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Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum
noise. In fact, when correctly normalized, they express the probability of transition between two states of the
system. In this work, we show a consistent approach to solve conditional and unconditional Euclidean (Wiener)
Gaussian path integrals that allow us to compute transition probabilities in the semiclassical approximation from
the solutions of a system of linear differential equations. Our method is particularly useful for investigating
Fokker-Planck dynamics and the physics of stringlike objects such as polymers. To give some examples, we
derive the time evolution of the d-dimensional Ornstein-Uhlenbeck process and of the Van der Pol oscillator
driven by white noise. Moreover, we compute the end-to-end transition probability for a charged string at thermal
equilibrium, when an external field is applied.
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I. INTRODUCTION

Path integrals are an essential tool in many branches of
physics and mathematics [1–5]. Originally introduced by
Wiener as a method to study Brownian motion [6,7], their
formalism was significantly developed by Feynman in the
context of quantum mechanics [8,9]. Since then, path integrals
have revealed themselves to be a powerful method for the
investigation of systems subject to classical or quantum fluctu-
ations and therefore have a plethora of different applications.

In many relevant situations one is interested in evaluating
transition (i.e., conditional) probabilities, namely, the proba-
bility for a system to be in a specific final state, given its
initial state. Path integrals are precisely tailored to answer
such questions by expressing transition probabilities as an
infinite weighted sum over all possible trajectories passing
through both states. Typical examples where this formulation
arises naturally include the stochastic motion of particles in
diffusion processes and the dynamics of quantum particles
and fields.

It is worth emphasizing that the “paths” entering a path
integral do not need to be the trajectories of a moving particle,
but they can also be the stationary configurations of stringlike
objects [10–13]. In this context, transition probabilities repre-
sent the probability of finding the string’s endpoints in specific
positions. This observation turns out to be extremely useful
for the study of organic and inorganic polymers at thermal
equilibrium, such as chains of molecules (e.g., DNA, actin
filaments) and flexible rods [14–17].

Despite their intuitive interpretation, path integrals are in
general difficult to compute. Among several different strate-
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gies to circumvent this issue, the semiclassical (quadratic)
approximation is one of the most adopted [18–20]. In brief,
the idea consists of approximating the weights for the paths
so that a Gaussian integral is obtained. The solution is then
straightforward for conditional path integrals (where both
extremal points are fixed), while it often remains nontrivial
for the unconditional case (where only the starting point
is fixed). Addressing this remaining problem is of special
interest for expressing transition probability distributions that
are properly normalized.

Here we focus on Euclidean (Wiener) path integrals and
propose a consistent method to compute from them tran-
sition probabilities in the semiclassical approximation. Our
approach is based on the generalization of a result by Pa-
padopoulos [21], which allows us to evaluate both condi-
tional and unconditional path integrals for general quadratic
Lagrangians, from the solutions of the Euler-Lagrange equa-
tions and of a system of second-order nonlinear differential
equations. Furthermore, we then show that the latter can be
related to a simpler system of linear differential equations by
exploiting a link with the Jacobi equation. Interestingly, our
study also sheds light on the relation between the choice for
the discretization of continuous paths and the path integral
measure.

Our results are of interest for studying the dynamics of
stochastic processes, such as the one described by the Fokker-
Planck equation, and for investigating equilibrium configura-
tions of stringlike objects. This is illustrated here with three
concrete examples. First, we show how to recover the tran-
sition probability for a d-dimensional Ornstein-Uhlenbeck
process [22–24]. Second, we investigate the nonlinear Van
der Pol oscillator driven by white noise, for which transition
probabilities are not known analytically due to its chaotic
dynamics [25]. Third, we compute in one spatial dimen-
sion the end-to-end transition probability for an elastic and
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electrically charged string at thermal equilibrium, when an
external electric field is applied.

II. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Consider a system in configuration q(τ ) ∈ Rd , whose dy-
namics is described by the Lagrangian L(q, q̇, τ ). Our goal is
to calculate the transition probability for the system of being
in the final state q(t ) = q, given its initial state q(t0) = q0,
namely, the conditional probability ρ(q, t |q0, t0) satisfying
ρ(q, t0|q0, t0) = δ(q − q0). A prescription for this calculation
is given by the path integral formalism, which allows us to
write

ρ(q, t |q0, t0) := K
N = 1

N

∫ q(t )=q

q(t0 )=q0

Dq e−S(q,q̇), (1)

where the (conditional) integration is taken over all paths
with fixed extremal points, weighted depending on the action
S(q, q̇) := ∫ t

t0
dτ L(q, q̇, τ ), and normalized by N to ensure∫
Rd

ρ(q, t |q0, t0)dq = 1, ∀t � t0. (2)

From Eqs. (1) and (2), we see that the normalization can be
formally written as the (unconditional) path integral

N =
∫

q(t0 )=q0

Dq e−S(q,q̇), (3)

where now the integral is over all paths satisfying only the
initial condition q(t0) = q0.

For typical cases of interest, we are often in the situation
where L is complicated enough that closed-form solutions for
K and N do not exist. A standard technique to simplify part
of the problem consists of taking the semiclassical approxi-
mation, where the action is expanded to second order around
an isolated minimum. This allows us to approximate K by a
solvable Gaussian integral, but the evaluation of N remains
nontrivial because of the free boundary condition q(t ). The
latter difficulty is often circumvented through demanding
Monte Carlo integrations or by setting N = 1 and considering
in K an effective (Onsager-Machlup) Lagrangian containing
additional terms that ensure normalization [23,26,27]. Our
main result consists of solving this problem in a more general
situation. In brief, we formulate a consistent approach to
solve in the semiclassical approximations both path integrals
appearing in Eq. (1), by relating their solutions to the solutions
of a system of linear differential equations. The procedure we
propose is the following.

As a starting point, in order to ensure the accuracy of
the semiclassical approximation, let us restrict to Lagrangian
functions where the leading-order term for the second vari-
ation of the action, G(τ ) := ∂2L

∂ q̇2 , is independent of q and q̇.
This assumption is still general enough to include most cases
of interest. On the other hand, we consider in the second
variation arbitrary V := ∂2L

∂q2 , and cross term matrix A := ∂2L
∂ q̇∂q

to not necessarily be symmetric.
Following the idea behind the semiclassical approxima-

tion, the first step of our method consists of deriving two
solutions from the Euler-Lagrange equations for L:

(i) an isolated minimizer of the action qD(τ ), satisfying
the Dirichlet boundary conditions qD(t0) = q0 and qD(t ) = q,

(ii) an isolated minimizer qN (τ ), satisfying qN (t0) = q0

and the Neumann natural boundary condition ∂L
∂ q̇ (t ) = 0.

Then, the second step of our method consists of deriving a
set of solutions W D(N )(τ ) of the Jacobi equation for the second
variation of the action on the Dirichlet (Neumann) minimum.
These can be obtained from the Hamiltonian formulation of
the Jacobi equation, together with the appropriate boundary
conditions, as solutions of⎧⎪⎪⎨
⎪⎪⎩

d

dτ

(
W D

MD

)
= JED

(
W D

MD

)
,(

W D

MD

)
(t ) = J

(
1
0

)
,

⎧⎪⎪⎨
⎪⎪⎩

d

dτ

(
W N

MN

)
= JEN

(
W N

MN

)
,(

W N

MN

)
(t ) = J

(
0
1

)
,

(4)

where MD(N ) is the conjugate variable under the Legendre
transform, J = ( 0 1

−1 0

)
is the symplectic matrix, and ED(N )

is the symmetric matrix driving the system, which reads

Ei =
(

AT G−1A − V −AT G−1

−G−1A G−1

)∣∣∣∣
qi

, i = D, N . (5)

Finally, our first main result consists of showing that we
can write the semiclassical approximation of the transition
probability Eq. (1) as

ρsc(q, t |q0, t0) = eS(qN )−S(qD )

√
det

[
1

2π

W N

W D
(t0)

]
, (6)

where S(qD(N ) ) is the action evaluated on the Dirichlet (Neu-
mann) minimum, and W D(N ) are the solutions of Eq. (4).

