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Random sequential adsorption of partially ordered discorectangles onto a continuous plane
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A computer simulation was used to study the random sequential adsorption of identical discorectangles onto
a continuous plane. The problem was analyzed for a wide range of discorectangle aspect ratios (ε ∈ [1; 100]).
We studied the anisotropic deposition, i.e., the orientations of the deposited particles were uniformly distributed
within some interval such that the particles were preferentially aligned along a given direction. The kinetics of
the changes in the packing fraction found at different values of such the alignment are discussed. Partial ordering
of the discorectangles significantly affected the packing fraction at the jamming state, ϕj, and shifted the cusps in
the ϕj (ε) dependencies. The structure of the jammed state was analyzed using the adsorption of disks of different
diameters into the porous space between the deposited discorectangles. The analysis of the connectivity between
the discorectangles was performed assuming a core-shell structure of particles.
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I. INTRODUCTION

The behavior of systems of interacting elongated particles
continues to attract great attention in both academic and
applied fields. In such systems, complex collective behavior,
spontaneous orientational ordering, and self-assembly have
been observed [1–3]. In particular, systems of elongated
particles have shown a nematic orientational ordering in
both thermal equilibrium [4,5] and athermal (T = 0) systems
(for example, uniform shear flow [6]). The self-assembly of
particles achieving their densest packing [7], and the crys-
tallization transition (granular crystallization) from random
to ordered packings under mechanical vibration have been
observed [8]. The particle shape may affect not only the
packing characteristics of powders and granular materials,
and of porous media (e.g., packing fraction and coordina-
tion numbers) [9–11], but also the processes of aggregation
[12], gravity- and vibration-induced segregation [13], com-
pression behavior [14], and fluid flow through the porous
packings [15]. A proper description of these processes is
of fundamental importance for the preparation of advanced
nanomaterials [16,17], specifically those filled by nanotubes
[18] and nanoplatelets [19]. The structure of packings filled
by elongated particles can significantly affect the connectiv-
ity, electrical conductivity, and permeation of such porous
networks [20].

In recent decades, the many important practical applica-
tions of thin films [21,22] have initiated great interest in
studies of two-dimensional (2D) systems filled with elongated
particles [23]. The rich phase behavior in these systems has
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been observed in its dependence on the confining dimension
[24]. Monte Carlo (MC) simulations of 2D systems of in-
finitely thin hard rods in thermal equilibrium have revealed
a “nematic” phase at high densities [25]. However, such a
“nematic” phase possessed algebraic order (quasi-long-range
order). For 2D fluids of discorectangles (rounded-cap rectan-
gles) [26], simulations have revealed that the “nematic” phase
can be observed only for sufficiently long particles with aspect
ratios (ε, length-to-width ratio) above 7. Shorter particles
do not exhibit a “nematic” phase but undergo a melting
transition.

Packing problems for nonequilibrium 2D systems of elon-
gated particles have been intensively studied using a random
sequential adsorption (RSA) model [27,28]. In this model,
the particles are deposited randomly and sequentially onto a
substrate, while overlapping with previously placed particles
is strictly forbidden. For the RSA model, above some limiting
coverage ϕj (called the jamming or saturation limit), there is
no empty space for the deposition of a new particle and the
adsorption process terminates.

The RSA simulations for disks gave a jamming coverage
ϕj = 0.547 ± 0.002 [29,30]. 2D saturated RSA packings of
unoriented ellipses [31], squares [32], rectangles [33,34], dis-
corectangles [35,36], polygons [37,38], sphere dimers, sphere
polymers, and other shapes [39–41] have been investigated.
For all the studied problems, cusplike maximums of jamming
coverage at some aspect ratios (ε ≈ 1.7–1.9) were observed.
For very elongated shapes (ε � 1), the value of ϕj descended
to zero according to the power law [42]:

ϕj ∝ ε−1/(1+√
2). (1)

For discorectangles, the observed maximum in jamming
coverage was explained by the peculiar nearest-neighbor
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relative orientation for short particles [35]. Similar cusplike
maximums in the ϕj(ε) dependencies have also been ob-
served for saturated RSA packings of elongated particles in
one-dimensional (1D) [43–46] and three-dimensional (3D)
[3,23] systems. The kinetics of packing growth has been
also studied in detail [30,31,33,34,41,42,47]. In particular, it
was demonstrated that the asymptotic kinetics of the RSA
of nonspherical particles is not the same as for spherical
ones [47].

