which scales spatially as Rn = λRn−1, and correspondingly for
the energy as En = λ−2En−1 with respect to the underlying
(n − 1) Efimov state. For the homonuclear Efimov states the
scale factor is given by λ0 = eπ/s0 where s0 = 1.006 24 is a
universal constant.

Having eluded experimental verification for over three
decades since their initial prediction, Efimov states were
experimentally observed [4] and their universality has been
demonstrated (see Ref. [5] for an experimental review).
The experimental observation was facilitated by the ability
to greatly enhance the scattering length in atomic systems
via Feshbach resonances attaining low-energy universality
in atomic few-body systems, which has led to a surge of
theoretical and experimental effort in the study of few-body
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physics. Despite the large flow of experimental papers in
which evidence of Efimov states was presented for homonu-
clear systems the experimental confirmation of the discrete
scaling trait was long forthcoming. In 2014 two Efimov states
of Cs atoms were subsequently observed [6] and three Efimov
states were experimentally detected concurrently in heteronu-
clear Li-Cs mixtures at the University of Chicago [7] and in
Heidelberg [8].

Originally of interest to the cold-atom and nuclear physics
communities the importance of Efimov physics has been
extended to many other fields. Only lately have aspects of
Efimov physics been shown to be of relevance in solid
state systems, particularly for topological semimetals and
graphene. More specifically it has been shown to be related
to quasi-Rydberg resonances in graphene and to physics of
atomic collapse [9] as well as to interaction of an electron
with an impurity in a Dirac semi-metal [10]. Recently the self-
similarity of Efimov states was shown to extend to the time
domain and ideas for observing the phenomena in cold-atom
systems [11] and trapped ion systems have been suggested
[12]. Amazingly also a connection between Efimov physics
and the binding of three-stranded DNA, which is a classical
system, was established [13–15], exhibiting in a sense what
has been referred to as the biological Efmov effect.

On the theoretical side, Efimov first obtained his original
solution employing hyperspherical coordinates [1,2]. Though
originally met with skepticism the validity of Efimov’s result
was established both analytically and numerically by Amado
and Noble [16,17]. Later the three-body system with short-
range interactions was addressed in terms of an effective field
theory (EFT) formulation of the problem [18–21]. Extensions
of the theory beyond the three-body-system case have also
been considered [22,23]. The scaling behavior of Efimov
states is most evident when transforming the problem to an ef-
fective Schrödinger equation for a single particle in an inverse
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square potential [21]. The obtained Schrödinger equation is
invariant under a continuous scale transformation, however,
the problem is ill defined at short scales since the Hamiltonian
is not self-adjoint. To remedy this issue one needs to impose
a boundary condition, resulting in a remarkable result: the
boundary condition breaks the continuous scale invariance
spontaneously into a discrete scale symmetry. Such a breaking
of a continuous scale symmetry in the quantum domain is a
manifestation of a nonrelativistic scale anomaly [24]. Another
notable issue is that the scaling factor is universal in the sense
that it is independent of the chosen boundary conditions in
terms of the renormalization group (RG); this effect is tied
to the limit cycle behavior of the renormalization-group flow
equation [25]. It was originally proposed by Wilson [26] that
the RG equations can, in addition to fixed point solutions, also
admit limit cycle solutions corresponding to a discrete scale
invariance with respect to a scaling factor corresponding to
the oscillation period. Such solutions exhibit a log-periodic
dependence as a function of the characteristic scale. However,
limit cycle RG solutions are quite rare and Efimov physics is
probably the most notable example of such a solution [21,25].

Originally considered as an oddity in the energy spec-
trum of three particles with short-range interactions, Efimov
physics has long been established to have profound connec-
tions to a wide range of physical problems. On the theoretical
side the Efimov spectrum has been shown to form a geometric
series corresponding to an infinite number of weakly bound
states with an accumulation at the zero-energy threshold.
The associated Efimov states thus posses a discrete scale
invariance which is connected to a limit cycle RG limit. In this
paper we focus on the geometrical aspect of Efimov states by
employing the mathematical formalism for functions with dis-
crete scale invariance (DSI); we identify the relevant scaling
parameters and establish the appropriate Weierstrass function.
The geometrical underlying fractal structure is identified, and
finally, we use these observations to greatly simplify the
problem by mapping it to that of a Bloch state.

The remainder of this paper is organized as follows. In
Sec. II we give a brief introduction to Efimov physics,
employing the EFT formulation. Specifically the scattering
amplitude is calculated via EFT. The mathematics of functions
possessing a DSI is shortly reviewed in Sec. III. The con-
nection between scattering amplitude and DSI is established
in Sec. IV based on a Neumann series expansion, and the
corresponding Weierstrass function for the Efimov scattering
amplitude is identified as well. In this section the underlying
fractal structure of the scattering amplitude is established to
be a ray across a spiral. Transforming to logarithmic variables
Efimov states are mapped to Bloch states in Sec. V and
the Efimov spectrum is obtained from the Bohr-Sommerfeld
quantization rule. A brief discussion of the real-space for-
malism is presented in Sec. IV B. Results are discussed and
summarized in Sec. VII.

