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We explore transport properties in a disordered nonlinear chain of classical harmonic oscillators, and thereby
identify a regime exhibiting behavior analogous to that seen in quantum many-body-localized systems. Through
extensive numerical simulations of this system connected at its ends to heat baths at different temperatures, we
computed the heat current and the temperature profile in the nonequilibrium steady state as a function of system
size N , disorder strength �, and temperature T . The conductivity κN , obtained for finite length (N), saturates
to a value κ∞ > 0 in the large N limit, for all values of disorder strength � and temperature T > 0. We show
evidence that for any � > 0 the conductivity goes to zero faster than any power of T in the (T/�) → 0 limit,
and find that the form κ∞ ∼ e−B| ln(C�/T )|3 fits our data. This form has earlier been suggested by a theory based on
the dynamics of multioscillator chaotic islands. The finite-size effect can be κN < κ∞ due to boundary resistance
when the bulk conductivity is high (the weak disorder case), or κN > κ∞ due to direct bath-to-bath coupling
through bulk localized modes when the bulk is weakly conducting (the strong disorder case). We also present
results on equilibrium dynamical correlation functions and on the role of chaos on transport properties. Finally,
we explore the differences in the growth and propagation of chaos in the weak and strong chaos regimes by
studying the classical version of the out-of-time-ordered commutator.
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I. INTRODUCTION

In the last two decades, there has been a considerable
amount of interest in understanding the transport properties
of systems in the presence of both disorder and interactions. It
is well known that disordered systems described by quadratic
Hamiltonians (e.g., noninteracting electrons in a disordered
potential or disordered harmonic crystals) exhibit the phe-
nomena of Anderson localization [1], whereby the single-
particle eigenstates or normal modes (NMs) of the system
form spatially localized states. This has a profound effect
on transport; in particular for one-dimensional systems all
states are localized and one finds that the system is a thermal
insulator.

A question of great interest is to ask what happens when
one introduces interactions in such a system: Does one need
a nonzero critical strength of interactions to see an insulator-
to-conductor transition? For quantum systems, this question
has been extensively studied in the context of many-body
localization (MBL) [2,3]. It is now generally accepted that, for
one-dimensional quantum systems with a sufficiently strong
disorder, the localized insulating state persists up to a critical
interaction strength. One can ask the same question in the
context of classical systems and this has been addressed in
some recent works [4–8]. The work in [4–7] leads one to
believe that there is no classical analog of an MBL phase,
while [8] provides evidence that such a phase might exist in a
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nonlinear oscillator chain, for a specially designed realization
of spring constants. Theoretical arguments in [7] indicate that
the thermal conductivity of a disordered nonlinear system
goes to zero with decreasing temperature T faster than any
power of T . The numerical study in [5] is consistent with
this finding; however, Flach et al. in [6] found evidence for
a power-law dependence. A recent study proved subdiffu-
sive transport in a disordered chain with sparse interacting
regions [9].

Several other numerical as well as theoretical studies have
also investigated the phenomena of Anderson localization,
wave-packet diffusion, and transport in nonlinear disordered
media [4–7,10–20]. Numerical studies have shown that non-
linearity gives rise to the subdiffusive spreading of a wave
packet in an otherwise empty lattice (thus zero temperature),
implying the destruction of Anderson localization [11,13,20].
A theoretical explanation of the subdiffusive spreading is
based on the fact that the nonlinearity results in nonintegrabil-
ity of the system, because of which the wave packet evolves
chaotically, and this leads to an incoherent spreading [20–27].
A possible mechanism of chaos generation and thermalization
at nonzero temperature was discussed in [26], in the context of
the disordered discrete nonlinear Schrodinger equation. Based
on this picture it was estimated that the probability of chaos
generation scales at a low temperature as e−B| ln(C�/T )|3 , where
B,C are constants, � is disorder, and T denotes the tempera-
ture. It is, therefore, argued that the conductivity follows the
same scaling.

The main aim of this paper is to extract, through extensive
numerics, the temperature dependence of the thermal conduc-
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tivity of the disordered anharmonic chain in the T → 0 limit,
and to understand the precise mechanism of transport in this
system. We also aim to look for signatures of MBL during a
crossover from strong to weak chaos at finite temperatures as
the disorder � is varied across a characteristic value �c. For
our study, we consider a one-dimensional chain of harmonic
oscillators with random frequencies and purely anharmonic
nearest-neighbor coupling. This model lies in the class intro-
duced by Fröhlich, Spencer, and Wayne [21], and therefore we
referred it as the FSW model. It is the strong disorder limit of
the so-called Klein-Gordon (KG) model [6,25,28,29]. At zero
temperature, the model effectively consists of disconnected
oscillators at random frequencies and hence a small local-
ization length at low temperatures. Thus the FSW model is
suitable to study the low-temperature behavior of conductivity
since we expect that relatively small system sizes can be used
to obtain the asymptotic (infinite size) conductivity.