In general, due to the semiclassical approximation, we have
ρ(q, t |q0, t0) ≈ ρsc(q, t |q0, t0). However, let us mention that,
in the particular case where the Lagrangian is a quadratic
function of q and q̇, no error is introduced by the semiclassi-
cal approximation, and ρ(q, t |q0, t0) = ρsc(q, t |q0, t0). In the
latter case the matrix E is now independent of the particular
minimum, and Eq. (4) simplifies further to⎧⎪⎪⎨

⎪⎪⎩
d

dτ

(
W D W N

MD MN

)
= JE

(
W D W N

MD MN

)
,(

W D W N

MD MN

)
(t ) = J.

(7)

In addition, as a second main result, we present a
generalization of Eq. (6) that allows us to compute marginal
transition probabilities defined as follows. We reorder the
configuration variables as q(τ ) = (qV (τ ), qF (τ )) ∈ Rd ,
where qV (τ ) := (q1, . . . , ql )(τ ) ∈ Rl and qF (τ ) :=
(ql+1, . . . , qd )(τ ) ∈ Rd−l , and consider the marginals
ρM(qF , t |q0, t0) := ∫ dqV ρ(q, t |q0, t0). The latter can be
expressed as the path integral

ρM(qF , t |q0, t0) := KM
N = 1

N

∫ qF (t )=qF

q(t0 )=q0

Dq e−S(q,q̇), (8)

where the integration for KM is taken over all paths starting at
q(t0) = q0 and with the mixed endpoint conditions qF (t ) = qF

fixed and qV (t ) variable. Note that the normalization term N
remains the same as that in Eq. (3).
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To derive a generalization of Eq. (6) for Eq. (8), we follow
the same strategy as before and start by computing an isolated
minimizer qDN (τ ) that satisfies the Euler-Lagrange equations
with qDN (t0) = q0, qDN

F
(t ) = qF and with the Neumann natu-

ral boundary condition for the remaining variables ∂L
∂ q̇V

(t ) =
0. Then, the semiclassical approximation of the transition
probability Eq. (8) is

ρsc
M(qF , t |q0, t0) = eS(qN )−S(qDN )

√
(2π )l−d det

[
W N

W DN
(t0)

]
,

(9)
with W DN obtained from⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d

dτ

(
W DN

MDN

)
= JEDN

(
W DN

MDN

)
,

(
W DN

MDN

)
(t ) =
(

1l×l 0d+l×d−l

02d−l×l −1d−l×d−l

)
,

(10)

where MDN is the conjugate variable under the Legendre
transform for the Jacobi equation in Hamiltonian form, and
EDN is the symmetric matrix Eq. (5) here computed on the
mixed minimum qDN (τ ). Note that for l = 0 we have that
Eq. (9) reduces to Eq. (6), since qDN (τ ) becomes qD(τ ) for
the boundary conditions of the Euler-Lagrange equations, and
Eq. (10) reduces to the the first system for W D in Eq. (4). On
the other hand, for l = d we have that KM coincides with the
normalization factor N .

To summarize, our approach for computing the transition
probabilities Eqs. (1) and (8) consists of taking the ratio of
the conditional and unconditional Wiener path integrals in the
semiclassical approximation and then expressing their solu-
tions in terms of the solutions of a set of ordinary differential
equations. In the following we present the derivation of our
results, and we apply them to three relevant examples.

III. DESCRIPTION OF THE METHOD

The evaluation of K in the semiclassical approximation is
a standard textbook technique, and for our Euclidean path
integrals it is also known as the Laplace asymptotic method
[28]. The idea is to first Taylor expand the action S(q(τ )) to
second order around the Dirichlet minimum qD(τ ), exploiting
the fact that the first-order variation on a minimum is zero.
Here, the existence and stability of qD(τ ) are assumed. In
particular, the second property involves, e.g., the conjugate
point theory, as discussed in Ref. [29]. Then, from the second
variation of the action computed in qD(τ ), namely,

δ2S(qD, y) =
∫ t

t0

dτ (ẏT Gẏ + 2ẏT ADy + yT V Dy), (11)

and from the discretization of τ ∈ [t0, t] into n intervals of
length ε = (t − t0)/n, the semiclassical approximation for K
reads

Ksc = e−S(qD ) lim
n→∞ ID

n , (12)

ID
n =
∫ y(t )=0

y(t0 )=0

n∏
j=1

[
det (Gj )

(2πε)d

] 1
2

n−1∏
j=1

dy j e− ε
2

∑n
j=0 δ2S(qD,y) j .

(13)

The subscript j indicates that the associated term is evaluated
in τ j = t0 + jε, e.g., y j = y(τ j ). Moreover, the integration
boundaries come from the fact that y(τ ) represents a per-
turbation around the minimum qD(τ ), and as such it must
satisfy null Dirichlet boundary conditions. Let us mention that
the products in Eq. (13) give the integration measure for the
integral, which is here a conditional Wiener measure [3].

At this point, it is straightforward to solve Eq. (12) using
the method presented by Papadopoulos in Ref. [21]. This
results in the following Gelfand-Yaglom-type expression:

Ksc = e−S(qD ) det[2πDD(t )]−
1
2 , (14)

where DD(τ ) solves the second-order nonlinear differential
equation (omitting superscripts ‘D’ for A, V , and D)

d

dτ
[ḊG] + DȦ(s) − D[V + A(a)G−1A(a)]

= ḊA(a) − DA(a)G−1D−1ḊG, (15)

with A(s) (A(a) ) being the (anti-)symmetric part of AD, and
with initial conditions DD(t0) = 0, ḊD(t0) = G(t0)−1.

We point out that the result described by Eq. (14) is specific
to the (Stratonovich-type) discretization prescription adopted
in Ref. [21] for the cross terms 2ẏ(τ )T A(τ )y(τ ), which gives
1
ε
(y j+1 − y j )T (Ajy j + Aj+1y j+1). In fact, there is in general a

one-parameter family of discretizations,

2

ε
(y j+1− y j )

T [(1− γ )Ajy j + γ Aj+1y j+1], γ ∈ [0, 1], (16)

leading to different results for Eq. (14) [30,31]. Interestingly,
we notice that the midpoint rule (γ = 1/2) is the only one
giving a finite result for Eq. (13) when A(τ ) is not symmetric.
For more details see Appendix B.

It is now easy to show that, even for simple quadratic
Lagrangians, Eq. (14) alone does not represent a transition
probability satisfying the normalization condition Eq. (2).
This can happen even if there are no cross terms (i.e., A = 0),
as we will see in the string example. To fix this issue, the
condition Eq. (2) is enforced by introducing the normalization
factor N [see Eq. (1)]. Unfortunately, computing N can be a
nontrivial task, which we are now going to tackle.