II. EFIMOV PHYSICS IN TERMS OF EFT IN A NUTSHELL

It is convenient to introduce Efimov physics in terms of
EFT; in this section we do so briefly for the sake of clarity. The
presentation closely follows the method described in Refs.
[19] and [21]. The basis for the EFT is the most general

nonrelativistic Lagrangian for a boson field ψ with mass M,
which is invariant under low-velocity Lorentz transformation
and parity,

L = ψ†

(
ı∂0 + ∇2

2M

)
ψ − C0

2
(ψ†ψ )2 − D0

6
(ψ†ψ )3 + . . . ,

(1)
where C0 and D0 are the bare low-energy coupling constants
for the two- and three-body interactions, respectively. To make
the theory renormalizable it is defined up to an ultraviolet
cutoff, �. Introducing a dummy field, d , corresponding to
a local operator which annihilates two bosons at a point,
the Lagrangian can be rewritten without the three- and the
two-body contact interaction terms:

L = ψ†

(
ı∂0 + ∇2

2M

)
ψ + �(d†d ) − g√

2
(d†ψψ + H.c.)

+ h(d†dψ†ψ + H.c.). (2)

Employing perturbation theory through a diagrammatic ex-
pansion in terms of Feynman diagrams, the first step in-
volves calculating the dressed propagator for the dummy field,
obtained by summing bubble diagrams to all orders. The
next step is obtaining an integral for the Fourier transform
of the amputated connected part of the Green’s function
〈0|T (dψd†ψ†)|0〉, resulting in a Skorniakov-Ter-Martirosian
(STM) equation [27] for the scattering amplitude,

asc(p) = K (p, k) + 2λ

π

∫ �

0
dqK (p, q)

q2

q2 − k2 − iε
asc(q),

(3)
where k(p) is the incoming (outgoing) momentum and λ = 1
for the bosonic case. For the case where a2, the two-particle
s-wave scattering length, satisfies the condition 1/a2 � p �
� and k ∼ 1/a2, the kernel in the integral, Eq. (3), is approx-
imated by

K (p, q) = 2√
3q

ln

(
q2 + pq + p2

q2 − pq + p2

)
. (4)

The main contribution to the integral comes from momenta
in the intermediate region, 1/a2 � q � �, for which the
following simplified integral equation can be obtained:

asc(p) = 4√
3π

∫ ∞

0

dq

q
asc(q)h(q, p), (5)

where

h(q, p) = ln

(
q2 + pq + p2

q2 − pq + p2

)
. (6)

The scale invariance of Eq. (6) suggests a power-law solution,
asc(p) ∼ ps, to Eq. (5). Such a power-law solution requires
that s satisfy the condition

1 − 4√
3π

Mh(q,p)(s) = 0, (7)

where Mh(q,p) is the Mellin transform with respect to the
variable, q, and the transform is defined as

M f (x)(s) =
∫ ∞

0
dx xs−1 f (x). (8)
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There are two imaginary solutions to Eq. (7) given by

s = ±ıs0 (9)

with s0 	 1.0064. Thus the solution to Eq. (5) is given by the
linear combination of

asc(p) = c+ pıs0 + c− p−ıs0 , (10)

where c± are constants. In the above-mentioned region,
1/a2 � p � �, the phase of asc(p) is well determined,

asc(p) = A cos
(

s0 ln
p

�
+ δ

)
, (11)

where A and δ are some undetermined constants. It should
be noted that the form of Eqs. (10) and (11) already suggests
the underlying one-dimensional periodic physics on which we
elaborate in Sec. V. In addition, the log periodic solution, (11),
is a known property of functions with a DSI. In the following
section we present, for the sake of clarity, a brief sketch of the
properties of functions with DSI as a basis for establishing a
connection to the three-body scattering amplitude.

III. A BRIEF INTRODUCTION TO DISCRETE
SCALING FUNCTIONS

To help express the scattering amplitude in terms of func-
tions with a DSI we briefly digress in this section to describe
the mathematical properties of functions with a discrete sym-
metry. The material in this section is a short summary of
the introductory material found in Ref. [28] combined with
Ref. [29]. In general a function with a discrete scale invariance
will obey the equation

f (x) = g(x) + 1

b
f (ax), (12)

where a and b are scaling parameters and g(x) is an initial
function. In describing physical systems Eq. (12) typically
becomes exact only asymptotically, however, for systems
defined on regular geometrical fractals such as the Cantor set
and the Sierpinsky gasket, etc., it is exact on all scales for
nearest-neighbor interactions [30]. Thus functions satisfying
Eq. (12) can usually be associated with a fractal structure.

