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Hysteretic depinning of a particle in a periodic potential: Phase diagram and criticality
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We consider a massive particle driven with a constant force in a periodic potential and subjected to a dissipative
friction. As a function of the drive and damping, the phase diagram of this paradigmatic model is well known to
present a pinned, a sliding, and a bistable regime separated by three distinct bifurcation lines. In physical terms,
the average velocity v of the particle is nonzero only if either (i) the driving force is large enough to remove any
stable point, forcing the particle to slide or (ii) there are local minima but the damping is small enough, below
a critical damping, for the inertia to allow the particle to cross barriers and follow a limit cycle; this regime is
bistable and whether v > 0 or v = 0 depends on the initial state. In this paper, we focus on the asymptotes of
the critical line separating the bistable and the pinned regimes. First, we study its behavior near the “triple point”
where the pinned, the bistable, and the sliding dynamical regimes meet. Just below the critical damping we
uncover a critical regime, where the line approaches the triple point following a power-law behavior. We show
that its exponent is controlled by the normal form of the tilted potential close to its critical force. Second, in
the opposite regime of very low damping, we revisit existing results by providing a simple method to determine
analytically the exact behavior of the line in the case of a generic potential. The analytical estimates, accurately
confirmed numerically, are obtained by exploiting exact soliton solutions describing the orbit in a modified tilted
potential which can be mapped to the original tilted washboard potential. Our methods and results are particularly
useful for an accurate description of underdamped nonuniform oscillators driven near their triple point.

DOI: 10.1103/PhysRevE.102.022131

I. INTRODUCTION

Let x(t ) be the one-dimensional position of an under-
damped particle driven in a generic differentiable periodic
potential V (x) with spatial period �, described by the deter-
ministic equation of motion,

mẍ + γ ẋ = −V ′(x) + f , (1)

where m is the mass of the particle, γ a friction constant
corresponding to a kinetic friction force proportional to the
instantaneous velocity, and f > 0 is a constant driving force.
Equation (1) is a ubiquitous differential equation. It provides
both a textbook example of bifurcations in two-dimensional
nonlinear systems (e.g., see Ref. [1]) and a useful model for
large number of concrete physical systems, such as nonuni-
form oscillators. Already the simple case V (x) ∝ cos(2πx/�)
describes both the simple pendulum driven by a constant
torque and the underdamped Josephson junction driven by a
constant external electric current. In the latter example, x(t )
represents the superconducting order parameter phase differ-
ence across a small junction separating two superconducting
regions with a capacitance C ∝ m and electric resistance
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R ∝ γ −1, with all these ideal elements effectively connected
in parallel in the so-called Stewart-McCumber model [2].
Note that the steady-state time-averaged velocity v ≡ 〈ẋ〉 as
a function of f models the voltage-current characteristics of
the junction. Many of the properties predicted from Eq. (1)
have been observed experimentally in these superconducting
devices [3].

The phase diagram of the large-time behavior of solutions
to Eq. (1) can be solved analytically for m = 0, i.e., in the
overdamped case. We review here its derivation for compari-
son to the inertial case. The steady state is entirely determined
by whether the tilted potential V (x) − f x presents barri-
ers. A continuous depinning transition exists at the unique
threshold force f 0

c = maxx V ′(x) = V ′(x∗) at which barriers
vanish when increasing the drive f from 0. Indeed, below
f 0
c , barriers exist and the damping pins the particle in a local

minimum at large time; the average velocity is 0. At f 0
c , a

saddle-node bifurcation occurs. Above f 0
c , the instantaneous

velocity becomes periodic in time: ẋ(t ) = ẋ(t + τ ), with a
positive average value v. We have that v ∼ ( f − f 0

c )β if
0 < f − f 0

c 	 f 0
c , and v ≈ f /γ if f � f 0

c . The so-called
depinning exponent β � 0 depends on the normal form of the
saddle-node bifurcation at f 0

c . For typical analytical potentials
such that f − V ′(x) ≈ ( f − f 0

c ) + k|x − x∗|2 for | f − f 0
c | 	

f 0
c with a constant k > 0 and |x − x∗| 	 �, we have the well

known square-root depinning law with β = 1/2. It is derived
as follows: On a time period τ , the trajectory along the limit
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cycle spends most of its time close to the bottleneck at x = x∗,
and thus τ = ∫ �

0 dx/[ f − V ′(x)] ≈ ∫ �

0 dx/[( f − f 0
c ) + k|x −

x∗|2] ∼ ( f − f 0
c )−1/2. Therefore, since the particle travels a

distance � during the time τ , one has v = �/τ ∼ ( f − f 0
c )1/2

just above f 0
c . The exponent β depends on the behavior of

V (x) in the vicinity of the bottleneck. More generically, the
normal form of the saddle-node bifurcation is controlled by an
expansion of the form f − V ′(x) ≈ ( f − f 0

c ) + k|x − x∗|ϒ ,
and we obtain β = 1 − 1/ϒ for ϒ > 1 [4]. Furthermore, the
m = 0 case of Eq. (1) can be solved analytically even in the
presence of an additive thermal Langevin noise. Analytical
expressions for the thermally averaged velocity v for general
V (x) can be obtained solving the Fokker-Planck equation
for the steady-state probability [5–9]. At finite temperature,
the zero-temperature velocity-force characteristics is rounded
around f 0

c (e.g., see Ref. [4]), and v is positive and finite for
any f > 0, as thermal activation can help to overcome barriers
when 0 � f < f 0

c . Nevertheless, at small temperatures the
fingerprint of the T = 0 and f = f 0

c depinning transition is
present and an analogy with continuous equilibrium phase
transitions can be drawn, with v representing the order pa-
rameter [10].

Compared to the overdamped case, far fewer analytical
results are known for the inertial dynamics [m > 0 in Eq. (1)].
Now the phase diagram depends not only on the properties
of the tilted potential V (x) − f x but also on the relative
values of the mass m and the friction γ . For the paradigmatic
case V (x) = − cos(x), the representative phase diagram as
a function of the damping parameters α = γ /

√
m and f is

qualitatively well known [1,11] and shown in Fig. 1. It is
characterized by three bifurcations lines meeting at a triple
point. As in the zero-mass case, the line f = f 0

c delimitates
the region where the tilted potential has local minima ( f <

f 0
c ) or not ( f � f 0

c ). For α > αc, the damping is strong and
having a zero velocity or not depends only on this intrinsic
property of the tilted potential: The depinning transition oc-
curs at f 0

c . It is described by an infinite-period bifurcation
where the stable fixed point annihilates with the unstable fixed
point and disappears as f ↑ f 0

c . For f > f 0
c , the existence of

a stable limit cycle implies v > 0, and as in the overdamped
case, v ∼ ( f − f 0

c )1/2 (though with a nontrivial α-dependent
prefactor). As α → ∞, one recovers the zero-mass case.