Following the same approach as for K, we compute the
semiclassical approximation for N as defined in Eq. (3). This
time we Taylor expand the action S(q(τ )) to second order
around the Neumann minimum qN (τ ), since the point q(t ) is
unconstrained. Then, from the second variation of the action
computed in qN (τ ), namely,

δ2S(qN , h) =
∫ t

t0

dτ (ḣT Gḣ + 2ḣT AN h + hT V N h), (17)

and the same discretization as before, the semiclassical ap-
proximation for N reads

N sc = e−S(qN ) lim
n→∞ IN

n , (18)

IN
n =
∫

h(t0 )=0

n∏
j=1

[
det (Gj )

(2πε)d

] 1
2

n∏
j=1

dh je
− ε

2

∑n
j=0 δ2S(qN ,h) j . (19)

Here, similarly to Eq. (13), the subscript j indicates that
the associated term is evaluated in τ j , and the integration
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boundaries come from the fact that h(τ ) represents a per-
turbation around the minimum qN (τ ), and as such it must
satisfy only the initial null Dirichlet boundary condition. The
products in Eq. (19) give the integration measure for the
integral, which is here an unconditional Wiener measure [3].
In fact, note that contrary to Eq. (13) the product of dh j runs
here until n, which is what makes the integration of Eq. (19)
in general nontrivial.

One of our main results is now to show how to compute
Eq. (19) from a modification of the method used by Pa-
padopoulos in Ref. [21] to derive Eq. (14). The idea consists
of performing a backward integration of Eq. (19), meaning
that the standard direction of discretization (q0, t0) → (q, t )
is now replaced by (q, t ) → (q0, t0). In summary, we are able
to find a set of symmetric and positive-definite matrices F N

j ,
depending on G, AN , and V N , such that (see Appendix A 1)

IN
n = det

⎡
⎣ n∏

j=1

F N
j

⎤
⎦

− 1
2

. (20)

Using then the recursion relations for IN
n and F N

j , we show
that the limit in Eq. (20) gives

N sc = e−S(qN ) det[DN (t0)]−
1
2 , (21)

where DN (τ ) solves Eq. (15), but this time with AN (τ ) and
V N (τ ). As a consequence of the backward integration nec-
essary for deriving the matrices F N

j , also Eq. (15) is now
solved in the backward direction with boundary conditions
DN (t ) = 1 and ḊN (t ) = −AN (s)(t )G(t )−1. Detailed calcula-
tions to derive this result are given in Appendix A 2.

Inspired by this strategy we compute again Eq. (12), but
this time using the backward integration procedure. We find
that the result coincides with Eq. (14), where now DD(τ )
solves Eq. (15) in the backward direction, with boundary
conditions DD(t ) = 0 and ḊD(t ) = −G(t )−1.

In conclusion, the results obtained so far allow us to
express the transition probability Eq. (1) in the semiclassical
approximation as

ρsc(q, t |q0, t0) := Ksc

N sc
= eS(qN )−S(qD )

√
det

[
1

2π

DN

DD
(t0)

]
.

(22)

Despite the simplicity of Eq. (22), let us remember that the
D’s have to be found by solving two second-order nonlinear
differential equations of the form of Eq. (15), which can be
a demanding task. Remarkably, we are able to simplify this
problem significantly by relating Eq. (15) to a system of linear
differential equations.

As noted in Ref. [17], it turns out that there is a relation
between the matrix Eq. (15) and the linear Jacobi equation for
a vector field w ∈ Rd :

d

dτ
[Gẇ + Aw] − AT ẇ − V w = 0. (23)

In fact, if W = LT is a matrix whose columns w are solutions
of the Jacobi equation, (23), then the solutions of Eq. (15) and
the ones of

d

dτ
[L̇G + LAT ] − L̇A − LV = 0 (24)

are related by the nonlinear transformation

L−1L̇ = D−1Ḋ + A(a)G−1. (25)

Then, it is possible to impose the condition det (L) =
det (D), which is also equal to det (W ), to ensure the unique-
ness of the change of variables and to find the associated
boundary conditions for the Jacobi equation. These read
as W D(t ) = 0, Ẇ D(t ) = −G(t )−1 for Ksc, and W N (t ) = 1,
Ẇ N (t ) = −G(t )−1A(t ) for N sc. More details on this transfor-
mation are given in Appendix C.

As a final step, since the Jacobi equation is the Euler-
Lagrange equation for the second variation of the action, we
can easily provide the more elegant Hamiltonian formulation
given in Eq. (4). Namely, if m = Gẇ + Aw is the conjugate
variable under the Legendre transform of the second variation
with respect to ẇ, and if we define M = GẆ + AW , we can
express Eq. (22) in terms of the solutions W D and W N of the
Jacobi equation in Hamiltonian form subjected to the trans-
formed final boundary conditions, i.e., Eq. (4). This results
then in Eq. (6).

To extend this result to marginal distributions Eq. (8), we
first explain how to combine the techniques involved in the
computation of K and N in order to evaluate the path integral
defining KM. The semiclassical approximation for KM reads

Ksc
M = e−S(qDN ) lim

n→∞ IDN
n , (26)

IDN
n =
∫ vF (t )=0

v(t0 )=0

n∏
j=1

[
det (Gj )

(2πε)d

] 1
2

×
n−1∏
j=1

dv jdvV ne− ε
2

∑n
j=0 δ2S(qDN ,v) j , (27)

where v(τ ) := (vV (τ ), vF (τ )) represents a perturbation
around the minimum qDN (τ ), and as such it must satisfy
null Dirichlet boundary conditions corresponding to the fixed
variables. Note that the integration involves only the variable
part of the variation at τ = t , namely, vV n := vV (τn) = vV (t ).

Analogously to what was done previously for K and N ,
we perform a backward integration of Eq. (27) by finding a
set of positive-definite matrices F DN

j , which depend on the
coefficients of the second variation on qDN (τ ), i.e., G, ADN ,
and V DN , such that (see Appendix D 1)

IDN
n = (2π )

l−d
2 det

⎡
⎣ n∏

j=1

F DN
j

⎤
⎦

− 1
2

. (28)

Using the recursion relations for IDN
n and F DN

j , we show
that the limit in Eq. (28) gives

Ksc
M = e−S(qDN )(2π )

l−d
2 det[DDN (t0)]−

1
2 , (29)

where DDN (τ ) solves Eq. (15) with A = ADN (τ ) and V =
V DN (τ ). In addition, as a consequence of the backward in-
tegration necessary for deriving the matrices F DN

j , Eq. (15) is
solved in the backward direction and the boundary conditions
(which are reported in Appendix D 2) are given in τ = t .
Exploiting the link with the Jacobi equation through the non-
linear transformation Eq. (25), we derive the new boundary

022135-4



NORMALIZED GAUSSIAN PATH INTEGRALS PHYSICAL REVIEW E 102, 022135 (2020)

conditions given in Eq. (10) and recover the general expres-
sion for marginal transition distributions Eq. (9). Detailed
calculations for this last part can be found in Appendix D 3.

Let us emphasize that when the Lagrangian is quadratic in
its variables we have ρ(M)(q(F ) , t |q0, t0) = ρsc

(M)(q(F ) , t |q0, t0),
since the second-order expansion used in the semiclassical
approximation does not neglect any term of higher order.

In conclusion, we have shown how to compute the path
integrals appearing in Eqs. (1) and (8) in the semiclassi-
cal approximation from the solutions of the Euler-Lagrange
equations and of the systems of linear differential equations,
Eqs. (4) and (10).

IV. EXAMPLES

To show how our approach applies to a number of relevant
problems, we present here three illustrative examples.

To begin, let us summarize briefly the relations between
the Langevin and the Fokker-Planck equations, with the asso-
ciated path integral formulation [23,26,27].