We have performed extensive nonequilibrium simulations
for a range of temperatures T and the disorder strength �, and
for different system sizes N . We show that finite-size effects
in both the low and high disorder regimes can be understood
as arising from boundary effects, and use finite-size scaling
to extract the thermal conductivity in the infinite size limit. As
one of our main results we find that our data at the lowest tem-
perature fits well to the form κ∞ = Ae−B| ln(C�/T )|3 , which has
earlier been argued on the basis of the dynamics of multioscil-
lator chaotic resonances [26]. In addition to the nonequilib-
rium simulations, we have also examined the form of equilib-
rium dynamical correlation functions for the weak and strong
disorder, and our crucial observation is that the behavior of
dynamical correlations is truly Gaussian for a weak disorder,
while for the strong disorder the behavior becomes non-
Gaussian but has a diffusive scaling. Finally, we have looked
at the spatio-temporal propagation of chaos in the system
by computing a classical analog of the out-of-time-ordered
commutator (OTOC) for our nonlinear disordered model.

The contents of the paper are as follows. In Sec. II, we
describe the Hamiltonian and the reservoirs (which are mod-
eled as Langevin baths). We also introduce important dimen-
sionless units, which transparently shows that temperature is
equivalent to nonlinearity strength. In Sec. III, we present
simulation results for the nonequilibrium steady state heat cur-
rent. We analyze various aspects such as system size scaling,
disorder, and temperature dependence of the thermal conduc-
tivity. In this section, we also present results for the temper-
ature profiles in the nonequilibrium steady state. Section IV
is devoted to the energy correlations in space and time and,
in particular, their dependence on the strength of the disorder.
In Sec. V, a classical analog of the out-of-time-ordered com-
mutator (OTOC) is investigated for our nonlinear disordered
system. In particular, the behaviors of the heat map, butterfly
velocity, and Lyapunov exponents as one changes disorder
strength are analyzed. Finally, in Sec. VI, we conclude this
paper with a brief discussion on our main findings.

II. DEFINITION OF THE FSW MODEL AND
NONEQUILIBRIUM DYNAMICS

We start by taking a chain of N oscillators with masses m
and random spring constants ki = mω2εi, with each εi chosen

FIG. 1. Schematic diagram of the model. U is the nonlinear inter-
actions between oscillators given by U (xl − xl−1) = (xl − xl−1)4/4.

uniformly in the interval [1 − �, 1 + �], where � defines
the disorder strength. Nearest-neighbor oscillators are then
coupled by a nonlinear (quartic) interaction potential U of
strength ν (see Fig. 1). The Hamiltonian of the system is given
by

H =
N∑

i=1

[
p2

i

2m
+ ki

x2
i

2

]
+

N∑
i=0

ν
(xi − xi+1)4

4
, (1)

where {xi, pi} are respectively the positions and momenta
of the oscillators in the chain and we set x0 = xN+1 = 0.
The limit � = 0 represents the pure case and � = 1 is the
maximum disorder strength for this disorder distribution.

The chain of oscillators is attached to two thermal reser-
voirs at unequal temperatures TL and TR at the left and right
ends, respectively, so that a temperature gradient is generated,
and there is a heat current along the chain [30,31]. The
two thermal reservoirs are modeled by Langevin equations.
In dimensionless units, t → ωt and x →

√
ν/(mω2)x, the

equations of motion for 1 � i � N are given by

ẍi = −εixi − [(xi − xi−1)3 + (xi − xi+1)3] − γiẋi + ηi, (2)

with ηi = ηLδi,1 + ηRδi,N and γi = γ (δi,1 + δi,N ). The Gaus-
sian white noise, ηL,R, satisfies the fluctuation-dissipation
relation 〈ηL,R(t )ηL,R(t ′)〉 = 2γ TL,Rδ(t − t ′) with 〈ηL,R〉 = 0.
Here the dissipation constant γ is measured in units of mω and
temperature in units of m2ω4/(νkB), where kB is the Boltz-
mann constant. The only relevant dimensionless parameters
in the problem that remain with this scaling are the disorder
strength �, the temperature T (which is equivalent to the non-
linearity strength ν), dissipation constant γ , and the system
size N .