The general solution to Eq. (12) is given by

f (x) = xln b/ ln aG

(
ln x

ln a

)
, (13)

where G(x) is a periodic function of x with period unity. A
formal iterative solution of Eq. (12) is given in the form

f (x) =
∞∑

n=0

b−ng(anx). (14)

In the specific case where g(u) = cos(u), where u = anx, one
obtains the most well-known example of a continuous func-
tion which (for ab > 1) is nowhere differentiable introduced
by Weierstrass [31] and named after him:

W (x) =
∞∑

n=0

(
1

b

)n

cos(anπx). (15)

In the regime where the Weierstrass has a fractal structure one
can associate with it a fractal dimension:

DH = 2 + ln b

ln a
. (16)

For physical systems these sorts of solutions, Eqs. (14) and
(15), are usually considered as an asymptotic case obtained for
expansions close enough to a fixed point [30]. Performing a
Mellin transform [defined in Eq. (8)], on Eq. (14) one obtains
the zeta function for f (x):

ζ f (s) = basζg(s)

1 − bas
. (17)

The zeta function has the definition

ζ f (s) = M f (s)

�(s)
, (18)

where � is the Euler gamma function.
The pole structure of ζ f (s) in Eq. (17) is composed of poles

of the analytical function g, which generally occur for integer
values and contribute only to the regular part of f , and poles
resulting from the DSI, which are given by the solutions sn of

bas = 1. (19)

Specifically

sn = − ln b

ln a
+ 2π ın

ln a
. (20)

The n = 0 case gives the real power-law solution f (x) = Cxα

to the homogeneous version of Eq. (12), i.e., g(x) = 0, where
α = − ln b

ln a , which from Eq. (16) can also be presented as α =
2 − DH .

IV. DESCRIBING THE SCATTERING AMPLITUDE
IN TERMS OF A DSI FUNCTION

Armed with the mathematics for DSI functions we can now
return to the physics of the scattering amplitude, described in
Sec. II, and attempt to reinterpret it in terms of self-similar
structures. For convenience the corresponding equations for
both the functions obeying a DSI and the scattering amplitude
have been rewritten in Table I. In defining the connection
it is of specific interest to find what the parameters a and
b which define the scaling in Eq. (12) are for the case of
Efimov physics. Furthermore, it is of interest to unmask the
underlying fractal geometrical structure at the basis of the
scattering amplitude.

A. Introducing a condition on the Neumann series solution
to the EFT integral equation

In constructing a mapping between the integral equation
for the scattering amplitude, (3), to Eq. (12), which defines
functions possessing a DSI symmetry (see Table I; defining
equation), we start by formally considering the iterative solu-
tion to the integral, Eq. (3), as a Neumann series as

asc(p) =
∞∑

n=0

λ̃nψn(p), (21)

where λ̃ = 2λ/π , ψn(p) = ∫ �

0 dk
∫ �

0 . . .
∫ �

0 . . . K (p, q1)
K (q1, q2) . . . K (qn, k)dq1 . . . dqn, and K (p, k) is defined by
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TABLE I. Efimov and DSI corresponding equations.

Case DSI Efimov

Defining equation f (x) = g(x) + 1
b f (ax) asc(p) = K (p, k) + 2λ

π

∫ �

0 dqK (p, q) q2

q2−k2−iε
asc(q)

Iterative solution f (x) = ∑∞
n=0 b−ng(anx) asc(p) = ∑∞

n=0

(
2λ̃√

3

)n ∫ �

0 dkK (ae
n p, k)

General solution f (x) = xln b/ ln aG
(

ln x
ln a

)
f±(x̃) = e±ıs0 x̃G

(
x̃

ln ae

)
, x̃ = ln p

Pole structure bas = 1 beMh(q,k)(s) = 1

Poles sn = − ln b
ln a + 2π ın

lna s±
n = ±ıs0 + 2nπs0

ln be

Eq. (4). Equation (21) can be rewritten in the form of the
iterative solution, Eq. (14) (see Table I; iterative solution), for
a DSI function under the condition

∫ �

0
dqK (p, q)K (q, k) = 2√

3
K (ae p, k), (22)

where ae is a parameter, currently unfixed, which can later be
identified with the corresponding DSI parameter in Eq. (12)
(see also Table I; defining equation). The equality in con-
dition (22) is evident when applying a Mellin transforma-
tion to both sides [see Eq. (27)]. Essentially Eq. (22) is
equivalent to the homogeneous form of Eq. (12) (see Ta-
ble I; defining equation), in terms of the Green’s function,
since

∫
dqK (p, q)K (q, k) = K (p, k), and employing this in

Eq. (22) one obtains

K (p, k) = 2√
3

K (ae p, k). (23)

Thus by comparing Eq. (23) to the homogeneous form of
Eq. (12) (see also Table I; defining equation), one obtains
the scaling parameter b ∼ √

3/2 (up to the λ̃−1 = π/2 fac-
tor). Alternatively, under the condition in Eq. (22), Eq. (21)
transforms to

asc(p) =
∞∑

n=0

(
2λ̃√

3

)n ∫ �

0
dkK

(
an

e p, k
)
. (24)

From Eqs. (12) and (14) (see also Table I; defining equation
and iterative solution), one can discern the scaling parameter
be = √

3π/4 and the periodic function

ge(p) =
∫ �

0
dkK (p, k) (25)

for the Efimov scattering amplitude. The index e was added to
identify functions and parameters relevant to Efimov physics.