We consider the Langevin equation

dQ(t ) = μ(Q(t ), t )dt + σ (t )dB(t ), (30)

with Q(t ), μ(Q(t ), t ) ∈ Rd , σ (t ) ∈ Rd×l , and B(t ) being an
l-dimensional standard Wiener process. It is known that the
transition probability ρ(q, t |q0, t0) for the continuous Marko-
vian process Q(t ) is the fundamental solution of the Fokker-
Planck equation

∂

∂t
ρ = − ∂

∂qi
[μi(q, t )ρ] + 1

2

i j (t )

∂2

∂qi∂q j
ρ, (31)

with ρ(q, t0|q0, t0) = δ(q − q0), and where 
(t ) =
σ (t )σ (t )T ∈ Rd×d is the diffusion matrix, μ(q, t ) is the
drift vector, and the Einstein summation convention is
adopted for i, j = 1, . . . , d . In particular, if 
 is constant
and μ(q) is a function of the configuration, ρ(q, t |q0, t0) has
the path integral representation (1), where the Lagrangian is
given by the Onsager-Machlup function [32]

L(q(τ ), q̇(τ )) = 1
2 [(q̇ − μ(q))T 
−1(q̇ − μ(q))]. (32)

In the literature, however, an additional factor + 1
2 div(μ(q))

usually appears in Eq. (32). As mentioned before, we observe
that this correction is necessary for providing a normalized
result when the path integral expression for the transition
probability is only defined by K. Our method offers an al-
ternative approach, where we avoid the problem of finding
an effective Lagrangian for every application by introducing
explicitly the normalization constant N [see Eq. (1)].

In the situation where 
 is not strictly positive definite,
even if the Onsager-Machlup Lagrangian Eq. (32) is ill de-
fined, its Hamiltonian form is well defined by L(p(τ )) =
1
2 pT 
 p, where q̇ = 
 p + μ(q), and p is the conjugate vari-
able of q̇ under the Legendre transform. This procedure
is justified by taking the limit for a sequence of strictly
positive-definite matrices converging to 
. At the same time
the Hamilton and Jacobi equations for the minima and the
fluctuations are also well defined. In particular, the Hamilton

equations

d

dτ

(
q
p

)
= J

(
d[μ(q)]T p

 p + μ(q)

)
(33)

are subject to the boundary conditions qD(t0) = q0, qD(t ) = q
for the Dirichlet minimum qD(τ ), qN (t0) = q0, pN (t ) = 0 for
the Neumann minimum qN (τ ), and qDN (t0) = q0, qDN

F
(t ) =

qF , pDN
V

(t ) = 0 for the “mixed” minimizer qDN (τ ). On the
other hand, the Jacobi equation in the Hamiltonian form
presented in Eqs. (4) and (10) is driven by the matrix

Ei =
(

d2[μ(q)]T p d[μ(q)]T

d[μ(q)] 


)∣∣∣∣
qi,pi

, i = D, N, DN .

Here and in Eq. (33), d[μ(q)] and d2[μ(q)] denote respec-
tively the rank-2 and rank-3 tensors of the first and second
derivatives in q of the vector field μ(q).

A. Ornstein-Uhlenbeck process

As a first application of our method, we consider the d-
dimensional Ornstein-Uhlenbeck process [22–24], which is
described by the Fokker-Planck Eq. (31) where 
 ∈ Rd×d is a
constant symmetric diffusion matrix and μ(q) = −� q, with
� ∈ Rd×d defining the drift. It is easy to see that the system is
exactly characterized by the same linear Hamilton and Jacobi
equation:

d

dτ

(
w

m

)
=
(−� 


0 �T

)(
w

m

)
. (34)

The analytical solution is given by

w(τ ) = e−�τ

[∫ τ

0
e�s 
 e�T sC1ds + C2

]
, (35)

m(τ ) = e�T τC1, (36)

where C1 and C2 are determined from the appropriate bound-
ary conditions. In particular, setting t0 = 0, we find that
S(qN ) = 0 and that

S(qD) = 1

2
q̂T

[∫ t

0
e�(s−t ) 
 e�T (s−t )ds

]−1

q̂, (37)

where q̂ = q − e−�t q0. The Jacobi fields lead to the factors

W N (0) = e�t , W D(0) =
∫ t

0
e�s 
 e�T (s−t )ds. (38)

Finally, inserting these quantities in Eq. (6), we recover the
Gaussian transition probability

ρ(q, t |q0, 0) = exp
[− 1

2 q̂T Co−1(t )q̂
]

√
det[2π Co(t )]

, (39)

with the mean Av(q0, t ) := e−�t q0 and the covariance matrix

Co(t ) :=
∫ t

0
e�(s−t )
e�T (s−t )ds. (40)

In addition, notice that the marginal probability density
Eq. (8) for the Ornstein-Uhlenbeck process can be derived
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analytically by means of Eq. (9). In fact, simple algebra gives
us

S(qDN ) = 1

2
[qF − AvM(q0, t )]T Co−1

M(t )[qF − AvM(q0, t )],

(41)

(W N )−1W DN (0) =
(

1l×l ∗
0d−l×l CoM(t )

)
, (42)

with AvM(q0, t ) = (0d−l×l ,1d−l×d−l )Av(q0, t ) and

CoM(t ) = (0d−l×l 1d−l×d−l
)
Co(t )

(
0l×d−l

1d−l×d−l

)
. (43)

Since in Eq. (42) the entry denoted by “∗” is not relevant,
Eq. (9) automatically implies that

ρM(qF , t |q0, 0) = exp
[− 1

2 q̂T
F

Co−1
M(t )q̂F

]
√

det[2π CoM(t )]
, (44)

with q̂F = qF − AvM(q0, t ), which is indeed the (Gaussian)
marginal of the full transition probability distribution Eq. (39).

B. Van der Pol oscillator

As a second application, we consider the Van der Pol
oscillator driven by white noise [25], which is described by
the Langevin equation of motion for the coordinate z as

z̈(t ) + 2ξ [z(t )2 − 1]ż(t ) + z(t ) =
√

2λ f (t ), (45)

where f (t ) denotes a standard stationary Gaussian white
noise, λ > 0 represents the diffusion coefficient, and ξ > 0
represents the strength of the nonlinearity. By defining the
terms

� :=
(

0 −1
1 −2ξ

)
and ν(q) :=

(
0

q2
1q2

)
,

it is possible to write the stochastic equation of motion in
phase space as a two-dimensional Langevin equation in the
form of Eq. (30), with σ = (0,

√
2λ)T . The associated Fokker-

Planck equation has then the coefficients


 =
(

0 0
0 2λ

)
and μ(q) = −�q − 2ξν(q).

Note that, in this example, the corresponding Onsager-
Machlup function, Eq. (32), is no longer a quadratic function
of q and q̇. Therefore, the semiclassical approximation will
lead to a result that is a priori not exact. From the second-order
expansion we nevertheless expect the result to be accurate
for small values of diffusion λ and final time t . Applying the
method we presented, we obtain that the Hamilton and Jacobi
equations for the system are respectively of the forms

d

dτ

(
q
p

)
=
(−� 


0 �T

)(
q
p

)
− 2ξψ (q, p), (46)

d

dτ

(
W i

Mi

)
=
(−� 


0 �T

)(
W i

Mi

)
− 2ξ� i

(
W i

Mi

)
, (47)

FIG. 1. Slices along the direction (q1, q2) = (q1, 5q1) of the tran-
sition probability ρ((q1, q2), t |(0, 0), 0) for the Van der Pol oscillator
Eq. (45) with ξ = 3 and λ = 0.5. Note that, despite the semiclassical
approximation, the resulting probability density is not necessarily
Gaussian. The peak of the transition probability in zero is decreasing
when the time is increasing; the opposite behaviour occurs in the
formation of the two symmetric lateral peaks.

with i = D, N , ψ (q, p) = (0, q2
1q2, −2q1q2 p2, −q2

1 p2)T ,
and

� i =

⎛
⎜⎜⎜⎝

0 0 0 0

2qi
1qi

2

(
qi

1

)2
0 0

−2qi
2 pi

2 −2qi
1 pi

2 0 −2qi
1qi

2

−2qi
1 pi

2 0 0 −(qi
1

)2

⎞
⎟⎟⎟⎠.