In contrast, for α < αc, the damping is low enough to allow
a bistable regime when fc(α) < f < f 0

c . In that regime, there
is a coexistence between a stable point (a minimum of the
tilted potential) for which v = 0, and limit cycle (where inertia
allows the particle to cross barriers) for which v > 0. Initial
conditions determine whether v = 0 or v > 0, and varying
f slowly leads to hysteresis (see Fig. 2). The phase-space tra-
jectories of Fig. 3 illustrate the possible orbits in each regime.
Note that the transition line fc(α) for α < αc is described by
a homoclinic bifurcation, for which the depinning transition
occurs as v ∼ 1/| log[ f − fc(α)]| as f ↓ fc(α). Such loga-
rithmic behavior, corresponding to a “0” depinning exponent
β, is in sharp contrast with the β > 0 exponent that governs
the transition for α > αc. Although the phase diagram of
Fig. 1 is obtained for the particular case V (x) = − cos(x),
it is qualitatively the same for any smooth periodic potential
presenting a single minimum and maximum, as we show in
this paper.

FIG. 1. Phase diagram of Eq. (1) for a driven particle in the
washboard potential V (x) = − cos(x) in the large-time asymptotics.
Control parameters are the driving force f > 0 and the damping
parameter α ≡ γ /

√
m. In the stable limit cycle domain, the mean

velocity v of the particle is finite (and the motion is periodic), while
it is zero in the stable fixed point domain (the particle is pinned in
a local minimum). In the bistable regime, whether v = 0 of v > 0
depends on the initial conditions. The magenta dash-dotted line
fc(α) represents a homoclinic bifurcation, the green dashed line a
finite-period saddle-node bifurcation, while the solid light blue line
is an infinite period bifurcation. The lines are obtained using standard
numerical integration methods for Eq. (1). In this paper we obtain
analytical expressions for fc(α) in the α → 0 limit for an arbitrary
pinning potential V (x), and we describe the universal power-law
behavior of fc(α) in the α → αc limit when approaching the triple
point where the three bifurcation lines meet.

II. SUMMARY OF THE RESULTS

We focus on the behavior of the homoclinic bifurcation
line, which separates the stable fixed point regime from the
bistable one (see Fig. 2). We will use two complementary
view points: either varying directly the damping constant
α = γ /

√
m or, at fixed friction γ , varying the mass m. The

critical line will respectively be denoted by fc(α) or fc(m). At
fixed γ , to the critical damping αc corresponds a critical mass
mc = (γ /αc)2, above which inertial effects matter.

As seen on Fig. 1, on the one hand fc(α) tends to zero
when α → 0 (i.e., in the weakly damped limit) while it goes
smoothly to f 0

c as α → αc. For V (x) = − cos(x), Gucken-
heimer and Holmes used Melnikov’s technique [12] to show
that fc(α) ∼ 4α/π as α → 0 [13]. Rather surprisingly, to the
best of our knowledge, no analytical prediction regarding the
way fc(α) approaches f 0

c as α → αc nor any expression for
αc were reported.

Yet, as we show, the line fc(α) presents universal and scal-
ing properties which are important to understand if we wish to
use Eq. (1) as a toy model for more complex extended systems
with inertia. These were not reported neither and in this work
we provide elements to fill this gap. To do so, we employ
a method to derive analytically f 0

c − fc(α) as a function of
α close to the triple point (α − αc 	 αc), including explicit
expressions for αc. We generalize the α → 0 asymptotics
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FIG. 2. Hysteresis loops in the velocity-force characteristics for
V (x) = − cos(x) in Eq. (1). For high damping, corresponding to
masses m < mc at fixed γ , with γ = 1 in this case, the particle depins
at f 0

c ≡ 1 (magenta lines with empty points), without displaying
hysteresis. For masses m > mc (green lines with filled points), there
is a hysteretic depinning: Slowly increasing the applied force from
f = 0, the particle depins at f 0

c , acquiring a finite steady-state
velocity only above it. Then, slowly decreasing f from above f 0

c ,
the particle gets pinned only at the critical force fc(m) < f 0

c . In this
paper we analytically calculate the hysteretic range [ f 0

c − fc(m)] for
masses close to mc.

fc(α) ∼ 4α/π obtained by Guckenheimer and Holmes [13]
for the cosine potential to the case of an arbitrary potential. We
also show that while the α → 0 asymptotic scaling fc(α) ∝ α

is rather insensible to the details of the periodic potential, the
scaling behavior when α → αc is of the form f 0

c − fc(α) ∼
(αc − α)δ , where the exponent δ > 0 depends on the normal
form of the bifurcation at f 0

c for α > αc. If, near the saddle-
node bifurcation point x∗, the force can be expanded as
f − V ′(x) ≈ ( f − f 0

c ) + k|x − x∗|ϒ + . . ., with k a positive
constant and ϒ > 1, we obtain that δ = ϒ . In particular, for
the cosine potential V (x) = − cos(x), which corresponds to
the paradigmatic pendulum and Josephson-junction problems,
we obtain that the homoclinic line is characterized by the
scaling f 0

c − fc(α) ∼ (αc − α)δ , with δ = 2.
We also show that the values of αc, fc(α) and of the

prefactor of the scaling laws are nonuniversal but depend on
the details of V (x) that are relevant for a precise interplay
among dissipation, inertia, and drive. They can nevertheless
be also estimated analytically. To obtain these results we
exploit the fact that, associated to the homoclinic bifurcation
at fc(α) there exists a “critical trajectory,” or homoclinic orbit,
that connects a local maximum of the tilted potential to the
next one, on an infinite time window and with ẋ → 0 at both
extremal points [see Fig. 3(b)]. This homoclinic orbit cannot
be obtained analytically in general and presents no obvious
scaling form. To study it in spite of these issues, we use a
tilted periodic potential VF (x), different from the original one
V (x) − f x, but which has the advantage that the homoclinic
orbit at fc(α) can be found exactly (it is a dissipative soliton).
We then map the exact critical properties derived for the

FIG. 3. Phase-space trajectories obtained numerically from
Eq. (1), using different initial conditions, for the weakly damped
case α < αc. In (a), f < fc(α): All initial conditions starting at the
left margin of the plot with different velocities are finally spirally
attracted to one of the periodic images of the stable fixed points of the
tilted washboard potential, such that V ′(x) − f = 0 and V ′′(x) > 0.
In (b), f = fc(α): Low initial velocity trajectories are trapped but
large velocity trajectories approach the homoclinic orbit (in purple
dashed line). In (c), fc(α) < f < f 0

c : Trajectories are either trapped
or acquire a finite time-averaged velocity converging to the stable
limit cycle. In (d), f = f 0

c : Stable fixed points disappear, and all
trajectories are attracted to the running periodic orbit with a finite
average velocity. With dashed lines we show trajectories starting with
infinitesimally positive velocity at one of the unstable fixed points x∗

of the tilted potential (open circles), such that V ′(x∗) − f = 0 and
V ′′(x∗) < 0. The homoclinic orbit corresponds exactly to the dash
line in (b).

effective potential to the ones of the original tilted potential
V (x) − f x to estimate fc(α) in the regimes of interest. We
show that the procedure is quite general and applies to various
cases.