III. SIMULATION RESULTS FOR NONEQUILIBRIUM
STEADY STATES

We compute the heat current and the temperature profile
in the nonequilibrium steady state (NESS), when TL > TR.
The (scaled) heat current along the chain from left to right is
given by J = 〈JN 〉 = ∑N

l=2〈 fl,l−1ẋl〉/(N − 1) where fl,l−1 =
(xl−1 − xl )3 is the force exerted by the (l − 1)th particle on the
lth particle. We define T = (TL + TR)/2. Then for a finite sys-
tem we define a thermal conductivity κN (�, T ) = JN/(TL −
TR). For a diffusive system one expects a finite value for
κ∞(�, T ) = limN→∞ κN (�, T ). In all our numerical studies
we set (TL − TR)/T = 0.5 (which implies TL = 1.25T and
TR = 0.75T ) and explore the system properties as we vary �,
T , and N .

We perform numerical simulations by using the velocity
Verlet algorithm, adapted for Langevin dynamics [32]. To
speed up relaxation to the steady state, the initial conditions
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FIG. 2. Plots of κN vs N for different � for a fixed value of γ =
1, and at different temperatures values, as specified in the frames
(a), (b), and (c). Point symbols are the measured values of κN (T ),
whereas the solid lines are plotted using Eq. (3) for � < �c and
Eq. (4) for � > �c. The values of the parameters are summarized in
Table I. Data have been shown only for those values of (T, �, N )
where a steady state profile of the local heat current 〈Jl〉 is obtained.

are chosen from a product form distribution corresponding
to each disconnected oscillator being in equilibrium at tem-
perature Ti that varies linearly across the chain. The system
is evolved up to times ranging from 2 × 109–5 × 109 time
steps of step size dt = 0.005, in order to reach its NESS,
and then NESS averages are obtained over another equal
number of time steps (see Appendix A). Relaxation times
increase rapidly with increasing N , �, and with decreasing
T . We also average over 50 disorder samples, and our error
bars represent sample-to-sample variations. For T � 0.01,
the conductivity becomes very small (�10−4) and reaching
a steady state becomes computationally challenging because
the fluctuations become more pronounced. Therefore, for low
temperatures, to reduce the impact of such fluctuations we
perform 1011 times steps for a NESS and compute κN by
taking an average over the NESS measurements for another
1011 time steps, which has been possible for N = 32 and 64.

In Figs. 2(a)–2(c), we plot κN against N for different values
of � at a fixed value of γ = 1, and for temperatures T =
0.01, 0.04, 0.08. We observe that in all cases the conductivity
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FIG. 3. A plot of κN vs � on a log-linear scale for different N at
a fixed T = 0.01 and γ = 1. An inset shows the behavior of �c(T )
vs T .

seems to converge with increasing system size to a nonzero
κ∞(�, T ). However, the approach to κ∞ with increasing N is
different for the small and large disorder cases, demarcated
by a characteristic disorder strength �c(T, γ ) that depends
on the temperature T and the coupling γ to the reservoirs
at the ends of the chain. For � < �c(T, γ ) we find that κN

is an increasing function of N , while for � > �c(T, γ ) it
is a decreasing function. At � = �c(T, γ ) we find that the
conductivity is almost independent of system size. This is
illustrated in Fig. 3 which shows a plot of κN vs � for different
N at T = 0.01 and γ = 1, and where the curves for different
N intersect at �c � 0.2. The variation of �c(T, γ = 1) with
temperature T is shown as an inset of Fig. 3. Figure 4 shows
plots of κN vs � for different N at a fix T = 0.04, but for
different γ -values. Clearly, the �c(T, γ ) for a fixed T increase
with an increase in γ . In the following, we present all the
numerical results for a fix γ = 1.

We now discuss the difference in the system-size depen-
dence of κN between weak and strong disorder. For weak
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FIG. 4. Plots of κN vs � on a log-linear scale with varying N at a
fixed T = 0.04, but for different values of γ . The curves for different
N intersect at �c(T = 0.04, γ ), where �c(T = 0.04, γ ) � 0.3, 0.4,
0.5, 0.55 for γ = 0.1, 1, 2, 3, respectively.
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FIG. 5. A plot of κ vs N on a log-log scale for � = 0. Point
symbols are the simulated values of κ whereas the solid lines are the
best nonlinear fits of Eq. (3).

disorder � < �c(T, γ ), the bulk of the chain has a relatively
low thermal resistivity 1/κ , and the boundary resistance to the
reservoirs at each end is high enough to produce an increase
in the apparent resistivity 1/κN of finite length chains. If
we assume a total boundary thermal resistance r due to the
two ends, then the bulk and boundary resistances add to give
total thermal resistance R = (N/κ∞) + r. Hence the effective
finite-size conductivity is given by

κN (�, T ) = N/R = κ∞
1 + (κ∞r/N )

for � < �c. (3)

For system sizes N 	 rκ∞ the boundary resistance dominates
and one has κN ∼ N , while for larger N 
 rκ∞ the heat
transport is diffusive with κN ∼ N0.