In Eq. (12) (see Table I; defining equation), the two DSI
scaling parameters a and b were assumed to be fixed, defining
the pole structure of the corresponding zeta function, Eq. (20)
(Table I; poles). For the scattering amplitude for the Efimov
physics these two parameters need to be inferred. Whereas
the value of be is directly deduced from Eq. (24) (see Table I;
iterative solution), the value of the parameter, ae, needs to
be established from the pole structure of the corresponding
zeta function. Since the Efimov scattering amplitude obeys a
DSI symmetry its parameters obey Eq. (19) (see Table I; pole
structure), and since for Efimov physics s = ±s0 is fixed, ae

is automatically defined by be and s0 as

ae = exp (ı ln be/s0), be =
√

3π

4
. (26)

To obtain this result in a more rigorous manner, one starts
out by multiplying both sides of condition (22) by p(s−1) and
integrating over p, thus obtaining

4

3
Mh(p,q)(s)Mh(q,k)(s) = 4

3
ae

−sMh(p,k)(s), (27)

where the left-hand side of the equation is obtained from the
Mellin convolution theorem. The condition for the Efimov
scattering amplitude stated in Eq. (7), corresponding also to
Table I (pole structure), can also be written as

Mh(q,k)(s) = 1

be
. (28)

Keeping in mind that Mh(x,y) ≡ Mh(x/y), one obtains, upon
inserting Eq. (28) (see also Table I; pole structure) into
Eq. (27), exactly the condition for the pole structure of a
DSI function defined in Eq. (19) (see Table I; pole structure).
However, since this condition has to hold specifically for
s = ±ıs0 the value of ae is thus fixed, but in contrast to the
DSI functions discussed in the previous Sec. III, the parameter
ae for the scattering amplitude is complex. Furthermore, one
should note that the parameter ae is also a function of the
scale parameter be, contrary to what is commonly the case,
as they are usually fixed independently. These properties have
consequences regarding the self-similar geometric structure
which underlies the Efimov physics, as discussed shortly. As
a side remark we note that the condition bea±s0

e = 1 for the
Efimov states can be directly obtained from the self-similar
nature of the scattering amplitude, asc(ae p) = beasc(p), by
simply assuming a power-law solution asc(p) ∼ p−s.

It is important to note that for the Efimov scattering ampli-
tude, aside from the two poles s± = ±ıs0, the pole structure
can take on the following values:

s±
n = ±ıs0 + 2nπs0

ln be
. (29)

This pole structure should be contrasted with the DSI pole
structure introduced in Eq. (20) (see Table I; poles), in which
the real and imaginary terms are interchanged.

B. The corresponding Weierstrass function

Given the values of the DSI parameters, Eq. (26), and the
function series for the scattering amplitude, Eq. (24) (see also
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Table I; iterative solution), we can proceed and demonstrate
that the scattering amplitude can be expressed as a Weierstrass
function, Eq. (15). We begin by evaluating ge(p) defined in
Eq. (25) by estimating the sum in Eq. (24) (see also Table I;
iterative solution) by a saddle-point approximation. Taking the
derivative in terms of n and defining u = ae

nx we obtain

(ln be)ge(u) + (ln ae)uge
′(u) = 0. (30)

Inserting the value of ae = exp (ı ln be/s0) from Eq. (26) into
Eq. (30) simplifies the expression to

g′
e(u)

ge(u)
= ıs0

u
, (31)

from which ge(u) is obtained as

ge(u) = exp
( ıs0

u

)
. (32)

However, a solution with the opposite sign is also admissible,
Eq. (9), thus

ge(u) = 2 cos
( s0

u

)
. (33)

Moreover, from the definition of K (p, k) in Eq. (4) one obtains
that ge(p) = ge( 1

p ) and so we obtain

ge(u) = 2 cos

(
u

s0

)
. (34)

By employing the above result, Eq. (34), and inserting the
value of ge(p) into Eq. (24) (see also Table I; iterative so-
lution), with the definition of be from Eq. (26), the Efimov
scattering amplitude is expressed by a Weierstrass function,
Eq. (15):

asc(p) = 2
∞∑

n=0

b−n
e cos

(
an

e p

s0

)
. (35)

