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Super slowing down in the bond-diluted Ising model
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In models in statistical physics, the dynamics often slows down tremendously near the critical point. Usually,
the correlation time τ at the critical point increases with system size L in power-law fashion: τ ∼ Lz, which
defines the critical dynamical exponent z. We show that this also holds for the two-dimensional bond-diluted
Ising model in the regime p > pc, where p is the parameter denoting the bond concentration, but with a
dynamical critical exponent z(p) which shows a strong p dependence. Moreover, we show numerically that
z(p), as obtained from the autocorrelation of the total magnetization, diverges when the percolation threshold
pc = 1/2 is approached: z(p) − z(1) ∼ (p − pc )−2. We refer to this observed extremely fast increase of the
correlation time with size as super slowing down. Independent measurement data from the mean-square deviation
of the total magnetization, which exhibits anomalous diffusion at the critical point, support this result.
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I. INTRODUCTION

The Ising model has proven to be a staple model in physics
for studying phase transitions and critical phenomena [1,2].
The model was originally conceived to provide a theoretical
understanding of the existence of a Curie temperature for
“pure” ferromagnetic materials; purity here refers to the fact
that all throughout the material, every lattice site contains a
spin, and every spin interacts uniformly with the surrounding
ones. From that point of view, it can be argued that, in
nature, pure materials are rare, i.e., impurities are by and large
inevitable.

In the Ising model, the impurities have been implemented
in terms of randomly placed nonmagnetic spins (site-diluted
Ising model) [3–7] or missing interactions (bond-diluted Ising
model) [8–12]. The inclusion of any kind of randomness into
the system can have significant effects on its critical properties
[13]. For instance, a new universality class was found in
the three-dimensional bond-diluted Ising model [14,15], and
complex logarithmic corrections for the equilibrium prop-
erties were observed [7,16]. Moreover, a large number of
novel crossover behaviors between pure and percolating Ising
systems have been found [17–22]. Also, the dynamics at the
percolation threshold is discussed in Refs. [23,24] and the
dynamical exponent for spin systems with random dilution or
randomness in the coupling constants has been considered in
Refs. [25–29]. Despite these advances, dynamical properties
of the bond-diluted Ising model (i.e., as a function of bond
concentration p) remains poorly studied.

In this paper, we study the slowing down of the dynamics
of the total magnetization autocorrelation function at the crit-
ical temperature Tc(p) in the square (L × L) two-dimensional
bond-diluted Ising model with Monte Carlo simulations. To
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this end, by using the Binder cumulant, we first measure Tc(p)
at several values of p. We then turn to the calculation of z(p)
for several p > pc from the total magnetization autocorrela-
tion function: by collapsing this autocorrelation function to a
reference curve, we calculate the relative terminal exponential
decay time τ [Tc(p)] for the correlation function. Thereafter,
by fitting this data as τ [Tc(p)] ∼ Lz(p), we directly extract
z(p). As p → p+

c , we empirically find that the dynamical
exponent z(p) increases continuously as z(p) − z(1) ∼ (p −
pc)−2, with z(1) = 2.1665(12) the dynamical critical expo-
nent of the ordinary Ising model [30].

Furthermore, we also consider the mean-square devia-
tion (MSD) of the total magnetization M of the model,
which for p = 1 has been shown to exhibit anomalous dif-
fusion as 〈�M2(t )〉 ∼ tα with the anomalous exponent α =

γ

νz(1) [31], with γ = 7/4 and ν = 1. Given that the equi-
librium critical exponents γ and ν are numerically nearly
independent of p for p � 0.6 [32], combined with values
for z(p) as obtained through the terminal relaxation time
for different p, the various MSD curves of the total mag-
netization are collapsed on top of each other with a p-
dependent shift factor G(p) via ln(〈�M2〉/L2+γ /ν )/α(p) ∼
ln(t/Lz(p) ) + ln[G(p)]/α(p), with α(p) = γ (p)/[ν(p) z(p)].
The result reveals that the magnetization indeed experiences
anomalous diffusion at the critical point, for a range of
dilution p > pc. The collapse of the MSD of the mag-
netization confirms that the measured values of z(p) are
correct.