For the zero disorder (� = 0) case also, the finite-size
effects are well described by Eq. (3), and Fig. 5 shows a
plot of finite size conductivities as a function of system size
N with varying temperatures. For low system sizes the heat
transport is ballistic, i.e., κ ∼ N , while with an increase of
system size the anharmonic oscillator potential part in the
FSW model leads to a saturation of the conductivity κ . The
point symbols in Fig. 5 are the simulated values of κ whereas
the solid lines are the best nonlinear fits of Eq. (3). Clearly,
Eq. (3) fits accurately to the simulated data at all temperatures.
From these fits, the saturated values of conductivity, κ∞, can
be extracted and plotted as a function of temperature T . We
find the dependence κ∞(T ) ∼ T at low temperatures [see
Fig. 6(a)].

Coming to the disordered case, for strong disorder � >

�c(T, γ ) and low enough temperature, the short-distance,
short-time behavior of the chain is insulating (Anderson lo-
calized), with the thermal conduction due to chaos being
relatively weak. This situation can be viewed as two parallel
channels of conduction: One channel is linear conduction
through Anderson-localized modes of the linearized system.
These modes couple to both reservoirs for the finite system.
Since such states decay with distance d as e−d/ξ (�,T ), where
ξ is a localization length, their contribution to the current
∼e−N/ξ (�,T ). The second channel is the conduction of energy
between locally chaotic multioscillator nonlinear resonances
via the process of Arnold diffusion [26,33,34]. This leads to

FIG. 6. (a) The plot of κN vs T for � = 0.5 and for the ordered
case � = 0. For the disordered case � = 0.5 we see that the slope
on this log-log plot keeps increasing with decreasing T , and at a
low T with increasing N . We find κ ∼ T 8 in our lowest attained
temperature range for N = 64. For the ordered case, a dependence
κ∞ ∼ T is seen at low T . (b) The plot of κ∞ as a function of
�/T shows a good collapse. The solid line is the fit to the form
κ∞ = A exp[−B| ln(C�/T )|3]. Some finite-size κN data at � = 0.5
are also shown.

a small conductivity (system-size independent), which essen-
tially gives κ∞. Hence the contribution from these two parallel
processes suggests the following net conductivity for the finite
system:

κN (�, T ) = ANe−N/ξ + κ∞(�, T ) for � > �c. (4)

As shown in Figs. 2, the forms in Eqs. (3, 4) provide ex-
cellent fits (shown by solid lines) to the finite-size simulation
results (plotted as point symbols) in the two different regimes
(also see Appendix B). One of the fitting parameters gives the
true thermal conductivity κ∞(�, T ). The parameters r, ξ , A,

and κ∞, obtained from our best nonlinear fits for the data of
Figs. 2, are tabulated in Table I. In this way, we fit κN (�, T )
to the scaling forms [Eqs. (3) and (4)], and obtain κ∞(�, T )
for many different sets of (�, T ).

Temperature dependence of κ∞. We next study the temper-
ature dependence of κ∞, particularly at low T . In Fig. 6(a)
we plot κN (T ) vs T for � = 0.5 as well as for the pure case
with � = 0. In both cases, the conductivity decreases with
decreasing temperature and vanishes at T = 0. As mentioned
earlier, for the ordered case κ∞ ∼ T at low T , while for the
disordered case κ∞(T ) appears to decrease at low T faster
than any power of T . If we fit the behavior to a power law,
κ∞ ∼ T a, over a narrow range of T , then around T ∼= 0.02
the effective exponent is a ∼= 4, as was also reported in
Ref. [6]. Going down to T = 0.005 and N = 64 we find
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TABLE I. A summary of exponents r, ξ , A, and κ∞ determined
from the best nonlinear fits of finite-size conductivities as shown in
Fig. 2 with the form of Eqs. (3) and (4). The numbers in parentheses
are the error estimates on the last significant figures. All these data
are for γ = 1.