For the standard ϒ = 2 case, we find

fc(α) ∼ Nα, [α → 0], (2)

f 0
c − fc(α) ∼ (αc − α)2, [αc − α → 0+], (3)

v ∼ (
f − f 0

c

)1/2
,

[
α > αc, f − f 0

c → 0+]
, (4)
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with an exact determination of the prefactor N [see Eq. (59)].
In the more general case of an arbitrary value of the exponent
ϒ , one finds

fc(α) ∼ Nα, α → 0, (5)

f 0
c − fc(α) ∼ (αc − α)ϒ, [αc − α → 0+], (6)

v ∼ (
f − f 0

c

)1− 1
ϒ ,

[
α > αc, f − f 0

c → 0+]
, (7)

with the same expression for the prefactor N .

III. ORGANIZATION OF THE PAPER

In Sec. IV, we review the properties of the critical tra-
jectory which separates static from running solutions in the
bistable regime. Then, in Sec. V, we present a particular
periodic potential, along with also a particular way of tilting
it, from which fc(α) for α < αc, and αc can be determined
analytically. We show how to use the results obtained from the
modified tilted potential in order to estimate these properties
for the paradigmatic case V (x) ∝ − cos(x). Scaling forms
and characteristic quantities are discussed. In Sec. V G, we
generalize the approach for the more general case 1 < ϒ �= 2
and discuss the universality of the different results. In Sec. VI,
we review and generalize the large-damping approach of
Guckenheimer and Holmes, which allows us to determine
exactly fc(α) in the regime α 	 αc for a generic potential.
Section VII presents numerical validation of our predictions
together with additional observations. Section VIII contains
our conclusions and perspectives.

IV. THE CRITICAL TRAJECTORY

Central to our analysis is the computation of the critical
trajectory x
(t ) that connects, for fc(α) < f < f 0

c and α < αc,
a local maximum of the tilted potential V (x) − f x to the
following one in an infinite time window. In phase space, such
trajectory, called the homoclinic orbit, acts as a separatrix: It
separates two domains of the initial conditions: (i) those that
lead to the limit cycle, which is characterized by a running
periodic solution with ẋ(t ) > 0 and (ii) and those that end
on a local minimum of the tilted potential, with ẋ(t ) → 0 as
t → ∞. In Fig. 3(c) we depict such two classes of trajectories.
In contrast, for f < fc(α) all initial conditions are trapped in
stable fixed points, while for f � fc(α) only running solutions
are stable, as shown in Figs. 3(a) and 3(d), respectively.
An accurate numerical analysis of the homoclinic orbit is
specially difficult near the triple point αc we are interested
in, because the bistability range vanishes. To make progress
we will hence adopt a complementary approach by tackling
its properties analytically.

V. A SOLUBLE TILTED PERIODIC POTENTIAL

In the definition (1) of the model, we considered a generic
pinning potential V (x) and we also took as an example po-
tential a cosine function. In this section, we study a special
form of potential, a periodically replicated quartic double-well
potential. It allows us to obtain the exact critical trajectory and
to obtain the exponents of the critical region of the homoclinic
line close to the triple point.

FIG. 4. The nontilted (inset) and tilted (main) potentials V0(x)
and VF (x) defined by Eqs. (8) and (9), respectively (parameters are
μ = g = 1 and F = 1

2 F 0
c ). A critical trajectory x
(t ) of a massive

particle, with the dynamics (10), is represented with a green dashed
line: It joins the location −x0 of a local maximum at time t = −∞
to its periodic image x0 at time t = ∞.

Consider a potential

V0(x) = − g

2
x4 + μ2x2 (8)

defined on [−x0, x0] with x0 = μ√
g . Since it is even [i.e.,

V0(−x0) = V0(x0)] we can make it periodic on R. We also
denote V0(x) (see Fig. 4) this periodic potential.

To model the drive of a particle living in such potential out
of equilibrium, we tilt the potential V0(x) as

VF (x) = V0(x) −
(

x − x3

3x2
0

)
F, (9)

where the constant F represents the amplitude of a driving
force. The driving force can be made periodic in the same way
as for V0(x) in the sense that the force −V ′

F (x) corresponding
to VF (x) is periodic. The resulting tilted potential VF (x) is
shown on Fig. 4. The form (9) of the drive includes a cubic
contribution on top of the usual linear one, which seems un-
natural but allows us to find an exact expression of the critical
trajectory (the homoclinic orbit) at nonzero mass. The relation
between the parameters {g, μ, F } of this effective model and
those of a physical one will be discussed in Sec. V C. We stress
that the relation between the effective drive F and the force f
of the original model does not take a simple form on the whole
range of forces of interest. Note in passing that the form (9)
of the drive ensures that the locations of the local maxima of
V0(x) are unchanged: they remain in ±x0 as F increases.

A. An exact critical trajectory at nonzero mass

Let us consider the dissipative dynamics (1) of a massive
particle in the potential VF (x),

mẍ + γ ẋ = −V ′
F (x). (10)
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For values of the drive F less than the critical drive

F 0
c = 2

μ3

√
g
, (11)

we see that the tilted potential (9) presents local minima. This
implies that at zero mass the particle gets trapped into a local
minimum and the average velocity is zero. At nonzero mass,
if the initial position of the particle is close enough to a local
minimum, then the velocity at long times is also zero. We
now determine the condition on the mass allowing, in some
range Fc(m) < F < F 0

c , for the coexistence of another class of
trajectories that converge to a limit cycle and hence possesses
a nonzero average velocity v.