However, almost all previous studies of the saturated pack-
ing of elongated particles have been devoted to conventional
RSA with unoriented particles. In some works, the RSA
problems for perfectly oriented particles with respect to a
selected direction; for example, parallel squares [48] and ide-
ally oriented superdisks [49] have been studied. Recently the
thermal relaxation towards equilibrium of 2D oriented RSA
packings have been investigated [50]. Here the rods were in-
finitely thin (ε = ∞), and in the initial state, before relaxation,
they were preferentially aligned with respect to a selected
direction. The study revealed different relaxation behavior de-
pendent on the preliminary ordering and the number density of
the rods.

Experimental studies have reported various effects of the
alignment of elongated particles on the transport and optical
properties of thin films [51,52]. Various alignment techniques
have been proposed to organize elongated particles onto 2D
substrates, based on external forces (magnetic [53], electrical
[54,55]), and shear flow [52]. This paper analyzes the RSA
packing of identical elongated particles (discorectangles) on
a 2D surface. We employ an off-lattice model, i.e., both the
positions and orientations of the particles are continuous.
The deposited particles were preferentially aligned along a
selected direction. The aspect ratio of the particles varied
within the range ε ∈ [1; 100]. Special attention has been paid
to the effects of the alignment of the particles on the packing
characteristics.

The rest of the paper is constructed as follows. In Sec. II the
technical details of the simulations are described, all necessary
quantities are defined, and some test results are presented.
Section III describes our principal findings. Section IV sum-
marizes the main results.

II. COMPUTATIONAL MODEL

A discorectangle is a rectangle with two hemidisks at its
ends. The aspect ratio is defined as ε = l/d , where l is the
total length of the particle and d is its width. The 2D packings
were produced using an RSA model [27]. The particles were
randomly and sequentially deposited onto a 2D surface until
they reached the maximum (jamming) coverage ϕj. The over-
lapping of any new particle with previously deposited ones
was forbidden (Fig. 1). For detecting overlapping during the
deposition a fast algorithm to evaluate the shortest distance
between particles was used [56–58]. The optimized RSA
algorithm based on tracking of local regions was used [36].
Periodic boundary conditions were applied to the substrate in
both the x and y directions.

The preferential orientation of the particles was character-
ized using the order parameter defined as

S = 〈cos 2θ〉, (2)

Shell

l

 δ

d

Core

Contact

ε=l/d

FIG. 1. An illustration of the RSA model of the packing of
discorectangles on a 2D substrate. Intersections of the particle cores
are forbidden. For the connectivity analysis, each particle is assumed
to be covered by a soft (penetrable) shell with thickness δ.

where 〈·〉 denotes the average, θ is the angle between the
long axis of the particle and the selected direction, and x
(the horizontal axis). For completely aligned and unoriented
particles S = 1, and S = 0, respectively.

For producing partially ordered RSA deposits, a model
of anisotropic random-orientation distribution has been used
[59]. For this model, the orientations of the deposited particles
are selected to be uniformly distributed within some interval
θ ∈ [−θm; θm], where θm � π/2. In this case, the preassigned
order parameter can be evaluated as [50]

S0 = sin 2θm

2θm
. (3)