T � r ξ A κ∞

0.01 0 762 ± 10 0.200(5)
0.1 793 ± 36 0.0270(4)
0.2 30 ± 31 0.00340(7)
0.3 19 ± 4 0.0020(6) 0.00052(2)
0.4 12.2 ± 2.5 0.0014(5) 0.00010(1)

0.04 0.1 90 ± 2 0.263(1)
0.2 84.6 ± 3.5 0.1440(9)
0.3 76.3 ± 6.6 0.0761(4)
0.4 19 ± 4 0.0380(4)
0.5 32 ± 13 0.008(5) 0.0204(2)
0.6 27 ± 15 0.006(3) 0.0111(2)

0.08 0.3 33.5 ± 1.7 0.244(1)
0.4 30.8 ± 2.5 0.1678(8)
0.5 21.7 ± 4.2 0.1136(6)
0.6 12 ± 8 0.0783(5)
0.7 308 ± 38 0.003(1) 0.053(1)
0.8 55 ± 42 0.005(3) 0.0383(4)

a rapid increase of this effective exponent to a ∼= 8, which
indicates that a might be even larger at this T for larger N .
In Ref. [26] it has been argued that the behavior at small T/�

should be of κ∞ ∼ e−B| ln(C�/T )|3 , with constants B and C; we
show in Fig. 6(b) that the data fit rather well to this form.

Transport mechanism. There are several possibilities for
the precise mechanism by which transport occurs at low
temperatures in the FSW model. One argument is based
on the formation of localized chaotic islands (CIs), which
could provide an effective channel for energy transport. It
has been argued earlier [27] that the formation of such CIs
requires three consecutive oscillators with resonant frequen-
cies (|εi+1 − εi| ∼ T ) and thus occurs with probability p ∼
T 2/�2. From our numerical studies with three oscillators, we
found, however, that if any neighboring pair out of the three
oscillators is in resonance, this seems sufficient to generate
chaos [35]. This would imply p ∼ T/�. Since the CIs form
with probability ∼T/�, they are separated on average by
distance d ∼ �/T . They would then act as effective thermal
reservoirs between which energy is transmitted via interme-
diate localized states. However, a detailed calculation along
the lines in [9] shows that one ends up with regions of large
resistance and eventually subdiffusive transport.

An alternate mechanism suggested in [26] for the disor-
dered nonlinear Schrodinger equation is that a more efficient
mechanism of chaos generation does not require nearby pairs
to be close in frequencies. Instead, it is possible for n ∼
ln(�/T ) oscillators to satisfy a resonance condition and be
driven to chaos by nearby sets of oscillators. Based on this
picture it is estimated in [26] that the probability of chaos
generation scales as e−B| ln(C�/T )|3 and then one can argue
that the conductivity follows the same scaling. In fact, in
Fig. 7, we show two scenarios for N = 16. One case (left
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FIG. 7. Finite-time Lyapunov exponents as a function of time
for a single disorder sample {εi} (shown on the top panel) for the
case (a) [the left panel] where there are no resonances and the case
(b) [the right panel] where a three-oscillator resonance is inserted
in the middle of the chain by setting εN/2±1 = εN/2. In both cases,
data correspond to N = 16 with � = 0.5 and are plotted for several
temperatures as shown in the panels.

panel) has all frequencies off-resonant, and the other case
(right panel) has three oscillators in resonance. However,
irrespective of whether there is resonance or not, we notice
that the system is chaotic with almost the same value of the
Lyapunov exponent. Therefore, as argued by [26], we also
find that chaos generation does not require nearby oscillator
pairs to be in resonance. In fact, the Lyapunov exponent
turns out to be independent of details of how the random
frequencies are chosen. In Fig. 8 we show the dependence of
Lyapunov exponent on disorder strengths and temperatures.
Interestingly, our numerics indicates that, for a fixed disorder
strength, λ ∝ √

T , which is similar to what is seen in several
other very different classical systems [36,37]. In Sec. V we
present further results on chaos propagation in this system.

Temperature profiles. The signatures of boundary resis-
tance, the strong temperature dependence of κ∞(T ), and
disorder can also be seen in the NESS temperature profiles.
Note that using Fourier’s law j = −κ (T )dT/dx along with
knowledge of the form κ (T ) and the boundary conditions
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FIG. 8. (a) Lyapunov exponent as a function of disorder strength
for various temperatures. (b) The Lyapunov exponent as a function
of temperature for different disorder strengths. For a fixed disorder
strength, our numerics indicates that λ ∝ √

T . Here N = 16.
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FIG. 9. (a) Temperature profiles in the steady state with TL =
0.05, TR = 0.03, and � = 0.1 for different system sizes. (b) Tem-
perature profiles for TL, TR as in (a) but with � = 0.5. The analytical
fits (black dashed lines) to the asymptotic profiles were obtained by
solving −κ (T )∂iT (i) = J . With the form κ ∼ T a, it can be solved
exactly for T (i) and plotted as a function of i/N using a = 1 in
(a) and a = 3.3 in (b). (c) Temperature profile at a lower mean
temperature T = 0.01 and � = 0.5, which shows signatures of a step
profile, as seen in MBL systems [38,39].