C. The underlying fractal structure

The DSI for the Efimov scattering amplitude is defined
by the two scaling parameters, Eq. (26). Each iterative trans-
formation multiplies the function by a constant factor be =√

3π/4 and introduces a phase ae = exp (ı ln b/s0). It is nat-
ural to connect this symmetry to a one-dimensional scattering
system, however, such a mapping does not convey the full
underlying geometric fractallike structure at the basis of the
DSI. To uncover the relevant underlying geometry, one should
extend the one-dimensional form into the plane. Since the
scale parameter ae is complex it is convenient to consider
the extension in terms of polar coordinates. We consider the
scaling parameter be as a radius vector which is a function
of the angle be(θ ). As such this also introduces an angle
dependence for ae(b(θ )). Since the periodicity requires ae(θ +
2π ) = ae(θ ) one obtains the following constraint on be such
that

ln be(θ + 2π ) = ln be(θ ) + 2πs0. (36)

To obey the above restriction, Eq. (36), be should be of a
logarithmic spiral form,

be(θ ) = b0eθs0 , (37)

where now b0 = be.

An alternative method to obtain the same result is obtained
by considering Eq. (19) for s+ = ıs0. In this case the condition
can be written as

ae
ıs0 be = 1. (38)

By the representation ae(θ ) = |ae| exp [ı(θ − θ0)] one obtains

beeıs0 ln(|ae|eı(θ−θ0 ) ) = beeıs0θ ln |ae|−s0(θ−θ0 ). (39)

Since |ae| = 1, from Eq. (26) one again obtains Eq. (37) by
identifying b0 = exp (−s0θ0).

In general the logarithmic spiral in terms of polar coordi-
nates (r, θ ) is defined by two parameters, c and α, such that
r = c exp (αθ ). It possesses the following interesting prop-
erty, which is highly relevant to the DSI as well as the Efimov
physics: the logarithmic spiral is a self-similar structure in the
sense that scaling by a factor exp(2πα) results in the same
structure, and as a result, any ray from each center meets the
spiral at distances which are a geometric progression. Thus
one can infer from Eq. (37) that in the case corresponding to
Efimov physics the spiral parameter α can be identified as α =
s0. Thus the fractal nature of the Efimov scattering amplitude
is identified as a logarithmic spiral which is obtained by
rotating by 2π and stretching, where the scaling parameter,
ae, is responsible for the rotation, and the scaling parameter,
be, for the stretching or shrinking of the function. The related
geometric procedure can be viewed in the following way.
Moving along the spiral an angle of 2π and rescaling the
radius by be, one returns to the initial position.

D. Obtaining the expression for the scattering amplitude from
the DSI formulation

Based on the knowledge gained regarding functions with
DSI (see Sec. III) the expression for the Efimov scattering am-
plitude, Eq. (11), previously obtained by solving the relevant
integral STM, Eq. (3) (see also Table I; defining equation),
can now be realized directly by the mapping. Starting with the
general solution of Eq. (12) (see Table I; defining equation)
given in Eq. (13) (see Table I; general solution) in which
G(y) is an arbitrary periodic function of its argument y with
period 1, considering the scaling parameter ae as given by
Eq. (26) with two possible complex values for s± = ±ıs0,
and expressing the solution in terms of a logarithmic variable
x̃ = ln p,

f±(x̃) = e±ıs0 x̃G

(
x̃

ln ae

)
. (40)

The above solution, Eq. (40), involves the two scales of
the three-body physics; the short-length-scale physics is de-
fined by the periodic function G(y) and the long-length-scale
physics is described by the plane wave. Taking the limit in
which one can replace the periodic function G(y) with a con-
stant, the long-scale solution is given by the solution obtained
by a linear combination of the eıs0 x̃ and e−ıs0 x̃. Reexpressing
the result in terms of p again, one obtains the known result
[19] for the scattering amplitude fsc(p) = A cos[s0 ln(p/�) +
δ], where δ is some phase to be determined by the bound-
ary conditions. We proceed below to demonstrate that under
this different viewpoint a reinterpretation of the three-body
physics can be given in terms of Bloch functions on a
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TABLE II. Efimov, DSI, and Bloch correspondence.

State DSI Efimov Bloch

Coordinate x x̃ = ln p x

Poles sn = − ln b
ln a + 2π ın

lna s±
n = ±ıs0 + 2nπs0

ln be
k = 2πn

L

Relevant function Weierstrass function Scattering amplitude Bloch wave function

Symmetry W (x) = ∑∞
n=0

(
1
b

)n
cos(anπx) asc(x̃) = eıkx̃G

[
x̃
L

]
ψ (x) = eıkxu(x)

Scale invariance Scale invariance (p), Translation invariance

translation invariance (x̃)

Geometrical structure Fractal Spiral 1D lattice

Relevant transform Mellin Mellin Fourier series

one-dimensional lattice. In this reformulation the root of the
zeta function, s0, is analogous to the wave number and x̃ =
ln p is analogous to the spatial dimension along the one-
dimensional lattice.