Solving numerically Eqs. (46) and (47), subject to the as-
sociated boundary conditions, we are able to obtain through
Eq. (6) the semiclassical approximation of the (non-Gaussian)
transition probability solving the Fokker-Planck equation for
the stochastic Van der Pol oscillator (see Fig. 1).

C. String at thermal equilibrium

As a final example, let us investigate in one dimension
the stationary configuration of a charged extensible string at
thermal equilibrium, when an external field is applied. We
consider the action [33]

S = β

∫ L

0

[
1

2
αq̇(τ )2 − σφ(q(τ ))

]
dτ, (48)

where β is the inverse temperature, α the elastic constant, σ

the charge density per unit length, and φ(q(τ )) the electric
potential. Note that here τ ∈ [0, L] is a parametrization of the
string, and not a time, so that q̇(τ ) represents the elongation.
To be concrete, let us assume a potential of the form φ(q) =
aq2 + bq, which could be the second-order approximation of
a more general potential. Let us define κ := √

2σa/α. From
the Euler-Lagrange equations with the appropriate bound-
ary conditions we obtain qD(τ ) and qN (τ ), while from the
Jacobi equation we obtain W D(τ ) = (βακ )−1 sin(κ (L − τ ))
and W N (τ ) = cos(κ (L − τ )). These results allow us to ex-
press the probability that q(L) = qL, given that q(0) = 0,

as p(qL, L|0, 0) = e− 1
2

(qL−Av)2

Var /
√

2πVar, which is a Gaussian
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probability distribution with the mean Av := b
2a ( 1−cos(κL)

cos(κL) ) and

the variance Var := 1
βακ

tan(κL). Interestingly, this example
illustrates how N 	= 1 in general, even if A = 0. Furthermore,
let us emphasize that the dynamics of elastic chains is properly
described by complex models which allow for the motion
in the three-dimensional space. In particular, these models
typically exploit the concept of framed curve, which takes into
account both translational and rotational degrees of freedom.

V. CONCLUSIONS

In this work we presented a consistent approach to compute
transition probabilities in the semiclassical approximation,
from a path integral formulation. Our method is based on
the generalization of a work by Papadopoulos [21], which
allows us to express the solutions of both conditional and
unconditional Gaussian path integrals from the solutions of
the Euler-Lagrange equations and a system of linear differ-
ential equations. Remarkably, the accuracy of our method is
only dependent on the accuracy of the semiclassical approx-
imation. In particular, when the Lagrangian of the system is
quadratic in position and velocity there is no approximation,
and the results are exact. As a side note, we discussed what
is the effect of choosing different discretization prescriptions

for continuous paths, and we mentioned under which circum-
stances this can be arbitrary. To conclude, we applied our
method to three examples of general interest. These illustrate
how our results can be applied to a variety of problems in
physics and mathematics, such as the study of stochastic
processes or the analysis of equilibrium configurations of
polymers.
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APPENDIX A: EVALUATION OF N sc

1. Derivation of Eq. (20)

In order to derive Eq. (20), we first express the second
variation, Eq. (17), using the method of finite differences.
Recalling that we discretised τ ∈ [t0, t] into n intervals of the
length ε = (t − t0)/n, we obtain

δ2S(qN , h) ≈ ε

n∑
j=0

δ2S(qN , h) j := 1

ε

n∑
j=1

[
�hT

j Gj�h j + ε�hT
j

(
AN

j h j + AN
j−1h j−1

)+ ε2hT
j V N

j h j
]

= 1

ε

n∑
j=1

[
hT

j

(
Gj + εAN

j + ε2V N
j

)
h j + hT

j−1

(
Gj − εAN

j−1

)
h j−1

− hT
j

(
Gj − εAN

j−1

)
h j−1 − hT

j−1

(
Gj + εAN

j

)
h j
]
, (A1)

where we defined �hj := h j − h j−1 for j = 1, . . . , n, and the subscript j indicates that the associated term is evaluated in
τ j = t0 + jε for j = 0, 1, . . . , n.

Since h(τ ) is a perturbation around the Neumann minimum, then h0 = 0, and we can rearrange the terms in the sum in order
to isolate the slice for j = n:

ε

n∑
j=0

δ2S(qN , h) j = 1

ε

n−1∑
j=1

[
hT

j

(
Gj + Gj+1 + ε2V N

j

)
h j − hT

j

(
Gj − εAN

j−1

)
h j−1 − hT

j−1

(
Gj + εAN

j

)
h j
]

+ 1

ε

[
hT

n

(
Gn + εAN

n + ε2V N
n

)
hn − hT

n

(
Gn − εAN

n−1

)
hn−1 − hT

n−1

(
Gn + εAN

n

)
hn
]
. (A2)

Introducing now the matrices U N
j := Gj + ε

2 [(AN
j )T − AN

j−1] for j = 1, . . . , n, we have that Eq. (A2) can be written as

1

ε

n−1∑
j=1

[
hT

j

(
Gj+Gj+1+ε2V N

j

)
h j−hT

j U N
j h j−1 − hT

j−1

(
U N

j

)T
h j

]
+ 1

ε

[
hT

n

(
Gn + εAN

n + ε2V N
n

)
hn − hT

n U N
n hn−1 − hT

n−1

(
U N

n

)T
hn

]
.

(A3)

At this point, we perform a change of variables. We define the transformation (with unit Jacobian) φ j := h j − βN
j h j−1 for

j = 1, . . . , n, where the matrices βN
j are given recursively by the following construction:

αN
n := Gn + ε

AN
n + (AN

n

)T
2

+ ε2V N
n , (A4a)

αN
j := Gj + Gj+1 + ε2V N

j − (βN
j+1

)T
αN

j+1β
N
j+1 for j = n − 1, . . . , 1, (A4b)

U N
j = αN

j βN
j for j = 1, . . . , n. (A4c)
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These expressions are motivated by the fact that they allow one to express Eq. (A1) as a sum of quadratic forms, which
is desired in view of a Gaussian integration. In fact, φT

j αN
j φ j = hT

j α
N
j h j − hT

j U N
j h j−1 − hT

j−1(U N
j )T h j + hT

j−1(βN
j )T αN

j βN
j h j−1,

which gives

ε

n∑
j=0

δ2S(qN , h) j = 1

ε

n∑
j=1

φT
j αN

j φ j . (A5)

Finally, we define F N
j := αN

j G−1
j for j = 1, . . . , n to recover Eq. (20) by computing the Gaussian integrals as

IN
n =
∫

h(t0 )=0

n∏
j=1

[
det (Gj )

(2πε)d

] 1
2

dh je
− ε

2

∑n
j=0 δ2S(qN ,h) j =

∫ n∏
j=1

[
det (Gj )

(2πε)d

] 1
2

dφ je
− 1

2ε

∑n
j=1 φT

j αN
j φ j = det

⎡
⎣ n∏

j=1

F N
j

⎤
⎦

− 1
2

. (A6)

2. Derivation of Eq. (21)

In order to derive Eq. (21) we need to compute the limit in Eq. (18). To this end, we look for recurrence relations in
order to express Eq. (D5) through a difference equation. On the basis of the construction given in the previous section, we
define DN

n−k :=∏k
j=0 F N

n− j for k = 0, 1, . . . , n − 1 and provide the following iterative method for DN and αN : initial condition,
DN

n = αN
n G−1

n ; iteration scheme, DN
n−(k+1) = DN

n−kα
N
n−(k+1)G

−1
n−(k+1) for k = 0, 1, . . . , n − 2; and initial condition, αN

n = Gn +
ε

AN
n +(AN

n )T

2 + ε2V N
n ; iteration scheme, αN

n−(k+1) = Gn−(k+1) + Gn−k + ε2V N
n−(k+1) − (βN

n−k )T αN
n−kβ

N
n−k for k = 0, 1, . . . , n − 2.