T1 = TL, TN = TR uniquely fixes the temperature profile in the
steady state. In Fig. 9 we plot the temperature profile Ti = 〈p2

i 〉
for different temperatures and disorder strengths. In Fig. 9(a),
which is in the low-disorder regime, the boundary resistance
is clearly seen for small N , and the profile slowly converges
(with increasing N) to an asymptotic form that is consistent
with the form κ∞ ∼ T . For somewhat stronger disorder and
not too low temperature [Fig. 9(b)] we are near � = �c(T ),
so the profile converges quickly to the asymptotic form which
is now consistent with κ∞ ∼ T 3.3 in this range of T . These
two asymptotic forms are shown by black dashed lines in
Figs. 9(a) and 9(b). At even smaller temperatures and high
disorder, a sufficiently small size system is effectively in
the localized regime, and we expect a step temperature pro-
file [38,39]. There is some indication from our numerics that
this is indeed the case [see Fig. 9(c)]. This is a signature for
the classical analog of an MBL-like regime, which, however,
does not survive in the thermodynamic limit.

IV. SIMULATION RESULTS FOR EQUILIBRIUM
DYNAMICAL CORRELATION FUNCTIONS

Equilibrium dynamical correlation functions (unequal
space and unequal time) serve as another probe of transport
properties and we now present results on the form of these
correlations in different parameter regimes. Let us in particu-
lar focus on the spread of energy fluctuations characterized by
the correlation function

C(i, t ) = N−1
N∑

l=1

〈[εi+l (t ) − 〈εi+l〉][εl (0) − 〈εl〉]〉, (5)

where εi = p2
i /2 + kix2

i /2 + ν(xi+1 − xi )4/4 and 〈· · · 〉 de-
notes an equilibrium average.

To generate the equilibrium ensemble of initial conditions,
here we took the system with periodic boundary conditions
and attached Langevin heat baths at temperature T to every os-
cillator, thus ensuring a fast equilibration. Using initial states
prepared in this way, the heat baths are then removed, and the
system is evolved with the Hamiltonian dynamics to compute
the time evolution of C(i, t ) as defined in equation (5).

In Fig. 10 we show the time evolution of C(i, t ) at T =
0.04 for four different disorder strengths. We find diffusive
scaling of the correlations at all disorder strengths, but with
non-Gaussian scaling functions except for the ordered case
� = 0 (at least for the space-time (i, t ) scales we have reached
in our numerics). A possible explanation would be that the
system has a distribution of local diffusivities, which can
lead to such non-Gaussian forms, yet diffusive scaling (see,
for example [40,41]). However, we expect that, in the very
long-time limit (inaccessible in our numerics), the scaling
form will eventually become a Gaussian for the disordered
case, as suggested by the observation of the absence of MBL
in the previous section.

We note that the diffusion constant can be independently
obtained using D = κN/cv , where cv is the specific heat.
We find the values of D = 0.603, 0.1528, 0.04147, 0.0223
for � = 0, 0.2, 0.4, 0.5, respectively. For the ordered case,
the value of D obtained in this way is consistent with the
diffusion constant obtained by fitting a Gaussian in Fig. 10(a).
Due to the fact that the diffusion constant turns out to be
very small for the disordered case, therefore one needs to
go to extremely long times to see Gaussian behavior. From
our studies of the equilibrium correlations we find that there
is no qualitative difference in their forms between the weak
and strong disorder regimes. This seems consistent with the
picture that the differences that we see in the nonequilibrium
studies basically arise from boundary effects.

V. NUMERICAL RESULTS ON CHAOS PROPAGATION
AND OUT-OF-TIME-ORDERED COMMUTATOR (OTOC)

Finally, we investigate the differences in chaos propagation
in this system in the two regimes of weak and strong chaos. In
quantum systems, this has been studied through the so-called
out-of-time-ordered commutator (OTOC), and it is seen that
chaos propagates linearly in time with a finite velocity in
the conducting phase, while in the MBL phase the growth is
logarithmic [42–44]. As the classical analog of the OTOC, one
replaces the commutator by the Poisson bracket ({· · · }PB) and
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FIG. 10. Diffusive scaling of energy spreading for disorder
strengths � = 0, 0.2, 0.4, 0.5 at T = 0.04. For this temperature � ≈
0.4 corresponds to critical disorder. The best fit curves that are shown
correspond to the form ae−b|x|c with b ≈ 0.42, 2.02, 4.17, 5.43, c ≈
2, 1.304, 0.982, 0.924 for � = 0, 0.2, 0.4, 0.5 respectively. The in-
sets show the unscaled data.

this leads to an observable [45] which essentially measures
how an initial perturbation at the site i = N/2 grows in space
and time. This is straightforward to compute using a linearized
dynamics.