V. MAPPING EFIMOV STATES TO BLOCH STATES ON A
ONE-DIMENSIONAL LATTICE

In this section we use the DSI formalism to map the three-
body Efimov physics into that of a single particle confined to
a one-dimensional discrete lattice.

A. Identifying the crystal momentum and lattice constant

Equation (24) (see Table I; iterative solution), for the
three-body Efimov scattering amplitude, in terms of outgoing
momenta p, was identified with the iterative solution, Eq. (14)
(see Table I; iterative solution), of the STM, Eq. (3) (see
Table I; defining equation). Through the similarity between
the two equations the two scaling parameters, ae and be,
were identified [see Eq. (26)]. Based on this mapping the
Efimov scattering amplitude can be expressed in terms of the
general solution for functions obeying a DSI, Eq. (13) (see
Table I; general solution), using the scaling parameters and
transforming to a logarithmic variable, x̃ = ln p,

asc(x̃) = eıkx̃G

[
x̃

L

]
, (41)

where we have defined k ≡ ı(ln be/ ln ae), L = −ı ln ae, and
G(x) is a periodic function with period 1. The similarities be-
tween the Efimov scattering amplitude, functions with a DSI,
and Bloch functions are reported in Table II and graphically
represented in Fig. 1. To better understand the correspondence
between the Efimov scattering amplitude and the physics of
a particle on a one-dimensional lattice we consider the pole
structure of a function obeying a DSI as defined in Eq. (20)
(see Table I; poles) and its analog in terms of Efimov physics,
Eq. (29) (see also Table I; poles), expressing these in terms of
k and L,

s = ık + 2πn

L
, (42)

where the following identifications were considered:

s0 ↔ k,

s0/ ln be = −ı/ ln ae ↔ 1/L. (43)

In this form the connection of 2πns0/ ln be to a crystal mo-
mentum is self-evident. It should be noted that whereas the
pole structure for the DSI functions as well as for the Efimov
scattering amplitude was obtained via a Mellin transform,
the quasimomentum for the Bloch states is obtained by a
Fourier series expansion. However, the two transforms can be
connected if one considers the analytical continuation for the
Mellin transform for a logarithmic variable.

The connection between the relevant underlying sym-
metries, the DSI invariance of the Efimov physics to the
translation symmetry of the one-dimensional lattice system
becomes clear by considering Eq. (43). One should note that
considering a logarithmic variable x̃ = ln p multiplication of
the momentum p in the Efimov scattering amplitude by a
constant ae translates in terms of the logarithm variable, x̃,
to a shift of x̃ in Eq. (41) by ln ae. This shift results only
in a phase exp (ıkL) since the function G(x) in Eq. (41) is
a periodic function with period 1. The phase, according to the
identifications in Eq. (43), is s0L = ln be. Making it clear that
requiring that the Efimov scattering amplitude as described in
Eq. (41) be viewed as the Bloch function on a lattice with a lat-
tice period L = ln be/s0 defined by the condition ψ (x + L) =
exp (ıkL)ψ (x) is equivalent to requiring DSI symmetry. Thus
identifying the scattering amplitude, Eq. (41), with a Bloch

FIG. 1. Starting with the wave function for the Efimov states
in real space transforming to momentum space and considering the
scattering amplitude, the logarithmic spiral self-similar geometry is
obtained. Transforming to exponential coordinates maps the physics
into the physics of Bloch states on a one-dimensional lattice.
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function through the definitions in Eq. (43) leads directly to
the connection between the two underlying symmetries, i.e.,
multiplying p by ae is equivalent to dividing or multiplying
the function by be, which exactly defines the DSI.

Having established the analogy to Bloch states one can now
view the Efimov physics in terms of the logarithmic variable
x̃ as describing the physics of a particle on a one-dimensional
lattice, where ln ae plays the role of the lattice constant L and
s0 plays the role of the particle’s momentum. The power-law
ansatz asc(p) ∼ ps suggested as a solution to Eq. (5) [19]
simply maps into a plane-wave solution asc(x̃) ∼ exp (ıx̃s0),
where s is limited to the values ±ıs0.

To make this analogy more explicit we consider the scatter-
ing amplitude, Eq. (11), expressed in terms of the logarithmic
variable x̃ = ln p; we can now reinterpret it in terms of a Bloch
state,

asc(p) = A cos
(

s0 ln
p

�
+ δ

)
→ asc(x̃) = A cos(kx̃ + δ′),

(44)

where δ′ is a phase. In this representation the incoming
momentum (in the Efimov description) plays the role of the
spatial coordinate and s0 plays the role of an effective crystal
momentum.