Reminding that βN
n−k = (αN

n−k )−1U N
n−k and that U N

n−k = Gn−k + ε
2 [(AN

n−k )T − AN
n−(k+1)], it is possible to give the explicit

recurrence relation for αN
n−(k+1), k = 0, 1, . . . , n − 2, as

αN
n−(k+1) = Gn−(k+1) + Gn−k + ε2V N

n−(k+1) − Gn−k
(
αN

n−k

)−1
Gn−k

− ε

[
AN

n−k − (AN
n−(k+1)

)T
2

](
αN

n−k

)−1
Gn−k − εGn−k

(
αN

n−k

)−1

[(
AN

n−k

)T − AN
n−(k+1)

2

]

− ε2

[
AN

n−k − (AN
n−(k+1)

)T
2

](
αN

n−k

)−1

[(
AN

n−k

)T − AN
n−(k+1)

2

]
. (A7)

Moreover, the recurrence formula for DN provides the additional useful relations:

αN
n−(k+1) = (DN

n−k

)−1
DN

n−(k+1)Gn−(k+1), (A8a)(
αN

n−k

)−1 = G−1
n−k

(
DN

n−k

)−1
DN

n−(k−1). (A8b)

Finally, substituting Eqs. (A8) in Eq. (A7) and multiplying to the left both sides by DN
n−k , we get the full difference equation

for the matrix DN , in terms of G, AN , and V N , for k = 1, 2, . . . , n − 2:

DN
n−(k+1)Gn−(k+1) = DN

n−kGn−(k+1) + DN
n−kGn−k − DN

n−(k−1)Gn−k + ε2DN
n−kV

N
n−(k+1)

− εDN
n−k

[
AN

n−k − (AN
n−(k+1)

)T
2

]
G−1

n−k

(
DN

n−k

)−1
DN

n−(k−1)Gn−k − εDN
n−(k−1)

[(
AN

n−k

)T − AN
n−(k+1)

2

]

− ε2DN
n−k

[
AN

n−k − (AN
n−(k+1)

)T
2

]
G−1

n−k

(
DN

n−k

)−1
DN

n−(k−1)

[(
AN

n−k

)T − AN
n−(k+1)

2

]
. (A9)

Our goal is now to take the continuous limit (n → ∞, ε → 0) for this expression in order to obtain a differential equation for the
unknown DN . To this end, remember that, e.g., DN

n−(k+1) stands for DN (t − sk+1) with sk+1 = (k + 1)ε = sk + ε and that similar
expressions hold for all other terms. We can therefore Taylor expand each DN around sk to second order in ε and each other
coefficient to first order. Then, dividing everything by ε2 we obtain

d

ds

[
d

ds
[DN (t − s)]G(t − s)

]
− DN (t − s)

d

ds
[(AN )(s)(t − s)] − DN (t − s)[V N (t−s) + (AN )(a)(t−s)G−1(t − s)(AN )(a)(t−s)]

= − d

ds
[DN (t − s)](AN )(a)(t − s) + DN (t − s)(AN )(a)(t − s)G−1(t − s)(DN )−1(t − s)

d

ds
[DN (t − s)]G(t − s), (A10)
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subject to the boundary conditions DN (t − s)|s=0 = 1 and d
ds [DN (t − s)]|s=0 = (AN )(s)(t )G(t )−1. These are a consequence of

the recurrence relations for DN and αN , and they are derived as follows. For the former we have

αN
n = Gn + ε

AN
n + (AN

n

)T
2

+ ε2V N
n ∼ Gn as ε → 0 ⇒ DN

n = αN
n G−1

n ∼ 1 as ε → 0. (A11)

For the latter, note that

DN
n−1 − DN

n

ε
= DN

n

(
αN

n−1G−1
n−1 − 1

)
ε

∼
(
αN

n−1G−1
n−1 − 1

)
ε

as ε → 0, (A12)

and, because [
AN

n −(AN
n−1 )T +(AN

n )T −AN
n−1

2 ]G−1
n−1 → 0 as ε → 0, this can also be written as

αN
n−1G−1

n−1 − 1

ε
= 1

ε

{
GnG−1

n−1 + ε2V N
n−1G−1

n−1 − Gn
(
αN

n

)−1
GnG−1

n−1 − ε

[
AN

n − (AN
n−1

)T
2

](
αN

n

)−1
GnG−1

n−1

− εGn
(
αN

n

)−1

[(
AN

n

)T − AN
n−1

2

]
G−1

n−1 − ε2

[
AN

n − (AN
n−1

)T
2

]
(αN

n )−1

[(
AN

n

)T − AN
n−1

2

]
G−1

n−1

}

∼ 1

ε

[
1 − Gn

(
αN

n

)−1]
as ε → 0. (A13)

Inserting now the definition for αN
n we have

1

ε

[
1 − Gn

(
αN

n

)−1] = 1

ε

⎡
⎣1 −
(

1 + ε
AN

n + (AN
n

)T
2

G−1
n + ε2V N

n G−1
n

)−1
⎤
⎦, (A14)

which, exploiting the Neumann series (1 + �)−1 = 1 − � + �2 − �3 + · · · , with � = ε
AN

n +(AN
n )T

2 G−1
n + ε2V N

n G−1
n , gives

DN
n−1 − DN

n

ε
∼ (AN

n

)(s)
G−1

n as ε → 0. (A15)

To summarize, setting τ = t − s in Eq. (A10), this leads to the second-order nonlinear differential equation, Eq. (15), subject
to the boundary conditions DN (t ) = 1 and ḊN (t ) = −(AN )(s)(t )G(t )−1.

APPENDIX B: DIFFERENT DISCRETIZATION CHOICES

According to Eq. (16), the most general discretization prescription for Eq. (A1) is given as a function of γ ∈ [0, 1] as

δ2S(qN , h) ≈ ε

n∑
j=0

δ2S(qN , h)γ j := 1

ε

n∑
j=1

{
�hT

j Gj�h j + 2ε�hT
j

[
γ AN

j h j + (1 − γ )AN
j−1h j−1

]+ ε2hT
j V N

j h j
}
. (B1)

From this expression, we can repeat all the steps followed in Appendices A 1 and A 2 to see that the difference Eq. (A9) now
becomes

DN
n−(k+1)Gn−(k+1) = DN

n−kGn−(k+1) + DN
n−kGn−k − DN

n−(k−1)Gn−k + ε2DN
n−kV

N
n−(k+1) + 2ε(2γ − 1)DN

n−kAN
n−(k+1)

− εDN
n−k

[
γ AN

n−k − (1 − γ )
(
AN

n−(k+1)

)T ]
G−1

n−k

(
DN

n−k

)−1
DN

n−(k−1)Gn−k

− εDN
n−(k−1)

[
γ
(
AN

n−k

)T − (1 − γ )AN
n−(k+1)

]
− ε2DN

n−k

[
γ AN

n−k − (1 − γ )
(
AN

n−(k+1)

)T ]
G−1

n−k

(
DN

n−k

)−1
DN

n−(k−1)

[
γ
(
AN

n−k

)T − (1 − γ )AN
n−(k+1)

]
. (B2)

If AN is not symmetric, it is possible to derive a differential equation from Eq. (B2) through Taylor expansion only if γ = 1
2 ,

which gives Eq. (15). This is easy to check by performing the calculation. The same is also true for K, for which the expansion
is now taken around the isolated minimum qD.