We start with the Hamiltonian equations of motion of the
system,

ẋi = pi, ṗi = fi, i = 1, 2, . . . , N, where (6)

fi = −∂H
∂xi

= −kixi − ν[(xi − xi−1)3 + (xi − xi+1)3]. (7)

Let us consider an infinitesimal perturbation {δxi(0) =
0, δpi(0) = δi,N/2} at site i = N/2 at time t = 0 to any spe-
cific initial condition of positions and the momenta of the
oscillators (X (0) = {xi(0)}, P(0) = {pi(0)}). Our aim is to
study how this initial localized perturbation spreads and grows
through the system both in space as well as in time. In order
to do so, we look at the OTOC D(r, t ) defined as

D(r, t ) = {p(N/2+r)(t ), xN/2(0)}2
PB =

(
∂ p(N/2+r)(t )

∂ pN/2(0)

)2

. (8)

FIG. 11. Heat maps showing the spatio-temporal growth of the
OTOC for a system of size N = 256 in the (a) weak disorder regime
(� = 0.1) and (b) strong disorder (� = 0.6) regime. The map shows
the strength of 〈ln D(r, t )〉 where the average is over 10 000 initial
configurations drawn from an equilibrium distribution at temperature
T = 0.04.

From the linearized form of the equations of motion in Eq. (6),
the evolution of the perturbation is given by

˙δxi = δpi, ˙δpi = −kiδxi − 3ν[(xi − xi−1)2(δxi − δxi−1)

+ (xi − xi+1)2(δxi − δxi+1)], (9)

for i = 1, 2, . . . , N .
The quantity of interest for measuring the spreading of a

localized perturbation given in Eq. (8) can be rewritten as

D(r, t ) = [δp(N/2+r)(t )]2. (11)

To obtain δp(N/2+r)(t ), we need to solve the system of equa-
tions (6) and (9). We solve these ODEs using a fourth-order
Runge-Kutta (RK4) numerical integration scheme with a time
step dt = 0.005 and with periodic boundary condition (x0 =
xN , xN+1 = x1). The initial condition of X (0), P(0) is cho-
sen from the equilibrium Gibbs distribution, ρ(X (0), P(0)) =
e−βH/Z , where Z = ∫

dX dP e−βH is the partition function.
For our nonlinear model, this initial condition can easily
be generated by connecting all sites to the Langevin heat
baths at the same temperature T . In this way, the system
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FIG. 12. A plot of 〈ln D(r, t )〉/2t with time t for � = 0.1 and at
different values of r. The inset shows a linear behavior of tr with r,
for which D(r, tr ) = 1, and a solid red line is the best linear fit. Here
T = 0.04.
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FIG. 13. Similar to Fig. 12, but for � = 0.6.

equilibrates very fast and the distribution of {xi, pi} follows
the equilibrium Gibbs distribution.

For a chaotic system, it is expected that the signal should
arrive at the site r at a time tr = r/c, where c gives the
speed of chaos propagation [we define the arrival time through
D(r, tr ) = 1]. At long times the signal would eventually
grow exponentially with time with Lyapunov exponent λ =
〈ln D(r, t )〉/2t . It is to be noted that 〈· · · 〉 denotes the av-
erage over equilibrated initial conditions (X (0), P(0)) and
disorder realizations. For a given disorder realization, the
quantities (c, λ) which characterize chaos propagation depend
on initial conditions, and we thus study the averaged quantity
〈ln D(r, t )〉.

In Figs. 11(a) and 11(b) we display heat maps showing the
space-time evolution of 〈ln D(r, t )〉 in the weak and strong
disorder regimes respectively for a chain of size N = 256.
Unlike the quantum case, here we do not see (even at early
times) any signature of logarithmic growth in the strong
disorder case. We see ballistic propagation in both cases with
a notable difference in the magnitude of the speed and the
Lyapunov exponent.