The isotropic case S0 = 0 corresponds to θm = π/2. The
smaller the value of θm is the higher the order parameter,
S0. We believe that applied simplified distribution function
should not affect qualitatively the main results as compared
with that for more complicated distribution functions (e.g.,
normal, wrapped normal, exponential, or von Mises [23]).
During the deposition of particles according to the RSA
protocol, some particle orientations may be rejected, therefore
the actual order parameter in the deposit, S, may differ from
the value of S0. This situation resembles the RSA deposition
of partially oriented elongated particles (k-mers) onto a square
lattice [60]. The actual order parameter S is conserved only for
isotropic (S0 = 0) and completely aligned (S0 = 1) packing,
while in the general case, the value of S depends upon
the packing fraction, ϕ. Figure 2 presents examples of the
actual order parameter, S, versus the packing fraction, ϕ, for
the preassigned order parameters S0 = 0.5 and S0 = 0.9 and
different aspect ratios ε. Here the values of ϕj correspond to
jamming states. When the aspect ratio is large, the difference
between S and S0 may be fairly significant. For elongated
particles, the actual values of S exceeded the preassigned ones
S0. This possibly reflected formation of domain structures
with near-parallel particles inside them. However, for interme-
diate value S0 = 0.5 and small aspect ratio ε = 2 (Fig. 2), the
surprising decreasing of the actual order parameter near the
jamming limit ϕj was observed. We have no explanation for
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FIG. 2. Actual order parameter, S, versus the packing fraction, ϕ,
at different values of the aspect ratio ε. Examples for the preassigned
order parameters S0 = 0.5 and S0 = 0.9. The values of ϕj correspond
to jamming states.

this behavior; however, note that it is strikingly similar to the
cusplike anomaly of jamming coverage for slightly elongated
particles. In a similar manner, this orientation effect can reflect
the competition between the tendency for maximum packing
and excluded volume effects.

The dimensions of the system under consideration were L
along both the horizontal (x) and the vertical (y) axes. In the
present work, all calculations have been performed using L =
32l . The jamming coverage was assumed to be reached after at
least L2 × 1010 unsuccessful attempts to place a new particle
on the line. For each given value of ε and S0, the computer
experiments were repeated up to 100 times. The error bars in
the figures correspond to the standard deviation of the mean.
When not shown explicitly, they are of the order of the marker
size. All simulations were performed for the aspect ratios
ε ∈ [1; 100].

In the resulting deposits, the particles cannot touch each
other, hence, they are not in direct contact. However, a core-
shell model of the particles can be used to evaluate the
connectedness of the particles. To perform this analysis, each
particle was covered by an outer shell with a thickness δ

(Fig. 1). Any two particles are assumed to be connected when
the minimal distance between their hard cores does not exceed
the value of 2δ.

The minimum (critical) value of the outer shell thickness δ

required for the formation of spanning clusters along the x or
y direction, was evaluated. The calculations were performed
using the Hoshen-Kopelman algorithm [61]. The analysis was
carried out using a list of near-neighbor particles [62].

Figure 3(a) presents examples of the jamming patterns for
a fixed aspect ratio of ε = 10 at S0 = 0 (random orientation)
and S0 = 1 (complete alignment along the horizontal direction
x). An analysis of the holes between discorectangles was
undertaken using reference disks of different diameters, d◦.
In these tests, after the formation of the jamming deposits,

1.01.0(a)

(b) 0.3 0.55

S0=0.0 S0=1.0

do=0.3l do=0.55l
 do

FIG. 3. Examples of the jamming patterns for aspect ratio ε =
10 at S0 = 0 (random orientation) and S0 = 1 (complete alignment
along the horizontal direction) (a), and for aspect ratio ε = 2 at S0 =
0 (b). For the latter case, the void space between the discorectangles
is filled with reference disks with diameters d◦ = 0.3l and d◦ =
0.55l . Fragments with size of 9l × 9l are shown.

the “accessible void” was supplementarily filled with the
reference disks using the RSA model up to the jamming
limit. Figure 3(b) presents examples of the jamming patterns
for the aspect ratio ε = 2 and random orientation of the
discorectangles (S0 = 0) for d◦ = 0.3l and d◦ = 0.55l .

III. RESULTS AND DISCUSSION

Figure 4(a) presents the packing fraction, ϕ, versus the
deposition time, t , for the disordered RSA packing (S0 = 0)
of discorectangles with different aspect ratios ε. The value
of ϕ gradually increased with increasing t as the system
approached the jamming value ϕj at t → ∞. Similar depen-
dencies ϕ(t ) were also observed for other values of S0. The
inflections in the time derivatives dϕ/d log10 t were used to
estimate the characteristic deposition times, τ [Fig. 4(b)] [63].