The paper is organized as follows: In Sec. II we intro-
duce the two-dimensional (2D) bond-diluted Ising model and
measure its critical temperature at several values of p. In
Sec. III we obtain the dynamical exponent z(p) from the
total magnetization autocorrelation function. In Sec. IV, we
confirm z(p) values from the exponent of anomalous diffusion
of the MSD of the total magnetization. We conclude the paper
in Sec. V.
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FIG. 1. (a) Example calculation of Tc(p) for the 2D bond-diluted Ising model for p = 0.8 using Binder cumulant. The x value of the
intersection point indicates that Tc(p = 0.8) = 1.650 ± 0.020. (b) Critical temperatures for different values of p, as noted in Table I. Our
results match those of Refs. [32,38] very well.

II. BOND-DILUTED ISING MODEL AND ITS
CRITICAL TEMPERATURE

We consider the two-dimensional (2D) bond-diluted Ising
model on an L × L square lattice with periodic boundary con-
ditions. For this model, the Hamiltonian, without an external
field, is given by

H = −
∑

〈i j〉
Ji jsis j, (1)

where si = ±1 is the spin residing at site i, 〈i j〉 denotes the
sum running over all nearest-neighbor sites, and the coupling
constant Ji j is given by the distribution function

P(Ji j ) = pδ(Ji j − 1) + w(1 − p)δ(Ji j ), (2)

with p being the bond concentration (0 � p � 1). The func-
tion (2) simply means that the value of Ji j is 1 with probability
p, and 0 otherwise.

For the pure Ising model (p = 1), there is a second-
order phase transition at Tc(1) = 2/ ln(1 + √

2) [33]. When p
reaches the percolation threshold pc = 1/2, its critical temper-
ature decreases to zero: Tc(pc) = 0 [34]. To determine Tc(p)
for in-between values of p, we use the Binder cumulant. It is
defined as [35]

U (T, L) = 1 − 〈M4〉
3〈M2〉2

, (3)

where 〈M4〉 and 〈M2〉 are the thermal averages of the fourth
and second moments of the total magnetization M = ∑L×L

i=1 si.
For each value of p, the curves of U (T, L) plotted vs T for

various values of L intersect at a fixed point, which determines
the critical temperature. The process is illustrated in Fig. 1(a).

We perform Monte Carlo simulations by using the Wolff
algorithm [36,37] to calculate Tc(p). Running many indepen-
dent samples provide us with fairly accurate values of these
critical temperatures, as noted in Table I. In Fig. 1(b) we show
that the values for Tc(p) obtained this way match very well
with those in Refs. [32,38].

III. DYNAMICAL EXPONENT FOR DIFFERENT
VALUES OF p

Having obtained the critical temperatures for a number
of p values as per above, in this section, we measure the
total magnetization autocorrelation function 〈M(t ) · M(0)〉.
To do so, we first run 2 × 106 Wolff Moves to thermalize
the system. Subsequently, we evolve the system following
Glauber dynamics, i.e., spin flips are proposed at random
locations and accepted with the Metropolis acceptance prob-
ability. Time is measured in terms of attempted Monte Carlo
moves, since every spin attempts to flip statistically once per
unit time. As we continue to do so, we keep taking snapshots
of the full system at regular intervals over a total time of
2 × 107 attempted Monte Carlo moves per lattice site, and
correspondingly compute the total magnetization M at every
snapshot. This leads us to 〈M(t ) · M(0)〉. For different values
of p, we run 500 to 2000 independent simulations to achieve
decent accuracy. We vary the system size from 10 to 40.

For a given value of p and the corresponding
critical temperature Tc(p), we collapse all the curves
for the normalized total magnetization autocorrelation

TABLE I. Number of samples N (p) used to measure Tc(p), and the simulation results for Tc(p) (including error bars) for different bond
concentrations p.

p 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.58 0.55

N 2000 5000 20 000 20 000 20 000 20 000 200 000 200 000 400 000
Tc 1.956(10) 1.804(10) 1.650(20) 1.472(20) 1.310(25) 1.141(30) 0.951(20) 0.869(25) 0.727(40)
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FIG. 2. The collapse of 〈M(t ) · M(0)〉/〈M(0)2〉 as a function of
tτ [Tc(p)]/τ [Tc(p)]L=10 for p = 0.8. The system size varies from 10
to 40. Inset: correspondingly, τ [Tc(p)]/τ [Tc(p)]L=10 as a function
of L. The dynamical exponent is obtained by fitting these data as
τ [Tc(p)]/τ [Tc(p)]L=10 ∼ Lz(p). The solid line corresponds the func-
tion y = x2.285. From this we obtain z(0.8) ≈ 2.285.

function 〈M(t ) · M(0)〉/〈M(0)2〉 to a reference curve
(L = 10). This allows us to compute the ratio of the terminal
decay times τ [Tc(p)]/τ [Tc(p)]L=10. Figure 2 demonstrates
this procedure for p = 0.8: with a properly chosen value of
τ [Tc(p)]/τL=10[Tc(p)], the 〈M(t ) · M(0)〉/〈M(0)2〉 data for
different system sizes collapse on the curve corresponding
to L = 10.