If AD and AN are symmetric, and if we adopt the same discretization prescription for both K and N , then there is a one
parameter family of different equations providing the same normalized result for the transition probability density, namely,

d

dτ
[ḊG] + 2γ DȦ − D[V − (1 − 2γ )2AG−1A] = (1 − 2γ )ḊA + (1 − 2γ )DAG−1D−1ḊG, (B3)

subject to the boundary conditions DD(t ) = 0, ḊD(t ) = −G(t )−1 and DN (t ) = 1, ḊN (t ) = −2γ AN (t )G(t )−1.
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APPENDIX C: THE NONLINEAR TRANSFORMATION EQ. (25)

As mentioned in the main text, the solutions D of Eq. (15) and L of Eq. (24) are related by the nonlinear transformation
Eq. (25) presented in Ref. [17]. Here we present in detail how the boundary conditions for D translate into boundary conditions
for L, in the context of the backward integration procedure.

First, let us consider the case for qD. Equation (25) gives us a mapping between LD and DD, as far as they are invertible. If
we assume LD and DD to be invertible for all τ 	= t (no conjugate points) the transformation is valid except for τ = t , where
DD(t ) = 0 because of the boundary conditions in the backward direction [see paragraph after Eq. (21)].

To derive the boundary conditions for LD in τ = t from the boundary conditions for DD in τ = t , we consider the following
reasoning. For τ 	= t we can write L̇D = LD(DD)−1ḊD + LD(AD)(a)G−1, and we know that DD → 0 and ḊD → −G(t )−1 as
τ → t , for continuity of DD and ḊD. As a consequence, in order to obtain a finite boundary condition for L̇D, we necessarily
want LD(DD)−1 → X as τ → t , where X is a finite-valued matrix. This implies that LD(t ) = limτ→t LD = 0, for continuity of
LD. Furthermore, having LD be invertible for τ 	= t implies L̇D(t ) is not singular, meaning that the matrix X is not singular as
well, since LD(t ) = 0. To summarize, we have that

d

dτ
[L̇DG + LD(AD)T ] − L̇DAD − LDV D = 0 (C1)

is subject to the boundary conditions LD(t ) = 0 and L̇D(t ) = −XG(t )−1.
In the same way, we now consider the case for qN . Assuming LN and DN to be nonsingular also for τ = t (note DN (t ) = 1),

we have

LN (t )−1L̇N (t ) = −(AN )(s)(t )G(t )−1 + (AN )(a)(t )G(t )−1 = −(AN )T (t )G(t )−1. (C2)

In addition, as we want LN to be invertible in τ = t , then Y := LN (t ) must be a nonsingular matrix. To summarize, we have that

d

dτ
[L̇N G + LN (AN )T ] − L̇N AN − LNV N = 0 (C3)

is subject to the boundary conditions LN (t ) = Y and L̇N (t ) = −Y (AN )T (t )G(t )−1.
At this point, we use the observation that det L = c det D for all τ , where c is a constant [17]. In order to make the

transformation unique (up to invertible matrices sharing the same determinant), we impose c = 1 for both LD, DD and LN ,
DN , which allows us to fix the matrices X and Y . Namely,

lim
τ→t

det(LD(τ )(DD)−1(τ )) = det(X ), (C4)

lim
τ→t

det(LN (τ )(DN )−1(τ )) = det(Y ), (C5)

so that we can set X = Y = 1.

APPENDIX D: THE GENERAL FORMULATION FOR MARGINALS

1. Derivation of Eq. (28)

In order to derive Eq. (28), we first express the second variation of the energy in qDN (τ ) using the method of finite differences.
Recalling that we discretized τ ∈ [t0, t] into n intervals of length ε = (t − t0)/n and that v(τ ) := (vV (τ ), vF (τ )) represents a
perturbation around the latter minimum, we can start our calculation from expression (A3), since the previous steps are identical,
obtaining now

ε

n∑
j=0

δ2S(qDN , v) j = 1

ε

n−1∑
j=1

[
vT

j

(
Gj + Gj+1 + ε2V DN

j

)
v j − vT

j U DN
j v j−1 − vT

j−1

(
U DN

j

)T
v j
]

+ 1

ε

[
vT

n

(
Gn + εADN

n + ε2V DN
n

)
vn − vT

n U DN
n vn−1 − vT

n−1

(
U DN

n

)T
vn
]
, (D1)

with U DN
j := Gj + ε

2 [(ADN
j )T − ADN

j−1] for j = 1, . . . , n.
To proceed further, let us introduce the following notation. For a given matrix M ∈ Rd×d , we label the submatrices M̆ ∈ Rl×l ,

M̂ ∈ Rl×d−l , M̀ ∈ Rd−l×l , M̃ ∈ Rd−l×d−l , and M̄ ∈ Rl×d , such that M = (M̆ M̂
M̀ M̃) and M̄ = (M̆, M̂ ).
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Since the variation in τ = t is given by vn = (vV n, 0), because of the boundary conditions satisfied by the mixed minimizer
qDN (τ ), we can write Eq. (D1) as

ε

n∑
j=0

δ2S(qDN , v) j = 1

ε

n−1∑
j=1

[
vT

j

(
Gj + Gj+1 + ε2V DN

j

)
v j − vT

j U DN
j v j−1 − vT

j−1

(
U DN

j

)T
v j
]

+ 1

ε

[
vT

V n

(
Ğn + εĂDN

n + ε2V̆ DN
n

)
vV n − vT

V nŪ
DN
n vV n−1 − vT

V n−1

(
Ū DN

n

)T
vV n
]
. (D2)

At this point, we perform a change of variables. We define the transformation (with unit Jacobian) φ j := v j − βDN
j v j−1 ∈

Rd for j = 1, . . . , n − 1 and φn := vV n − βDN
n vn−1 ∈ Rl , where the matrices βDN

j are given recursively by the following
construction:

αDN
n := Ğn + ε

ĂDN
n + (ĂDN

n

)T
2

+ ε2V̆ DN
n ∈ Rl×l , (D3a)

αDN
j := Gj + Gj+1 + ε2V DN

j − (βDN
j+1

)T
αDN

j+1β
DN
j+1 ∈ Rd×d for j = n − 1, . . . , 1, (D3b)

Ū DN
n = αDN

n βDN
n ∈ Rl×d , (D3c)

U DN
j = αDN

j βDN
j ∈ Rd×d for j = 1, . . . , n − 1. (D3d)

These expressions are motivated by the fact that they allow one to express Eq. (D2) as a sum of quadratic forms, which is
desired in view of a Gaussian integration, namely,

ε

n∑
j=0

δ2S(qDN , v) j = 1

ε

n∑
j=1

φT
j αDN

j φ j . (D4)

We then define F DN
j := αDN

j G−1
j for j = 1, . . . , n − 1, and we compute the Gaussian integrals as

IDN
n =
∫ vF (t )=0

v(t0 )=0

n∏
j=1

[
det (Gj )

(2πε)d

] 1
2

n−1∏
j=1

dv jdvV ne− ε
2

∑n
j=0 δ2S(qDN ,v) j

=
∫ n∏

j=1

[
det (Gj )

(2πε)d

] 1
2

dφ je
− 1

2ε

∑n
j=1 φT

j αDN
j φ j = [(2πε)d−l det

(
αDN

n

)]− 1
2 det

⎡
⎣G−1

n

n−1∏
j=1

F DN
j

⎤
⎦

− 1
2

. (D5)

Equation (28) is finally recovered by making the choice (which substantially simplifies the calculations in the next section)

F DN
n :=

(
αDN

n Ĝn

0 ε1d−l×d−l

)
G−1

n . (D6)