We find by direct computation that, for F < F 0
c , there

exists a critical trajectory x
(t ) joining two local maxima of
VF (x) located in −x0 and x0, between times t = −∞ and
t = ∞ (see Fig. 4). It takes the form

x
(t ) = x0 tanh
t

τ
with τ =

√
Mc(F )

μ
, (12)

provided the mass m has the value

Mc(F ) = 1

4

(
F 0

c

F

)2(
γ

μ

)2

. (13)

The existence of such explicit solution for the critical trajec-
tory is not immediate, because in presence of dissipation (γ >

0) and drive (F > 0) the evolution equation (10) does not
preserve energy anymore and there is no conserved quantity
along the trajectory.

B. Critical mass and homoclinic bifurcation

The interpretation of the solution (12) and (13) is that of
a trajectory x
(t ) that allows the particle to cross a barrier
of potential (for F < F 0

c ) by use of inertia, provided its
mass takes the precise value Mc(F ). Such trajectory has the
threshold mass that allows it to store enough kinetic energy
when going downhill to precisely compensate for the friction-
induced dissipation along its course. We call such a trajectory
an “inertial critical trajectory.” In mathematical terms, such a
trajectory is a separatrix joining the unstable point −x0 to its
periodic image x0, allowing for a homoclinic bifurcation.

Physically, if we fix a drive F < F 0
c , and increase the mass

m starting from m = 0 (keeping every other parameters fixed),
then the mass Mc(F ) is the first mass for which a trajectory
joining two local maxima of VF (x) starts to exist. Based on
this, we now determine the critical mass mc of the dynamics
that corresponds (at fixed γ ) to the critical damping αc. We
prove that the critical mass is equal to:

mc = 1

4

(
γ

μ

)2

. (14)

For the demonstration of this relation, we denote
m


c = 1
4 ( γ

μ
)2.

(i) Proof that mc � m

c: Consider a drive F < F 0

c . For all
masses m < m


c , we see from (13) that m < m

c < Mc(F ), and

hence there exists no inertial critical trajectory. We thus have
proved that for all m < m


c the asymptotic velocity is 0. Hence,
as announced, mc � m


c .

FIG. 5. Landscape of force F (x) = −V ′(x) + f at external force
f close to depinning ( f = f 0

c − δf with δf > 0), presenting the
critical points x±

c = xc ± √
δf /κ .

(ii) Proof that mc � m

c: For a drive F < F 0

c , consider a
mass m > m


c . We see from (13) that there exists a domain
of drive [Fc(m), F 0

c ] such that, ∀F ∈ [Fc(m), F 0
c ], there is an

inertial critical trajectory. Since this is possible for all m > m

c ,

this shows as announced that mc � m

c . Note that the exact

explicit expression of Fc(m) is

Fc(m) =
√

mc

m
F 0

c . (15)

From the previous reasoning, we see that the expression
(15) is precisely that of the homoclinic bifurcation line of the
model (on the range of mass m > mc). Translating the results
(14) and (15) from the variable m (at fixed γ ) to the damping
variable α = γ /

√
m, one obtains the following expressions

for the critical damping αc and the homoclinic line Fc(α):

αc = 2μ, (16)

Fc(α) = α

2μ
= α

αc
(for α ∈ [0, αc]). (17)

We emphasize that the relation between the effective drive F
and the physical force f is not direct: As we now detail, these
parameters are not scaling in the same way in the two regimes
of interest (the low-damping limit and the vicinity of the triple
point). In particular, if the homoclinic line Fc(α) is linear in α

when α approaches αc from below, then this will not be the
case for fc(α).

C. Parameters of the effective model close to the
depinning point of a physical model

We now come back to the model of Eq. (1) with a generic
periodic potential V (x) of spatial period �, and we assume
that it is monotonous between its unique minimum and the
closest maxima (see Fig. 5). A concrete example is given by
the cosine potential

Vcos(x) = f0�
cos 2πx

�

2π
. (18)

The corresponding force F (x), to which the particle is sub-
jected, includes an external constant force f with F (x) =
−V ′(x) + f . For the cosine potential, this gives:

Fcos(x) = f0 sin
2πx

�
+ f . (19)
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Along a period, the contribution −V ′(x) to the force presents
a minimum in xc. The corresponding critical force (for the
zero-mass depinning) is

f 0
c = −V ′(xc). (20)

For an external force f < f 0
c close to the m = 0 depinning

force, denoting f = f 0
c − δf (with δf > 0 and δf 	 f 0

c ), the
dynamics presents two critical points x±

c represented on Fig. 5.
Writing that, close to xc,

F (xc + δx) = −δf + κ δx2 + . . . , (21)

we find

x±
c = xc ±

√
δf

κ
+ . . . . (22)

Note that for the cosine potential (18) one has f 0
c = f0, xc =

3
4�, κ = 2π2f0/�

2.
We are now in position to determine the values of the

parameters {g, μ, F } of the effective potential (8) and (9) that
describe the criticality of interest. We fix

g = 4
μ2

�2
, (23)

ensuring that the spatial period of the potential V0(x) is equal
to �. Then, shifting x so that −V ′

F (x+
c ) = 0, we impose the

following conditions:

−V ′
F (x−

c ) = 0 and − V ′
F (xc) = −δf , (24)

which ensure that force −V ′
F (x) of the effective model

presents the critical properties of F (x) described on Fig. 5.
Solving for μ and F , we thus find, for small δf :

μ =
√

κ�

8
+

√
δf

32�
+ O(δf ), (25)

F = κ�2

8
− 3

8

√
κ δf � + O(δf ). (26)

Note that, in these expressions, we should keep both contribu-
tions of order O(

√
δf ) to describe correctly the critical scaling.

D. Scaling regime m � mc and fc(m) � f 0
c

We have seen in Sec. V B that, for masses below the
critical mass mc given by (14), the bistable regime drive is
[Fc(m), F 0

c ] with F 0
c given by (11) and Fc(m) by (15). Using

the correspondence (25) and (26) between the parameters
of the effective model and those of the physical model, we
find that

F 0
c − F = 1

2
�
√

κ δf + O(δf ). (27)

This relation implies an important scaling: Close to the depin-
ning point f 0

c of the physical model ( f = f 0
c − δf ), the drive

F of the effective model scales as F 0
c − F ∼ √

δf and not as
∼δf , contrarily to what we could have naively expected.

Then, considering a mass m slightly above the critical
mass mc,

m = mc + δm with δm 	 mc, (28)

we see from (15) that the size of the bistable regime is
determined by

F 0
c − Fc(m) =

(
1 −

√
mc

mc + δm

)
F 0

c = 1

2
F 0

c

δm

mc
+ O(δm2).