Figure 5(a) shows the packing fraction at the jamming
state, ϕj, versus the discorectangle aspect ratio, ε, at different
values of the preassigned order parameter, S0. For partially
disordered systems (at S0 < 1) noticeable cusps (maximums)
in the ϕj(ε) dependencies could be observed. For example, for
completely disordered RSA packing (S0 = 0) a well-defined
maximum ϕj = 0.583 ± 0.004 (at ε ≈ 1.46) was observed,
and this result is in good correspondence with a previously re-
ported value for completely disordered discorectangles, ϕj =
0.582896 ± 0.000019 [36]. The initial density increase can be
explained by relaxing the parameter constraint (appearance of
orientational degrees of freedom) in the RSA packing of the
elongated particles, while the density decrease at larger values
of ε may reflect excluded volume effects [43]. An increase
of partial ordering noticeably influenced the character of the
ϕj(ε) dependencies, and the cusps became less significant.
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(a)

(b)

FIG. 4. Packing fraction, ϕ, (a) and time derivative dϕ/d log10 t
(b) versus the deposition time, t , for the disordered RSA packing
(S0 = 0) of discorectangles with aspect ratio ε. Here ϕj is the
jamming coverage and τ is the characteristic deposition time.

A remarkable feature was the presence of a stable point at
ε � 4 with nearly the same values of ϕj = 0.557 ± 0.002 for
all values of S0 ∈ [0; 1]. In the limit of completely aligned dis-
corectangles (S0 → 1) the cusp disappeared. For this case, the
packing fraction gradually increased with ε and approached
the value ϕj ≈ C2

R = 0.5589 . . . [Fig. 5(a)], where CR is the
well-known Rényi’s parking constant for a 1D problem [64].
This supports Palásti’s conjecture, regarding the relationships
of the jamming limits for 1D and 2D problems [65].

Figure 5(b) shows the characteristic deposition time, τ ,
versus the discorectangle aspect ratio, ε, at different values of
the preassigned order parameter, S0. At relatively small aspect
ratios (ε � 10) an approximately linear increase of τ with ε

for all values of S0 was observed:

τ = τ1 + a(ε − 1), (4)

where τ1 = 490 ± 12 corresponds to the characteristic depo-
sition time for disks (ε = 1) and a = 508 ± 6 (the coefficient
of determination was R2 = 0.9987).

(a)

(b)

FIG. 5. Packing fraction at the jamming state, ϕj, (a) and charac-
teristic deposition time, τ , (b) versus the discorectangle aspect ratio,
ε, at different values of the preassigned order parameter, S0.

For completely aligned systems (S0 = 1), this linear τ (ε)
dependence was also observed for ε > 10. For partially ori-
ented systems (S0 < 1), significant deviations were observed
for ε > 10, particularly for S0 = 0. This reflected the excluded
volume effects on stagnation of the RSA deposition process
for disordered systems. For these systems, the packing frac-
tion at the jamming state, ϕj significantly decreased for elon-
gated particles with large aspect ratio ε. This also reflected the
excluded volume effects on packing loosening [23].

The evaluated characteristic time can reflect the transition
from initial loose uncorrelated packing to the more dense
correlated packing at longer time. Moreover, for relatively
long particles (ε > 10), the value of τ may reflect stagnated
deposition of particles inside domains of previously deposited
particles. For this case, the voids in domains can be filled only
with the particles with some specific orientations, and the
adsorption rate is slowing down.

Figure 6 demonstrates examples of the minimal reduced
thickness of the shell, δ/d , required for a spanning path
through the system, versus the packing fraction, ϕ, at a fixed
preassigned order parameter S0 = 0.0 and different aspect
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FIG. 6. Minimal reduced thickness of shell, δ/d , required for
infinite connectivity between particles (formation of a spanning path
through the system), versus the packing fraction, ϕ, at different
aspect ratios ε. The preassigned order parameter is S0 = 0.0. The
inset shows the δ/d versus ε dependencies at ϕ = 0.4 and ϕ = ϕj

(jamming state).