2. Derivation of Eq. (29)

In order to derive Eq. (29) we need to compute the limit in Eq. (26). We notice that the recurrence relations exploited in
Appendix A 2 are the same here, thus leading to the same differential equation, Eq. (15). Namely, we can define DDN

n−k :=∏k
j=0 F DN

n− j for k = 0, 1, . . . , n − 1 and provide the following iterative method for DDN and αDN : initial condition, DDN
n = F DN

n ;

iteration scheme, DDN
n−(k+1) = DDN

n−kα
DN
n−(k+1)G

−1
n−(k+1) for k = 0, 1, . . . , n − 2; and initial condition, αDN

n = Ğn + ε
ĂDN

n +(ĂDN
n )T

2 +
ε2V̆ DN

n ; iteration scheme, αDN
n−(k+1) = Gn−(k+1) + Gn−k + ε2V DN

n−(k+1) − (βDN
n−k )T αDN

n−kβ
DN
n−k for k = 0, 1, . . . , n − 2. Therefore, the

only step left is the computation of the boundary conditions for Eq. (A10).
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Using the block matrix inversion formula

G−1
n =
(

Ğn Ĝn

ĜT
n G̃n

)−1

=
(

Ğ−1
n + Ğ−1

n ĜnZ−1
n ĜT

n Ğ−1
n −Ğ−1

n ĜZ−1
n

−Z−1
n ĜT

n Ğ−1
n Z−1

n

)
, Z = G̃ − ĜT Ğ−1Ĝ, (D7)

and the fact that αDN
n → Ğn for ε → 0, the following expression is easily obtained

DDN
n =
(

αDN
n Ĝn

0 ε1d−l×d−l

)
G−1

n →
(

1l×l 0l×d−l

0d−l×l 0d−l×d−l

)
, ε → 0, (D8)

so that for Eq. (15) we get DDN (t ) = (1 0
0 0). Moreover, the derivative at the boundary is discretized as

DDN
n−1 − DDN

n

ε
= DDN

n

(
αDN

n−1G−1
n−1 − 1

)
ε

, (D9)

where the term ε−1(αDN
n−1G−1

n−1 − 1) ∼ ε−1(Gn − (βDN
n )T αDN

n βDN
n )G−1

n−1 is evaluated by computing(
βDN

n

)T
αDN

n βDN
n = (Ū DN

n

)T (
αDN

n

)−1
Ū DN

n

=
{

Ḡ j + ε

2

[(
ADN

j

)T − ĀDN
j−1

]}T (
αDN

n

)−1
{

Ḡ j + ε

2

[(
ADN

j

)T − ĀDN
j−1

]}

∼ Gα
n + ε

Tn + T T
n

2
, (D10)

with

Gα
n :=
(

Ğn
(
αDN

n

)−1
Ğn Ğn

(
αDN

n

)−1
Ĝn

ĜT
n

(
αDN

n

)−1
Ğn ĜT

n

(
αDN

n

)−1
Ĝn

)
, Tn :=

([
ĂDN

n − (ĂDN
n−1

)T ](
αDN

n

)−1
Ğn
[
ĂDN

n − (ĂDN
n−1

)T ](
αDN

n

)−1
Ĝn[

ÀDN
n − (ÂDN

n−1

)T ](
αDN

n

)−1
Ğn
[
ÀDN

n − (ÂDN
n−1

)T ](
αDN

n

)−1
Ĝn

)
. (D11)

To conclude, we have

DDN
n−1 − DDN

n

ε
∼ DDN

n

(
Gn − Gα

n

)
ε

G−1
n−1 − DDN

n

Tn + T T
n

2
G−1

n−1. (D12)

From the definition T (t ) := lim ε→0Tn, and noting that 1−Ğn (αDN
n )−1

ε
→ ĂDN +(ĂDN )T

2 Ğ−1(t ) for ε → 0, we perform the necessary
computations that take into account a minus sign when transforming the derivative from Eq. (A10) to Eq. (15), and finally we
obtain

ḊDN (t ) =
(

− ĂDN +(ĂDN )T

2 [Ğ−1 + Ğ−1ĜZ−1ĜT Ğ−1]
ĂDN +(ĂDN )T

2 Ğ−1ĜZ−1

Z−1ĜT Ğ−1 −Z−1

)
(t ) +
(

T +T T

2 G−1

0

)
(t ). (D13)

3. Boundary conditions for the Jacobi fields

As discussed in Appendix C for the previous cases, the solutions D of Eq. (15) and L of Eq. (24) are related by the nonlinear
transformation Eq. (25) presented in Ref. [17]. Here we explain in detail how the boundary conditions for D translate into
boundary conditions for L for the general problem of marginal distributions and how to recover Eq. (10).

Equation (25) gives us a mapping between LDN and DDN , as far as they are invertible. If we assume LDN and DDN to be
invertible for all τ 	= t (no conjugate points), the transformation is valid except for τ = t , where DDN is singular because of the
boundary conditions. Therefore, the first step is to find the Taylor expansion (with singular term) of (DDN )−1(τ ) around τ = t ,
arising from Eqs. (D8) and (D13), which leads to

(DDN )−1(τ ) = P
1

τ − t
+ R + O(τ − t ), P =

(
P̆ P̂
P̀ P̃

)
=
(

0 0
0 −Z (t )

)
, R =

(
R̆ R̂
R̀ R̃

)
=
(

1 ∗
∗ ∗
)

, (D14)

where the entries denoted by “∗” are unnecessary for the derivation of the results.
Furthermore, Eq. (25) allows us to write L̇DN = LDN (DDN )−1ḊDN + LDN (ADN )(a)G−1 for τ 	= t . As a consequence, in order

to obtain a finite boundary condition for L̇DN , we necessarily want

LDN (DDN )−1 → X as τ → t, (D15)

where X is a finite-valued matrix.
Since around τ = t we can also write LDN (τ ) = LDN (t ) + L̇DN (t )(τ − t ) + O(τ − t )2, then for Eq. (D15) to be true we

necessarily want LDN (t ) = Y , with Ŷ = 0, Ỹ = 0, X̆ = Y̆ , and X̀ = Ỳ , so that

lim
τ→t

LDN (DDN )−1 =
(

Y̆ X̂
Ỳ X̃

)
. (D16)
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At this point, we use the observation that det L = c det D for all τ , where c is a constant [17]. In order to make the transformation
unique (up to invertible matrices sharing the same determinant), we impose c = 1 by choosing Y̆ = 1, X̃ = 1, Ỳ = 0, and
X̂ = [(ÀDN )T + ĂDN −(ĂDN )T

2 Ğ−1Ĝ](t ). The latter choice will be the key element for deriving the boundary conditions appearing

in Eq. (10). We obtain LDN (t ) = (1 0
0 0) and, after some algebra, we arrive at

L̇DN (t ) =
(

1 (ÀDN )T + ĂDN −(ĂDN )T

2 Ğ−1Ĝ
0 1

)
ḊDN (t ) +

(
(ADN )(a)G−1

0

)
(t ),

=
(−(ĂDN )T (Ğ−1 + Ğ−1ĜZ−1ĜT Ğ−1) + (ÀDN )T Z−1ĜT Ğ−1 (ĂDN )T Ğ−1ĜZ−1 − (ÀDN )T Z−1

Z−1ĜT Ğ−1 −Z−1

)
(t ). (D17)

To conclude, reminding that W DN = (LDN )T and that the conjugate variable under the Legendre transform for the Hamiltonian
form of the Jacobi equation is given by MDN = GẆ DN + ADNW DN , we recover the boundary conditions for Eq. (10):

W DN (t ) =
(

1 0
0 0

)
, MDN (t ) =

(
0 0
0 −1

)
. (D18)
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