(29)
Thus, we see from (27) that, for the physical force f , the size
δf = f 0

c − fc(m) of the bistable regime is governed by the
scaling f 0

c − fc(m) ∝ (m − mc)2; more precisely:

f 0
c − fc(m) = �4κ3

256 γ 4
(m − mc)2 for m → m+

c . (30)

For the damping coefficient, we get

f 0
c − fc(α) = κ3

[
�

64 μ3

]2

(αc − α)2 for α → α−
c . (31)

For the cosine potential (18) we have κ = 2π2f0/�
2

and thus

f 0
c − fc(m) = π6

32

f30

�2 γ 4
(m − mc)2, (32)

where π6/32 ≈ 30.0 .

E. Effective description on the full range of forces [0, f 0
c ]

for the tilted cosine potential

For the cosine potential (18) the zeros x±
c of the corre-

sponding force (19) are given (see Fig. 5) by

x−
c = �

2
+

� arcsin f
f0

2π
and x+

c = � −
� arcsin f

f0

2π
.

(33)
Performing the same program as previously in order to find
the parameters of the effective tilted potential VF , we impose

V ′
F (x−

c ) = 0 and − V ′
F (xc) = f − f 0

c , (34)

where f 0
c = f0. We shift the x coordinate to ensure V ′

F (x+
c ) =

0 (before the shift one has xc = 3
4�). We find

F =
4π2(f0 − f ) arcsin f

f0[
3π + 2 arcsin f

f0

][
arccos f

f0

]
2
, (35)

μ = π3/2

arccos f
f0

√
�

f0− f

(
3π
2 + arcsin f

f0

) , (36)

where g is again given by (23).
From Eqs. (11), (14), and (15), we find that the correspond-

ing equation for the pinned or bistable homoclinic critical
line fc(m),

4
√
f0 − fc(m) arcsin fc (m)

f0

γ arccos fc (m)
f0

√
�
[
2 − 1

π
arccos fc (m)

f0

] = 1√
m

. (37)

We easily check that expanding this relation for m close to mc

and f close to f 0
c = f0 (i.e., f = f0 − δf , δf 	 f0) we recover

the result (32), which describes the behavior of the homoclinic
line close to the triple point.
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In the other asymptotics, for small f (which corresponds to
large mass along the homoclinic line), we find

F = 16

3π
f and μ = 2

√
2

3

f0

�
for f 	 f0. (38)

In this regime, the effective drive F is proportional to the tilt
force f , as physically expected. From Eq. (14), the effective
critical mass in that regime is found to be

mc = 3

32

�γ 2

f0
, (39)

and we find from (15) that the critical equation for the line
between the pinned and the bistable regime is

fc(m) ∼ π

8

√
3f0�

2m
γ for m � mc. (40)

We should beware that the result of Eq. (39) on the location
of the triple point is only indicative since it results from a
computation done in the regime of small forces along the
homoclinic line (that is, far from the triple point). Translating
the result (40) to the damping variable α, one finds

fc(α) ∼ π

8

√
3f0�

2
α for α 	 αc. (41)

We recover the expected scaling fc(α) ∝ α of the large-
damping limit. For the parameters f0 = 1 and � = 2π corre-
sponding to the cosine potential of Guckenheimer and Holmes
[13], the prefactor becomes 1

8

√
3π3/2 � 1.21 which is not

very far from the exact prefactor 4/π � 1.27. This result
validates our approach based on an approximate “periodicized
ϕ4” potential. A derivation of the exact prefactor 4/π and of
its generalization for an arbitrary potential is done in Sec. VI.

F. The critical mass and its asymptotic behaviors

We note that in the regime of forces f close to the triple
point, critical mass coming from Eqs. (14) and (25) is 1

π2
�γ 2

f0
,

while we obtained a different numerical prefactor in (39). The
reason behind this mismatch is that the approach we follow
consists in approximating the tilted potential V (x) − f x by
the effective one, VF (x), and that the effective parameters μ,
g, and F depend on f in a nontrivial way, determined by
the homoclinic line force fc(m). The first result is derived
for the asymptotics fc(m) − f 0

c 	 f 0
c and the second one for

fc(m) 	 f 0
c . This means that our approach predicts

mc ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

32

�γ 2

f0
for

�γ 2

f0
→ 0

1

π2

�γ 2

f0
for

�γ 2

f0
→ ∞

, (42)

corresponding respectively to a regime where dissipation is
low (compared to the potential barriers) and a regime where
dissipation is higher and close to the maximal one allowing for
a limit cycle at f < f 0

c . We note that the numerical prefactors
in both cases of (42) are rather close: This means in the
intermediate regime where �γ 2

f0
takes a finite value, the critical

mass scales as in (42) with a prefactor mildly depending
on �γ 2

f0
.

G. Mapping for general normal forms: ϒ �= 2

Considering a tilted force that is expanded close to its
critical point as f − V ′(x) ≈ ( f − f 0

c ) + k|x − x∗|ϒ instead
of (21), one simply replaces

√
δf by δf 1/ϒ in Eq. (22). This

implies that the same substitution has to be done in Eqs. (25)
and (26). Instead of (27), one obtains now

F 0
c − F ∼ δf 1/ϒ for δf → 0. (43)

Then, Eqs. (30) and (31) become

f 0
c − fc(m) ∼ (m − mc)ϒ, (44)

f 0
c − fc(α) ∼ (αc − α)ϒ, (45)

and are valid in the vicinity of the triple point (m → m+
c ,

i.e., α → α−
c ). The large damping regime, which is more

universal, is described at the end of Sec. VI B.

VI. FAR FROM THE TRIPLE POINT: THE
LARGE-DAMPING REGIME

A. Settings

To understand the scaling properties of the large-damping
regime, we consider that the potential V (x) is described by
two physical parameters, its period � and its amplitude V0:

V (x) = V0 V̂ (x/�), (46)

where one assumes that the rescaled potential V̂ (x̂) is inde-
pendent of V0 and �. At zero friction (γ = 0) and zero external
force ( f = 0) the equation of motion (1) for the position of the
particle—whose coordinate is denoted by x0(t )—becomes

mẍ0 = −V ′(x0), (47)

which, on the rescaling

x0(t ) = � x̂0(t/τ ) with τ =
√

m�2

V0
(48)

becomes

¨̂x0 = −V̂ ′(x̂0). (49)

Since the dynamics is conservative, its description is rather
explicit. Its lowest energy solution, which starts from a lo-
cal maximum of V̂ (x̂)—located in x̂ = 0, without loss of
generality—with an infinitesimally small velocity at time
t = −∞ and arrives at the next maximum in x̂ = 1 at time
t = +∞, is the solution of the differential equation