Furthermore, given our argument in Appendix A that L is
the characteristic length scale for L � 10 for the 2D bond-
diluted Ising model when p � 0.6, we have, at the critical
temperature,

τ (p)/τL=10(p) ∼ Lz(p). (4)

By plotting the τ (p)/τL=10(p) data (inset Fig. 2), we extract
z(p). The results from this exercise for several values of p are
shown in Fig. 3. Numerically, therein we find that

�z(p) = z(p) − z(1) ∼ (p − pc)−2 for pc < p < 1, (5)

where z(1) = 2.1665(12) [30] is the dynamical exponent for
the pure 2D Ising model.

Based on concepts of renormalization, we anticipated that,
away from the percolation threshold pc, the correlation time
as a function of system size would show a crossover from
the behavior for the bond-diluted Ising model at small system
sizes to that of the ordinary Ising model at large system sizes,
with a crossover size that diverges if pc is approached. Instead,
we find a fairly clean power-law behavior of the correlation
time for all system sizes, with a single exponent z(p) that
varies strongly with p. As a function of bond dilution p,
the dynamical exponent z(p) increases monotonically when
p decreases from p = 1 to p = pc. Moreover, the numerical
results suggest that z(p) will become infinitely large when
p approaches the percolation threshold p → p+

c , i.e., the
dynamics of the system gets extremely slow as p → p+

c , a
phenomenon we term “super slowing down.”
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FIG. 3. The dynamical exponent difference �z(p) = z(p) − z(1)
as a function of p − pc, where z(1) = 2.1665(12) [30] is the dynam-
ical exponent for the pure 2D Ising model. The result implies that
z(p) → ∞ as p → p+

c .

IV. ANOMALOUS DIFFUSION OF THE TOTAL
MAGNETIZATION

To confirm the observed behavior of super slowing down
[i.e., Eq. (5)] for the bond-diluted Ising model by means
of independent measurements, we now focus on the mean-
square deviation (MSD) of the magnetization as a function of
time t as

〈�M2〉 = 〈[M(t ) − M(0)]2〉. (6)

FIG. 4. The collapse of the mean-square displacement of
the total magnetization via ln(〈�M2〉/L2+γ /ν )/α(p) ∼ ln(t/Lz(p) ) +
ln[G(p)]/α(p), where the obtained values of z(p) from the last
section are employed and G(p) is a p-dependent shift factor.
The slope of the solid line is unity. It confirms that the MSD
of the total magnetization experiences anomalous diffusion at Tc(p)
and the values of z(p) is increasing when p → pc+.
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FIG. 5. (a) A snapshot of the biggest knot cluster for L = 50 and p = 0.6. Spins that are not belong to this cluster are represented by
cavities. (b) Plot of q(p, L) = 〈S(p, L)〉/L2 for various values of p and L: for p � 0.6, q(p, L) is independent of L for L � 10.

At short times (t ≈ 1), changes in M, occurring due to ran-
dom thermal fluctuations of individual spins, are uncorrelated;
hence 〈�M2〉 ∼ L2t for the 2D Ising model. At long times,
t � Lz(p), we expect 〈M(t ) · M(0)〉 = 0, meaning that

〈�M2〉 =
t�Lz(p)

2〈M(t )2〉 ∼ L2+γ (p)/ν(p). (7)

If we assume that the MSD is given by a simple power law in
the intermediate-time regime (1 � t � Lz(p)), then we obtain

〈�M2〉 ∼ L2+γ (p)/ν(p)(t/Lz(p) )α(p), (8)

where α(p) = γ (p)
ν(p)z(p) . For the pure Ising model in two dimen-

sions (p = 1), we have shown that [31]

〈�M2〉/L2+γ /ν = f (t/Lz ), (9)

where γ = 7/4 and ν = 1 are two equilibrium critical expo-
nents. Here f (x) is a scaling function such that limx→0 f (x) ∼
xγ /(νz) ≈ x0.81, and f (x) saturates for x � 1. Indeed, given that
γ (p) and ν(p) are nearly independent of p when p � 0.6
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FIG. 6. The Binder cumulant for p � 0.6. The data are collapsed
as U (T, L) ∼ f (T ′L1/ν(p) ) for different p and L, where T ′ = (T −
TC )/TC is the reduced temperature. Here L = 20, 40, and 60 for each
bond concentration, and we set all ν(p) = 1.0 to collapse the data.