ratios ε. The values of δ/d decreased with ϕ, particularly,
the power relation δ/d ∝ 1/ϕα (α = 2.36 ± 0.02) could be
observed at ε = 1. However, the connectivity behavior at dif-
ferent values of ε was rather complex (see inset in Fig. 6). For
example, at a fixed value of ϕ = 0.4, the connectivity analysis
revealed a cusp (maximum) in the δ(ε)/d dependence. This
maximum is similar to that observed in the ϕj(ε) dependence
and it evidently reflects the interplay of the above-mentioned
geometrical effects (orientation freedom and excluded
volume). For the maximum packing (jamming state) the value
of δ/d increased with ε, i.e., the connectivity did not display
any cusp behavior (see inset in Fig. 6).

Figure 7 demonstrates examples of the packing fraction of
reference disks, φ, versus the deposition time, t . The value
of φ was calculated as the total area of disks divided by the
area not covered by discorectangles. In these simulations, dis-
corectangles with an aspect ratio of ε = 2 and random orien-
tations (S0 = 0) were preliminarily deposited to the jamming
state (ϕj ≈ 0.582). Then RSA packing of reference disks with
different diameters d◦ into the confined void spaces between
the discorectangles was applied. The value φj corresponds to
the jamming coverage of the reference disks, and with small
disks (d0/l  1), it was close to the value of φj ≈ 0.547 for
the jamming coverage of disks seen for an nonconfined RSA
problem on a plane [29,30].

Figure 8 compares the φj versus d◦/l dependencies for
completely disordered (S0 = 0, filled symbols, solid lines)
and completely aligned (S0 = 1, open symbols, dashed lines)
discorectangles at different aspect ratios, ε. The values of
φj gradually decreased with d◦/l and where RSA packing
was possible for reference disks with sizes not exceeding
some maximum size dm/l . The character of the φj(d◦/l )
dependencies were noticeably different for different values
of ε. They were approximately linear at some intermediate
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FIG. 7. Packing fraction of reference disks, φ, versus the depo-
sition time, t . Here discorectangles with an aspect ratio of ε = 2
and random orientations (S0 = 0) were preliminarily deposited to the
jamming state (ϕj ≈ 0.582), and then RSA packing of reference disks
with different diameters d◦ into the confined void spaces between
the discorectangles was applied. The value φj corresponds to the
jamming coverage of the reference disks.

values of the aspect ratio ε ≈ 2, demonstrated convexity when
ε < 2, and concavity when ε > 2. Moreover, the value of
ε differently affected the maximum diameter dm/l in the
dependence on S0 (see inset in Fig. 7). At small values of ε

(ε � 4) the value of dm/l for a completely aligned system
(S0 = 1) exceeded that for a completely disordered system

FIG. 8. Jamming packing fraction of reference disks in the void
space between discorectangles, φj, versus reduced diameter of the
disks d◦/l . The data are presented for completely disordered (S0 =
0, filled symbols, solid lines) and completely aligned (S0 = 1, open
symbols, dashed lines) discorectangles with different aspect ratios
of ε. The value of dm/l corresponds to the maximum diameter of
the reference disks. Inset shows the dm/l versus ε dependencies for
different values of the preassigned order parameters, S0.
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(S0 = 0), but the situation was inverse at large values of
ε (ε > 4). For large aspect ratios (ε � 1) a different limit-
ing behavior was also observed, dm/l → 0.5 for S0 = 0 and
dm/l → 0 for S0 = 1. For relatively large values of ε the
relatively large holes (“empty” spaces) between the discorect-
angles can be distinguished accounting for the side-to-side,
side-to-cap, and cap-to-cap positions of the near-neighbor
discorectangles (Fig. 3). This distinction is governed by the
preassigned order parameter, S0, and a decreased value of
this results in an increase in the size of the holes (value of
dm/l). Note that side-to-side contacts were expected to play a
stabilizing role in the packing of elongated particles [66].