1

2
[ ˙̂x0(t̂ )]2 = V̂ (0) − V̂ [x̂0(t̂ )]. (50)

We denote its solution by x̂

0(t̂ ); it is independent of the

physical parameters V0 and � and is given by

dt̂ = dx̂

0√

2[V̂ (0) − V̂ (x̂

0 )]

, i.e., (51)

t̂ =
∫ x̂


0 (t̂ )

0

dx̂0√
2[V̂ (0) − V̂ (x̂0)]

. (52)
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B. Perturbation at small friction and small drive

To describe the small-dissipation asymptotics of the homo-
clinic curve, we now drive the system by applying a small
force f and adding a small dissipation γ that ensures the
energy remains finite. The motion is described by Eq. (1).
For a given friction γ and a mass m, we are looking for the
critical value of the force fc(m) above which a bistable regime
is possible. This homoclinic line fc(m) is determined by the
existence of a critical solution x
(t ) to (1) with the boundary
conditions

x(−∞) = xc; x(∞) = xc + �, (53)

ẋ(−∞) = 0+; ẋ(∞) = 0, (54)

where xc is the location of the maximum of V (x) − f x (satis-
fying xc → 0 as f → 0). On the rescaling (48) one finds

¨̂x = −V̂ ′(x̂) −γ τ

m
˙̂x + f̂︸ ︷︷ ︸

“small”

where f̂ = f

V0/�
. (55)

We consider the rescaled critical solution x̂
(t ). Multiplying
(55) by ˙̂x
(t ), integrating between t = −∞ and t = +∞, and
using the boundary conditions (53) and (54), together with
[V̂ ]x̂c+1

x̂c
= 0 (by periodicity), one finds that necessarily

γ τ

m

∫ ∞

−∞
dt̂

(
˙̂x


)2 = f̂ . (56)

This relation is true in general for the inertial critical trajectory
(for any f and γ at the critical value of the mass) and ex-
presses the fact that the energy dissipated along this trajectory
matches exactly the potential loss f̂ on one period. If one is
able to determine the expression of the critical trajectory x̂
(t ),
then Eq. (56) allows one to obtain the expression of fc(m).
However, this is not possible in general. In our asymptotics
of interest ( f → 0, γ → 0), since both sides are small one
can replace ˙̂x
 by the zero-friction zero-force solution ˙̂x


0. This
is the essence of Melnikov’s formalism [12] but written in
a theoretical physicist’s manner. Then, using (51) to convert
the time integral into a spatial integral together with the
expression (48) of the characteristic time τ , one finds

γ �√
m V0

∫ 1

0
dx̂

√
2[V̂ (0) − V̂ (x̂)] = f̂ . (57)

This relation gives the criterion relating fc(m) and in the small
damping limit:

fc(m) = N γ
√

V0√
m

for
γ√
m

→ 0, (58)

N =
∫ 1

0
dx̂

√
2[V̂ (0) − V̂ (x̂)] . (59)

Here the prefactor N is a numerical constant. In terms of
the damping coefficient, the homoclinic asymptotics writes
fc(α) ∼ N

√
V0 α for α → 0. For the cosine potential, one has

V̂ (x̂) = cos 2π x̂ and N = 4
π

: One recovers the result of Levi
et al. [11] and Guckenheimer and Holmes [13]. We note that
the predictions of Eqs. (58) and (59) are independent on the
regularity properties of the potential, so that they should be

FIG. 6. Steady-state time-averaged velocity as a function of the
mass above the critical mass, m − mc. With a continuous green line
we show a fitted power law, where the exponent and the critical mass
are fitting parameters. Then we find mc = 0.70757 ± 0.00002.

valid even in presence of cusps. We validate this prediction
numerically in Sec. VII B.

VII. NUMERICAL VALIDATION

A. The case of the cosine potential

In this section, we will validate our analytical results by
using a numerical integration of Eq. (1) with the cosine
potential of Eq. (18). Without loss of generality, we choose
γ = 1, f0 = 1, and � = 2π to simplify the notation.

As we showed in Fig. 2, we obtained the steady-state time-
averaged velocity of the particle, as a function of the driving
force, and for different mass values. This velocity seen as a
function of the mass, when the driving force is equal to the
critical force of the massless particle, behaves as a power law
above the critical mass, which, naively, can be described as

v( f ≡ f 0
c ) ∼ (m − mc)βδ. (60)

This allows us to determine the critical mass with great pre-
cision. Leaving mc, βδ, and a prefactor as fitting parameters,
we find

mc = 0.70757 ± 0.00002, (61)

and βδ = 0.99 ± 0.01, as we show on Fig. 6.
Using the correspondence between m and α = γ /

√
m, we

estimate from our numerical results that the critical damping is
αc = 1.18882 ± 0.00002, which seems to be compatible with
the results from Ref. [11], even if there is no explicit numerical
value given by the authors. However, when comparing our
estimations from Sec. V F with the fitted value given by
Eq. (61), we only find a mild agreement. From Eq. (42), we
predicted a critical mass in the range [0.589 . . . , 0.637 . . . ].
This mismatch comes from the fact that we are using a
crude “periodicized ϕ4 potential” approximation of the cosine
potential, close to the triple point of the phase diagram. The
numerical value of mc should depend on the exact properties
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FIG. 7. For the potential V (x) = − cos(x), as the mass of the
particle gets close to the critical mass from above, the difference
between the critical forces tends to zero as given by Eq. (32),
indicated by a continuous green line. Here we employ a numerical
simulation using � ≡ 2π , γ ≡ 1, and f0 ≡ 1.

of the potential on that point, thus it is not a universal property
of the model and then it can only be partially estimated using
that kind of approximation. The order of magnitude is correct,
and, to go further, one would need to find the critical trajectory
of a better approximation of the tilted potential.

Besides the critical mass, we also estimate βδ to be near 1.
Since β = 1/2 for this model, this means δ = 2, which is in
good agreement with the prediction from Eq. (30). Moreover,
from Eq. (32) and for our choice of potential parameters,
we find f 0

c − fc(m) = π4

128 (m − mc)2 close to the triple point.
Comparing this to our numerical data, using the previously
estimated mc, we find an excellent agreement down to the
prefactor, as can be seen in Fig. 7. This could come as a
surprise, as the prediction for the critical mass was only
approximate. On the one hand, the exponent δ predicted by
Eq. (30) should be a universal exponent, hence more robust
in the approximations made. On the other hand, the prefactor
on Eq. (32) was specialized for the cosine potential, but even
with the other approximations made and the fact that the
prefactor should not be a universal property, the agreement
is remarkably good.