[32] (see also Appendix B), if the scaling relation (9) also
continues to hold for values of p other than unity, then we
can use it to obtain independent confirmation for the super
slowing down (5). We demonstrate this below by focusing on
p � 0.6.

Since in the previous section we obtained the values of
z(p) for different p, here, we describe the MSD of the total
magnetization by modifying Eq. (8) as

〈�M2〉/L2+γ /ν ∼ G(p)(t/Lz(p) )α(p), (10)

where G(p) is a p-dependent shift factor. We take logarithm
of both sides of Eq. (10) to write

ln(〈�M2〉/L2+γ /ν )/α(p) ∼ ln(t/Lz(p) )+ln[G(p)]/α(p).

(11)

Suppose we choose the MSD of the total magnetization
for the normal Ising model as the reference [this means
that G(1) ≡ 1] if the values of z(p) obtained from the last
section are correct; then with these z(p) values and the
shift factor G(p), the MSD of the total magnetization for
different p can be made to collapse onto the data for p = 1
via Eq. (11).

To obtain the 〈�M2(t )〉 data, once again, we first ther-
malize the system with 2 × 106 Wolff moves, then measure
〈�M2〉 in a further simulation over 2 × 107 attempted Monte
Carlo moves per lattice site. We use three different system
sizes: L = 20, 40, 60 for every value of p.

Figure 4 implies that by using the values of z(p) obtained
from the last section, indeed for different p, the MSD of the
magnetization can be collapsed onto the data for p = 1 via
Eq. (11). It confirms that the MSD of the total magnetization
experience anomalous diffusion at Tc(p) and z(p) values
obtained from the terminal relaxation time are correct.

In summary, with two different methods, we have shown
that z(p) is diverging when p → p+

c , i.e., the dynamics of
the system is getting extremely slow when we reduce the
bond concentration to its percolation threshold. We do not
have a quantitative explanation for this behavior. That said,
it might arise from the fact that the fraction of “unhappy”
bonds (active bonds between sites with opposing spin val-
ues) at the critical temperature decreases to zero if pc is
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FIG. 7. The scaling of magnetic susceptibility as a function of reduced temperature: χL−γ /ν = χ̃ (T ′L1/ν ). Here χ̃ is a dimensionless
function, the values of γ (p) and ν(p) are chosen to be their values for the normal Ising model, i.e., γ (p) = 1.75 and ν(p) = 1. For panels
(a)–(d), the bond concentrations are p = 0.9, 0.8, 0.7, and 0.6, respectively. The good collapse of all the data indicates that both γ and ν are
numerically indistinguishable for p � 0.6.

approached, thereby removing the energetic contribution of
restoring forces; we provide some measurements for this in
Appendix C.

V. DISCUSSION

In this paper, we study the critical dynamical exponent z(p)
for the 2D bond-diluted Ising model with bond concentration
p. We first measure the critical temperature Tc(p) for different
bond concentrations p by using the Binder cumulant. We then
calculate the relative values of the terminal decay time τ

by collapsing the total magnetization autocorrelation function
to a reference value, from which we obtain z(p) using the
relation τ ∼ Lz(p).

We find that z(p) increases when p → p+
c as the power law

z(p) − z(1) ∼ (p − pc)−2, which we refer to as super slowing
down. We confirm this result from independent measurements
of the MSD of the total magnetization that exhibits anomalous
diffusion.

Our results indicate that z(p) → ∞ as p → p+
c . This

leaves us with the interesting question: what happens to z(p)
when p < pc? We plan to explore this in the future.
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APPENDIX A: RELEVANT LENGTH SCALE FOR
CRITICAL PHENOMENA OF THE BOND-DILUTED

ISING MODEL

In the pure 2D Ising model of dimension L × L, the only
relevant length scale for critical phenomena is L. For the bond-
diluted Ising model there are other length scales, for instance,
corresponding to the size of the biggest cluster, S(p, L). Here,
a cluster is defined is by the set of spins such that there is at
least one continuous (bond-following) path from every spin in
the cluster to every other spin in the same cluster. We define
the size of the cluster by the total number of spins belonging to
the cluster [thus S(p, L) is the number of spins in the biggest
cluster for an L × L system with bond concentration p].