B. Obtaining the Efimov spectrum
from the Bohr-Sommerfeld quantization

Employing the connection between Efimov physics and
Bloch functions and having identified the corresponding mo-
mentum through Eq. (43), the Efimov spectrum can now
simply be obtained from the Bohr-Sommerfeld quantization
rule,

s0

∫ x̃

x̃1

dx̃ = (n + δ)π, (45)

where δ is a phase resulting from the boundary conditions.
Keeping in mind that the spatial coordinate is actually the
logarithm of the momentum in the Efimov description x̃ =
ln p, expressing Eq. (45) in terms of p, performing the integra-
tion, and employing the viral theorem, we obtain the Efimov
spectrum

En = − p2
∗

m
e−2πn/s0 , (46)

where p∗ = e−δπ/s0 ln x̃1.

VI. REAL-SPACE FORMALISM

In this section we analyze Efimov physics in real space,
thus we are able to connect it with the physics of the relativis-
tic atomic collapse, which is defined through the same fractal
geometry, that of a ray across a logarithmic spiral.

A. The Efimov connection to DSI in real space

In considering an operator with a Weierstrass spectrum γ n,
where n is an integer, it was shown [32] that the Schrödinger
equation for the inverse square potential of the form

U (x) = − A

x2
(47)

has an infinitely deep spectrum with states clustering at E =
0,

En = −E0γ
n, (48)

referred to as a Weierstrass spectrum. When one requires that
two solutions with energies E1 and E2 are orthogonal the ratio
between these energies is given by

E1

E2
= exp

⎛
⎝ 2πn√

A − 1
4

⎞
⎠, (49)

where n is an integer. To obtain the Weierstrass spectrum,
Eq. (48), the constant A, in Eq. (47), defining the potential
takes the value

A = 1

4
+ 4π2

ln2γ
. (50)

The above result relates directly to Efimov physics since in
the real-space calculations using hyper-spherical coordinates
for the three-body problem Efimov physics emerges from a
Schrödinger equation with an inverse squared potential [21].
Given for convenience in coordinates in which h̄ = 1,

− 1

2μ

[(
d2

dR2

)
+ s0

2 + 1/4

R2

]
ψ (R) = Eψ (R), (51)

where R ≡= 2
3 (r2

12 + r2
13 + r2

23), and ri j are the relative parti-
cle coordinates, μ is the effective mass, and E is the energy of
the bound state. Comparing Eqs. (47) and (50) to Eq. (51) one
obtains the following identification:

s0 ↔ ± 2π

ln γ
. (52)

Considering a semiclassical-type solution using units in
which the mass of the particles is m = 1 [33], the action given
by

S = ±ı

∫ R0

dR′k(R′), (53)

where k(R) = √
[E − V (R)], and V (R) = (s2

0 + 1/4)/R2,
which can be identified with U (x) in Eq. (47) by employing
the connection in Eq. (52) and applying it to Eq. (50). In the
region of small R where E can be neglected the boundary
conditions for the integral are given by the turning point R0,
which are the roots of s2

0 + 1/4 = 0,

ψ (R) ≈ A+e
(

1
2 +ıs0

)
ln R + A−e

(
1
2 −ıs0

)
ln R

, (54)

where A+ and A− are constants.
According to the semiclassical Bohr-Sommerfeld approxi-

mation the phase difference between the two cases should be
quantized such that

2s0 ln(R) = 2πn. (55)

The Bohr-Sommerfeld condition, Eq. (55), thus defines the
discrete periodicity of k(R) ∼ ln R which is at the heart of
Efimov physics and DSI functions. Equation (55) is equivalent
to Eq. (45) and hence also leads to the spectrum in Eq. (46).
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Similar physics is described in Ref. [34] in which the prob-
lem of atomic collapse in the relativistic regime is analyzed.
It is worth mentioning since in this case the spiral geometry is
clearly evident. The collapsing trajectories for an electron into
the nucleus are best defined through the quasiclassical radial
momentum equation,

p2
R = v−2

F

(
E + Ze2

R

)2

− M2

R2
, (56)

where R is the radial distance to the nucleus, pR is the radial
momentum, e the electron charge, Z the atomic number, M the
electron angular momentum, and vF the Fermi velocity. The
spiral trajectories are directly manifest in the atom collapse
by the collapse criterion defined in terms of the classical
relativistic dynamics where the collapse occurs for the case
where M < Ze2/c for E > 0. In this case the ray across the
spiral is manifested from quantum mechanics considerations
by the tunneling case in which M < Ze2/c for E < 0. It
is currently impossible to actually experimentally observe
atomic collapse in nuclei since the condition for it to occur
is Z > 170. However, in Ref. [34] it has been suggested that
the phenomena might be observed in graphene due to its
large “fine-structure constant” α = e2/h̄vF . In this case the
resulting spectrum for the problem is equally spaced on a log
scale,

En ≈ Ze2

r0
e−π h̄n/γ , (57)

where r0 is a lattice cutoff, γ = (M2
c − M2)

1
2 , and Mc =

Ze2/vF is the critical angular momentum separating the
falling trajectories from the stable trajectories.