Last, when considering the limit m → ∞, we find the
known behavior from Ref. [13, Eq. (4.6.24)] which, a function
of the damping parameter, as α → 0, is expressed as:

fc(α) = 4α/π (62)

(see Sec. VI for a simple demonstration). On Fig. 8, we show
that this analytical prediction is in good agreement with our
numerical results.

B. Generic normal forms

Here we consider the more general periodic pinning force

−V ′(x) =
[√

π2− ϒ
2 

(
ϒ
2 + 1

)]
[1 − cos(x)]ϒ/2


(

ϒ+1
2

) − 1, (63)

0.01

0.1

1

0.01 0.1 1

f c
(α

)

α

4α/π

FIG. 8. Critical force as a function of the damping parameter
α, defined as α = γ /

√
m. The expected behavior, from Eq. (62), is

correct on the limit α 	 αc.

with ϒ > 1, where we have set the constant factors such
that the upper critical force is f 0

c ≡ maxx[V ′(x)] = V ′(xc) =
1 with the marginal points fixed at xc = 2πn with n in-
teger. Note that for ϒ = 2, Eq. (63) reduces to the pin-
ning force −V ′(u) = − cos(u) or simple washboard po-
tential V (u) = V (0) + sin(x). In the α → ∞ overdamped
limit this periodic pinning force gives rise to the nor-
mal form ẋ ≈ ( f − f 0

c ) + |x − xc|ϒ displaying the depin-
ning transition v ∼ ( f − f 0

c )β with β = 1 − 1/ϒ . Note that
this result remains valid for α > αc finite damping and
in general

v ∼ B(ϒ,α)
(

f − f 0
c

)1−1/ϒ
. (64)

Therefore inertia does not change the critical behavior of
the velocity for all the infinite-period bifurcation line α >

αc although the prefactor may be affected. This result can
be appreciated in Fig. 12, below the critical mass, i.e.,
0 � m � 0.7.

To determine the critical mass mc and the behavior of fc(m)
(particularly near the triple point mc and in the m � mc limit),
instead of integrating Eq. (1) in time we have solved the
equation

dK

dx
= −γ

√
2K

m
− V ′(x) + f , (65)

where K = mẋ2/2 is the kinetic energy and −V ′(x) is the gen-
eral pinning force of Eq. (63). Equation (65), which follows
directly from Eq. (1), is only valid if ẋ � 0 but allow us to ob-
tain the limit-cycle trajectories directly in phase space (x, ẋ).
We set γ = 1 and for a given f < f 0

c we prepare a limit cycle
of the bistable regime, using suitable values for m and initial
conditions. The smallest value of the mass, m∗, that makes the
limit-cycle trajectory ẋ(x) touch the ẋ = 0 axis in one point
(and in all its periodic images) corresponds to the homoclinic
orbit. The magenta dashed line in Fig. 3(b) illustrates one such
homoclinic orbit. The pair ( f , m) ≡ ( fc(m), m) found hence
belongs to the homoclinic bifurcation line. The critical mass
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1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
(a)

0.62
0.64
0.66
0.68
0.7

0.72
0.74
0.76

0.35 0.4 0.45 0.5 0.55 0.6
(b)

m
c

Υ

m
c

β = 1 − 1/Υ

FIG. 9. Critical mass mc vs. the normal form exponent ϒ (a) and
β = 1 − 1/ϒ (b). A fair linear fit is obtained in (b) in the full range
of ϒ shown in (a).

mc can be determined from the vanishing of f 0
c − fc(m) as

m → mc. To solve Eq. (65) numerically, for several values of
ϒ around the standard value ϒ = 2, we used the Runge-Kutta
Fehlberg 78 method [14].

In the insets of Fig. 10, we show that f 0
c − fc(m) ∼ (m −

mc)δ as m − mc → 0+ for different values of ϒ , with both
mc and δ functions of ϒ , as shown in Fig. 9 and Fig. 10
respectively. As we can appreciate in Fig. 10, δ is not an
independent exponent, and δ ≈ ϒ , as predicted analytically.
It is worth noting here that also depinning exponent β is not
an independent exponent, since β = 1 − 1/ϒ . In other words,
the bistable range is controlled by the normal form exponent
corresponding to the infinite-period bifurcation for m > mc.
Summarizing,

f 0
c − fc(m) ∼ (m − mc)ϒ, m � mc, (66)

v ∼ ( f − f 0
c )1−1/ϒ , m > mc, f > f 0

c . (67)

In Fig. 9 we show that mc is a nontrivial function of ϒ ,
for which we do not have analytical prediction. Interestingly,
mc displays the behavior mc ≈ a + b(1 − 1/ϒ) or mc(ϒ) ≈
mc(2) + b(1/2 − 1/ϒ) with b a positive constant in the neigh-
borhood of the standard ϒ = 2 case. Finally, in Fig. 11,
we show that in the homoclinic bifurcation line satisfies the
following scaling form (see insets):

fc(m) ∼ A(ϒ)/
√

m, α → 0, (68)

with A(ϒ) a nontrivial prefactor (see main figure). One re-
covers as expected the Guckenheimer and Holmes prediction
A(ϒ = 2) = 4/π , whose derivation is detailed in Sec. VI. The
low-damping scaling fc(m) ∼ 1/

√
m (or f α

c ∼ α) is hence
robust under changes of ϒ , at variance with the m → mc

1.6

1.8

2

2.2

2.4

1.6 1.8 2 2.2 2.4

−16

−8

0

−8 −4 0 4

−16

−8

0

−8 −4 0 4

δ
Υ

δ ≡ Υ

ln
f

0 c
−

f c
(m

)

ln [m − mc(Υ)]

Υ = 1.6

ln
f

0 c
−

f c
(m

)

ln [m − mc(Υ)]

Υ = 2.4

FIG. 10. Critical exponent δ, controlling the bistable driving
force range f 0

c − fc(m), showing that δ ≈ ϒ (main figure). Insets
show two typical power-law fits f 0

c − fc(m) ≈ [m − mc(ϒ)]δ used
to extract δ vs. ϒ .

critical behavior which displays the ϒ-dependent exponent
δ = ϒ . All these results agree with the analytical arguments
made for the more general pinning force in Sec. VI.