In Fig. 5(b) the quantity considered is q(p, L) =
〈S(p, L)〉/L2. If this quantity is independent of L then it means
that there is no difference between the two differently defined
length scales (apart from a scaling factor). For each result,
we have generated 500 samples. We see in Fig. 5(b) that, for
p � 0.6, q(p, L) is independent of L for L � 10. This means
that for the range of dilution p � 0.6 used in this paper, we
can use L as the relevant length scale for critical phenomena
provided L � 10.

APPENDIX B: EQUILIBRIUM CRITICAL
EXPONENTS ν AND γ

In this Appendix, we show that the equilibrium critical
exponents ν and γ for the bond-diluted Ising system with
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p � 0.6 are numerically indistinguishable from their values
in the pure Ising model.

We note here that, according to the Harris criterion [39], if
the correlation length critical exponent ν fulfills the inequality
ν � 2/d where d is the spatial dimensionality, then disorder
does not affect the critical behavior. For the 2D Ising model,
ν = 1 is marginal, which translates into logarithmic correc-
tions to some critical exponents. In the pure Ising model,
the exponents γ and ν do not show logarithmic corrections,
and our numerical results shown in this Appendix indicate
that the ratio of γ and ν is unchanged in the regime we
studied, for p � 0.6, without logarithmic corrections. Also,
the Binder cumulant does not show logarithmic corrections.
This is not obvious, and in fact there are reports of logarithmic
corrections to the equilibrium properties of the diluted spin
systems [5,7,40]. We cannot rule out the possibility of having
logarithmic corrections in the quantities measured by us, as
these are difficult to observe in simulations.

First, if we get the values of Tc for different p, the Binder
cumulant can be scaled as

U (T, L) ∼ f (T ′L1/ν(p) ), (B1)

which will provide us the value of ν(p). Here T ′ = (T −
TC )/TC is the reduced temperature.

In Fig. 6, we collapse the data of U (L, T ) for L = 20, 40,
and 60 with ν(p) ≈ 1. It indicates that ν(p) is numerically
indistinguishable from unity for p � 0.6.

Next, we turn to measure the magnetic susceptibility χ .
For this simulation, we have used 500 independent samples
for each value of p. It is a well-known result [37] that the
susceptibility can be scaled as

χL−γ /ν = χ̃ (T ′L1/ν ), (B2)

where χ̃ is a dimensionless function.
After rescaling the susceptibility using Eq. (B2), the data

shown in Fig. 7 demonstrate that γ is numerically indistin-
guishable from 7/4 for p � 0.6.

In other words, in this Appendix we have shown that γ and
ν are numerically indistinguishable respectively from 7/4 and
unity for p � 0.6, confirming the results from Ref. [32].

APPENDIX C: NUMBER OF DIFFERENT TYPES
OF BONDS

In this Appendix, we connect the super slowing down in
the 2D bond-diluted Ising model with its equilibrium property,

FIG. 8. The value of 〈n+−〉 as a function of p − pc for L = 50,
80, and 100. The solid line goes as ∼(p − pc )0.97. The inset is a log-
log plot of the data. It suggests that when p → p+

c , 〈n+−〉 → 0, then
most of the bonds are activated so that nearly all spins are unlikely to
flip, resulting in the super slow dynamics of the system.

i.e., the ensemble average of the number of unhappy bonds,
i.e., the number of interacting nearest-neighbor spins with
opposite signs at the critical temperature.

In the bond-diluted Ising model, we distinguish inactive
bonds (with Ji j = 0), active bonds connecting sites with
aligned spins, and active bonds that connect sites with spins of
opposite signs. For the active bonds, we denote the numbers of
those aligned and nonaligned spins by (n++ + n−−) and n+−,
respectively. Energetically, 〈n++〉 and 〈n−−〉 are the bonds that
try to keep the system as it is, and 〈n+−〉 is driving spins
to flip. If 〈n+−〉 decreases, then most of the proposed spin
flips will be rejected and the dynamics of the system will get
slower.

In our simulations, we have performed 100 independent
samples to obtain the number of unhappy bonds. The mea-
sured values of 〈n+−〉 at the critical temperature can be found
in Fig. 8, with a log-log plot as an inset. In particular, we find
numerically that

〈n+−〉/L2 ∼ (p − pc)0.97±0.03 for p � pc. (C1)

When p → p+
c , the values of 〈n+−〉 reduces to zero (or

a value close to zero), which means that most of the active
bonds are “happy” so that spins are unlikely to flip. This
might explain why the system is getting super slow when p
approaches the percolation threshold.
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