IV. CONCLUSION

Simulations for a continuous 2D model of RSA packing
of discorectangles have been performed. The initial state was
produced at different values of the preassigned order parame-
ters 0 � S0 � 1. The effects of ordering on the packings were
noticeably dependent on the discorectangle aspect ratio, ε. For
partially disordered systems (S0 < 1) and at relatively small
values of ε (ε < 4), the dependencies of the jamming coverage
ϕj(ε) showed that the cusps. For more elongated particles
(ε > 4), the values of ϕj decreased with ε. However, for
completely aligned discorectangles (S0 = 1) the cusps dis-

appeared, and the value of ϕj gradually increased with ε

and approached the value ϕj ≈ C2
R, where CR is the Rényi’s

parking constant for a 1D problem [64]. Therefore, Palásti’s
conjecture, that jamming coverages in 1D and 2D are con-
nected as ϕj,2D = ϕ2

j,1D, is fulfilled [65]. At ε = 4, we observed
almost the same value of ϕj = 0.557 ± 0.002 for all values of
S0 ∈ [0; 1]. The complex effects of aspect ratio and orientation
ordering on the connectivity of discorectangles with core-
shell structures and on the distribution of local voids between
discorectangles were also revealed.

Note that the previous studies performed in equilibrium
state for rod with large aspect ratio (ε � 1) revealed con-
ditions for the transition from RSA to the quasinematic
phase [50]. Therefore, it might be very interesting in fu-
ture to investigate the relaxation of irreversible RSA pack-
ing of discorectangles with finite aspect ratios towards the
equilibrium state.
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[45] M. Cieśla, K. Kozubek, P. Kubala, and A. Baule, Kinetics of
random sequential adsorption of two-dimensional shapes on a
one-dimensional line, Phys. Rev. E 101, 042901 (2020).

[46] N. I. Lebovka, M. O. Tatochenko, N. V. Vygornitskii, and Y. Y.
Tarasevich, Paris car parking problem for partially oriented
discorectangles on a line, Phys. Rev. E 102, 012128 (2020).

[47] J. Talbot, G. Tarjus, and P. Schaaf, Unexpected asymptotic
behavior in random sequential adsorption of nonspherical parti-
cles, Phys. Rev. A 40, 4808 (1989).

[48] B. J. Brosilow, R. M. Ziff, and R. D. Vigil, Random se-
quential adsorption of parallel squares, Phys. Rev. A 43, 631
(1991).

[49] O. Gromenko and V. Privman, Random sequential adsorption
of oriented superdisks, Phys. Rev. E 79, 042103 (2009).

[50] N. I. Lebovka, N. V. Vygornitskii, and Y. Y. Tarasevich, Re-
laxation in two-dimensional suspensions of rods as driven by
Brownian diffusion, Phys. Rev. E 100, 042139 (2019).

[51] T. Ackermann, R. Neuhaus, and S. Roth, The effect of rod
orientation on electrical anisotropy in silver nanowire networks
for ultra-transparent electrodes, Sci. Rep. 6, 34289 (2016).

[52] Y. Wu, Z. Jiang, X. Zan, Y. Lin, and Q. Wang, Shear flow
induced long-range ordering of rod-like viral nanoparticles
within hydrogel, Colloids Surf., B 158, 620 (2017).

[53] J. Shaver, A. N. G. Parra-Vasquez, S. Hansel, O. Portugall,
C. H. Mielke, M. von Ortenberg, R. H. Hauge, M. Pasquali,
and J. Kono, Alignment dynamics of single-walled carbon
nanotubes in pulsed ultrahigh magnetic fields, ACS Nano 3, 131
(2009).

[54] M. Mohammadimasoudi, Z. Hens, and K. Neyts, Full alignment
of dispersed colloidal nanorods by alternating electric fields,
RSC Adv. 6, 55736 (2016).

[55] B. M. I. van der Zande, G. J. M. Koper, and H. N. W.
Lekkerkerker, Alignment of rod-shaped gold particles by elec-
tric fields, J. Phys. Chem. B 103, 5754 (1999).

[56] C. Vega and S. Lago, A fast algorithm to evaluate the shortest
distance between rods, Comput. Chem. 18, 55 (1994).

[57] L. Pournin, M. Weber, M. Tsukahara, J.-A. Ferrez, M.
Ramaioli, and T. M. Liebling, Three-dimensional distinct el-
ement simulation of spherocylinder crystallization, Granul.
Matter 7, 119 (2005).