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.6 1.8 2 2.2 2.4

−5
−4
−3
−2
−1

0

−5−4−3−2−1 0

−5
−4
−3
−2
−1

0

−5−4−3−2−1 0

A
(Υ

)

Υ

4/π

ln
[f

c
(m

)]

ln 1/m1/2

Υ = 1.6

ln
[f

c
(m

)]

ln 1/m1/2

Υ = 2.4

FIG. 11. Large mass behavior of the critical force fc(m) vs. ϒ .
Insets: Fits to fc(m) ≈ A(ϒ)/

√
m. Main figure: A(ϒ) for a range of

ϒ around the standard ϒ = 2 [or − cos(u) potential].
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VIII. CONCLUSIONS

We have studied the dynamical phase diagram as a function
of the drive and damping of a massive particle in a periodic po-
tential. The phase diagram consists of three different regimes,
pinned, sliding and bistable, separated by three bifurcation
lines, each one identified with a different type of depinning
transition on driving. We have obtained analytical descriptions
of the homoclinic bifurcation line which separates the bistable
and the pinned regimes, both in the triple point and in the low
damping limits.

The asymptotic behavior of the homoclinic bifurcation
line presents interesting universal features. On one hand,
for α − αc → 0+, we find f 0

c − fc(α) ∼ (αc − α)ϒ , with ϒ

representing an infinite family of periodic potentials solely
characterized by the normal form describing the shape of the
periodic force near its minima. The critical mass depends in a
non critical way with ϒ . For the cosine potential in particular,
corresponding to ϒ = 2, we were able to obtain analytical
estimates of the critical mass. On the the other hand, for α →
0, we find fc(α) ∼ Nα and obtain an expression for N . This
scaling result was already known for ϒ = 2. Nevertheless,
we presented a physical argument which allows us to recover
the prediction by Guckenheimer and Holmes in this particular
case [13]. Interestingly, this scaling result is more robust than
the triple point scaling, as it appears to be independent of
the normal form exponent ϒ . To the best of our knowledge
many of these properties were not reported before, particularly
regarding the proximity of the triple point.

Using standard numerical methods, we have validated our
analytical predictions. In the case of the cosine potential, near
the triple point, the analytical result for f 0

c − fc(m) given by
Eq. (32) is in excellent agreement with numerical data, down
to the prefactor. However, the numerical result for the critical
mass is close but it does not match the analytical prediction—
which was an approximation—given that the critical mass is
not a universal property of the model. For the generic normal
forms parametrized by the exponent ϒ we have also found a
good agreement on the ϒ-dependent predicted exponents. In
the latter case the critical mass follow a simple but nontrivial
linear relation near ϒ = 2, mc ∼ a + bβ, with β = 1 − 1/ϒ

the velocity critical exponent for m < mc. Since we do not
have an analytical prediction for this behavior, it would be
interesting to tackle this problem in the future.

The analytical estimates, which we reported and validated
numerically, are obtained by a nonstandard approach. This
consists in mapping exact static soliton solutions in a modified
tilted washboard potential to the homoclinic orbit, which
separates the bistable and the pinned regimes in the original
dynamical model. This approach appears to be a particularly
useful alternative for an accurate description of underdamped
nonuniform oscillators driven near their triple point.

Regarding possible applications of our results to concrete
physical systems, it would be interesting to investigate how
thermal fluctuations affect the dynamics, particularly near the
triple point—either for the model we considered, or for other
nonlinear dynamics that present a coupling with an inertia-
like degree of freedom, e.g., in simple models of spintronic
devices [15,16]. Vollmer and Risken used a functional con-
tinued fraction approach to study the small-damping limit in

presence of a noise [9,17–19] but it would be interesting to
determine if it can describe the critical regime close to the
triple point.
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APPENDIX:

1. Implementation of the numerical integration

From the computational point of view, this model does
not present major difficulties when studying the cosine poten-
tial. Nevertheless, since the inertial term has a second order
derivative, we employ a Verlet’s integration method to solve
the dynamics. We use a Leapfrog algorithm, performing the
integration in two steps: First, we calculate the velocity v(t ),
as v(t ) ≡ ẋ, and then the resulting position, at each time step.
That means, at each time step dt we update the velocity of the
particle, as

v(t + dt ) = v(t ) + [Fcos(x, t ) − v(t )]
dt

m
, (A1)

with Fcos(x, t ) as defined on Eq. (19). Then we update the
position by using the updated velocity,

x(t + dt ) = x(t ) + v(t + dt ) dt . (A2)

To guarantee the stability of this method, we use a zero-
acceleration initial condition for the particle, i.e., ẍ ≡ 0. For
the initial position and velocity, we fix

x(0) = 0, v(0) = Fcos(0, 0) = f . (A3)

By using this initial condition, we study the dynamics of a
particle under a range of driving forces and different values
for its mass.

Close to the depinning point, we expect different behav-
iors, depending on the mass of the particle. On the one
hand, below the critical mass, the depinning exponent is β =
1/2. On the other hand, above the critical mass, the steady-
state time-averaged velocity undergoes an abrupt transition,
proportional to {ln[ f − fc(m)]}−1 [1, Sec. 8.5]. Hence, we
expect β → 0 in this case. However, the finite precision of
a computer makes it very tedious to obtain such a inverse-
logarithmic behavior. In Fig. 12, we illustrate how the de-
pinning transition close to the critical mass is manifested in
practice on the velocity or force characteristics. As the mass
increases, above the critical one, we observe a tendency of the
critical velocity characteristics toward a regime where β → 0
(i.e., toward a horizontal line) but studying regimes with much
smaller values of f − fc(m) would be required in order to
observe numerically the inverse-logarithmic behavior.
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FIG. 12. On the cosine potential, the steady-state time-averaged
velocity, as a function of the force, undergoes different depinning
transitions depending on the mass of the particle. For zero-mass,
the black dashed line shows the analytical result, with β = 1/2. For
masses above mc, we can only see a mild tendency toward the regime
β → 0 that describes the expected behavior v ∼ {ln[ f − fc(m)]}−1.

2. Numerical method to find the critical mass

From the steady-state time-averaged velocity as a function
of the mass, for a particle driven by f = f 0

c , we can fit the
critical mass and a critical exponent using Eq. (60). Since one

10−6

10−5

10−4

10−3

0.70753 0.70755 0.70757 0.70759 0.70761

re
du

ce
d

χ
2

mc

FIG. 13. Using Eq. (60), we fit the exponent by proposing differ-
ent values for the critical mass. Here we show the resulting reduced
chi-square for each value, as a test for the goodness of fit. From
the lowest value of the reduced reduced chi-square, we estimate
mc = 0.70757 ± 0.00002.

of the fitting parameters, mc, is part of the argument of the
power law, the fitting method is not straightforward. In our
case, we fitted the data proposing different values of mc, using
only the exponent as fitting parameter. Besides the estimation
for the latter, for each mc we test the quality of the fit using
the reduced chi-square. Then, to estimate the critical mass,
we simply choose the best fit, as we show in Fig. 13.
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