Though Efimov physics, which is inherently three body,
seems at first glance to be completely unrelated to the rel-
ativistic atomic collapse, upon deeper inspection similarities
between the two systems can be observed. Both systems
exhibit a collapse, the Thomas collapse in the case of Efimov
physics [3], compared to the atomic collapse. With regard
to graphene the massless Dirac particles cannot form bound
states, similar to the Efimov condition that two particles
cannot bind. The infinite number of bound Efimov states
and the infinite number of quasibound states in the atomic
collapse system both can be obtained from semiclassical
considerations. Finally, there is the underlying fingerprint of
the logarithmic spiral, the fractal structure at the heart of both
phenomena.

It should also be noted that the Efimov physics is a special
case in a more general set of problems which involve a sin-
gular inverse square potential. This set of equations also has a
very similar dependence on a critical scale as the relativistic
atomic collapse case, such that in order to obtain a discrete
energy spectrum it is needed that in the potential, Eq. (47),
A > Acr, where Acr = (d − 2)2/4 and d is the dimension of
the problem. Stated this way the discrete spectrum is given by

En ∝ e
2πn
� , (58)

where � = √
A − Ac and the results are presented in units

such that h̄ = 1.

VII. DISCUSSION AND SUMMARY

Efimov physics has been shown to be of importance to a
wide set of physical problems ranging from ultracold atomic
gases [4] through nuclear physics [35] to recently condensed
matter systems [36] as well as to biological systems [13]. On
the theoretical side it has even been considered for more than
three particles for which it was originally formulated [22,23].
In this work we have examined the less studied aspects of
the geometric and more specifically the fractal properties
of the Efimov scattering amplitude. Whereas initially it was
known that the Efimov spectrum forms a geometric series
corresponding to an infinite number of weakly bound states
which possess a discrete scale invariance, later also connected
to a limit cycle RG limit, here we have demonstrated how one
can apply the mathematical formalism for functions with DSI
to the Efimov scattering amplitude. There are, however, some
differences; in contrast to the theory described for functions
possessing DSI symmetry in which one considers the two
scaling parameters a and b as independent and fixed from
the geometry determining the value of s0, the zeroth pole
of the corresponding zeta function, in the case of Efimov
physics s0 is imaginary and is obtained as a solution to a
transcendental equation and be is fixed and real. Solutions
can then be found by considering complex values for ae.
Using the DSI mathematical formalism we identified the
relevant scaling parameters and established the corresponding
Weierstrass function.

A fractal is an iterative structure. Famous examples are the
triadic Cantor set obtained iteratively by dividing a segment
into three parts, removing the middle part, and continuing
the process with the remaining segments. Another example
is the Sierpinski gasket, in which an equilateral triangle is
subdivided recursively into smaller equilateral triangles. With
regard to the Efimov scattering amplitude we have shown that
the relevant fractal structure is a logarithmic spiral which is
obtained by rotating by 2π and stretching, thus leaving the
shape invariant. From the physics standpoint Efimov physics
is an example of a scale anomaly where the classical sys-
tem possesses a continuous symmetry which is broken at
the quantum level to a discrete symmetry. In terms of our
reformulation of the problem a new connection between the
physical symmetry of the system and the underlying geomet-
rical fractal can be established. The underlying continuous
structure corresponding to Efimov physics is apparent from
the fact that ae is a complex number, thus multiplying by
ae induces a rotation followed by a stretching/contraction
through multiplying the function by be. The one-dimensional
mapping presented in the Sec. V results by considering the
discrete values along a ray through a logarithmic spiral such
that the angular coordinate θ of the spiral is restricted to a
fixed angle. The self-similarity of the scattering amplitude
for Efimov physics expressed geometrically through the log-
arithmic spiral turns into translation invariance up to a phase
when transforming into a logarithmic variable allowing the
mapping of the complex Efimov physics to that of a particle on
a one-dimensional lattice. The mapping allowed us to obtain
the Efimov spectrum from the Bohr-Sommerfeld quantization
rule. Returning to the field theoretic treatment one can now
understand the mapping to the one-dimensional lattice already
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through the integral, Eq. (3), which is obtained by summing
over all terms in the perturbation theory. The fact that all
terms contribute “equally” (up to a phase) can be viewed
as scattering by a one-dimensional lattice in which every
scattering event introduces a phase.

We believe that the connections presented in this work
offer many possible venues for extension. Specifically we
speculate that through the mapping of Efimov physics to that
of a one-dimensional lattice, a possible connection between
the Efimov three-body parameter and the geometrical Zak
phase [37] for electrons on a one-dimensional lattice could be
established. From a mathematical point of view the underlying
spiral identified as the underlying fractal structure for the

Efimov scattering amplitude might have subtle connections to
the Poincaré equation [38].
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