[58] V. V. Mahajan, T. M. J. Nijssen, J. A. M. Kuipers, and J. T.
Padding, Non-spherical particles in a pseudo-2D fluidised bed:
Modelling study, Chem. Eng. Sci. 192, 1105 (2018).

[59] I. Balberg and N. Binenbaum, Computer study of the perco-
lation threshold in a two-dimensional anisotropic system of
conducting sticks, Phys. Rev. B 28, 3799 (1983).

[60] N. I. Lebovka, N. N. Karmazina, Y. Y. Tarasevich, and V. V.
Laptev, Random sequential adsorption of partially oriented
linear k-mers on a square lattice, Phys. Rev. E 84, 061603
(2011).

[61] J. Hoshen and R. Kopelman, Percolation and cluster distribu-
tion. I. Cluster multiple labeling technique and critical concen-
tration algorithm, Phys. Rev. B 14, 3438 (1976).

022133-7

https://doi.org/10.1103/PhysRevResearch.2.013356
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1063/1.481637
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1038/278443a0
https://doi.org/10.1016/0022-5193(80)90358-6
https://doi.org/10.1088/0305-4470/23/13/021
https://doi.org/10.1209/0295-5075/13/4/002
https://doi.org/10.1063/1.457021
https://doi.org/10.1063/1.459307
https://doi.org/10.1063/1.468046
https://doi.org/10.1103/PhysRevE.98.063309
https://doi.org/10.1103/PhysRevE.90.022402
https://doi.org/10.1103/PhysRevE.97.043311
https://doi.org/10.1016/j.susc.2013.02.013
https://doi.org/10.1103/PhysRevE.87.052401
https://doi.org/10.1039/C5CP03873A
https://doi.org/10.1063/1.463820
https://doi.org/10.1021/ie060032g
https://doi.org/10.1103/PhysRevLett.119.028003
https://doi.org/10.1103/PhysRevE.101.042901
https://doi.org/10.1103/PhysRevE.102.012128
https://doi.org/10.1103/PhysRevA.40.4808
https://doi.org/10.1103/PhysRevA.43.631
https://doi.org/10.1103/PhysRevE.79.042103
https://doi.org/10.1103/PhysRevE.100.042139
https://doi.org/10.1038/srep34289
https://doi.org/10.1016/j.colsurfb.2017.07.039
https://doi.org/10.1021/nn800519n
https://doi.org/10.1039/C6RA02620F
https://doi.org/10.1021/jp984737a
https://doi.org/10.1016/0097-8485(94)80023-5
https://doi.org/10.1007/s10035-004-0188-4
https://doi.org/10.1016/j.ces.2018.08.041
https://doi.org/10.1103/PhysRevB.28.3799
https://doi.org/10.1103/PhysRevE.84.061603
https://doi.org/10.1103/PhysRevB.14.3438


LEBOVKA, VYGORNITSKII, AND TARASEVICH PHYSICAL REVIEW E 102, 022133 (2020)

[62] S. C. van der Marck, Percolation thresholds and universal
formulas, Phys. Rev. E 55, 1514 (1997).

[63] R. C. Hart and F. D. A. Aarão Reis, Random sequential ad-
sorption of polydisperse mixtures on lattices, Phys. Rev. E 94,
022802 (2016).

[64] A. Rényi, On a one-dimensional problem concerning random
space filling, Sel. Transl. Math. Stat. Probab. 4, 203 (1963),

translation from Magyar Tud. Akad. Mat. Kutató Int. Közl. 3,
No. 1–2, 109 (1958).

[65] I. Palásti, On some random space filling problems, Magyar Tud.
Akad. Mat. Kutató Int. Közl. 5, 353 (1960).

[66] E. Azéma and F. Radjaï, Stress-strain behavior and geometrical
properties of packings of elongated particles, Phys. Rev. E 81,
051304 (2010).

022133-8

https://doi.org/10.1103/PhysRevE.55.1514
https://doi.org/10.1103/PhysRevE.94.022802
https://doi.org/10.1103/PhysRevE.81.051304