Figure 12 shows a plot of 〈ln D(r, t )〉/2t with time t at
different values of r for � = 0.1. The quantity 〈ln D(r, t )〉/2t
gives the Lyapunov exponent λ in the limit t → ∞. The
numerical data are averaged over 104 such equilibrated initial
conditions at a temperature T = 0.04. At large time t , the
curves for different r saturate at a value λ = 0.046. Next, we
define tr as a time at which the Lyapunov exponent vanishes,
i.e., D(r, tr ) = 1. The inset in Fig. 12 shows a plot of tr vs
r, and a solid line is the best linear fit. From the slope of
this fit, the speed of growth of the perturbation is given by
c = 1/8.243 � 0.1213. Figure 13 shows a similar plot for
higher disorder � = 0.6. Here we found λ = 0.0352 and
the speed c = 1/13.62 � 0.0734. To summarize, from our
simulations we estimate (c, λ) ≈ (0.1213, 0.046) for � = 0.1
and (c, λ) ≈ (0.0734, 0.0352) for � = 0.6 at T = 0.04 and
N = 256. We see that, as one increases disorder strength, both
the butterfly velocity and Lyapunov exponent decrease. Note
that the Lyapunov exponents are somewhat larger than the
ones reported in Fig. 8 in Sec. III. This is because of the
smaller system size studied there (N = 16).

VI. CONCLUSIONS AND OUTLOOK

We studied the transport properties of a nonlinear chain
with weak and strong disorder, and looked for signatures of
classical many-body localization. From our numerical studies
of the nonequilibrium steady state, we find an interesting
crossover behavior whereby the system-size scaling of con-
ductivity (κN ) is qualitatively different above and below a
characteristic disorder (�c), that depends on temperature as
well as the coupling strength to the baths. We find that the
finite-size effects in the thermal conductivity are consistent
with boundary effects. On the one hand, there is a regime
of weak enough disorder where the system can be viewed as
thermal resistors in series: one for the length of the oscillator
chain and the others for the couplings between the ends of
the chain and the heat reservoirs. In this regime the boundary
resistances suppress the measured thermal conductance. On
the other hand, at low enough temperature the nonlinearity and
thus the chaos are weak, and for strong enough disorder the
system can be approximately realized as linearized, resulting
in Anderson localized modes. In this regime short chains
can be viewed as having two parallel channels for thermal
conduction: one directly from reservoir to reservoir via the
localized modes of the chain and the other through the weakly
chaotic diffusive transport within the bulk of the chain. In
this regime the extra conductance via the localized modes
enhances the measured thermal conductance of short chains.

Our finite-size scaling analysis leads to estimates of the
thermodynamic limit conductivity κ∞, and we find evidence
that for strong disorder κ∞ is a function of the scaled
variable �/T . Our data are described well by the form
κ∞ ∼ e−B| ln(C�/T )|3 which is consistent with Ref. [26] for the
discrete nonlinear Schrodinger equation. As argued in this
reference, our numerical studies also suggest that chaos results
from many-particle resonances rather than a few-particle ones.
The form of κ is quite nontrivial and a similar form for
timescales associated with the spreading of perturbations in
disordered nonlinear media was suggested earlier in [46].
We also investigated the temperature profile in NESS, and
for strong disorder and low temperatures we found hints of
steplike profiles, a feature that is expected in systems with
localization [38,39].

We do not see signatures of the weak-strong chaos
crossover in the form of equilibrium correlation functions
which exhibit diffusive scaling in both the weak and strong
disorder regimes, as expected since the crossover is domi-
nated by boundary effects. We find strong non-Gaussianity
which we expect would go away in the long-time limit. A
study of the OTOC in the two regimes shows that chaos
propagation is always ballistic though the butterfly speed
and the Lyapunov exponent are smaller in the strong dis-
order regime. We observed a T 1/2 dependence of the Lya-
punov exponent on temperature for both strong and weak
disorder.

Our study naturally leads to asking similar questions (such
as spread of the perturbations) in models in which the os-
cillators in space are coupled even in the absence of non-
linearity. This could provide more insight into many-body
localization transition in classical systems. Future work also
includes understanding transport and OTOC in a model where
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disorder has a fractal pattern [8], which has been proposed
as the closest classical analog to many-body localization.
Needless to mention, a rigorous understanding of the transport
mechanism at ultralow temperatures in a nonlinear disor-
dered many-body classical system remains an interesting open
problem.

ACKNOWLEDGMENTS

We thank F. Huveneers and W. De Roeck for many
useful discussions and for pointing out errors in an earlier
analysis. We also thank C. Dasgupta for useful discussions.
Manoj Kumar would like to acknowledge support from an
ICTS postdoctoral fellowship and the Royal Society–SERB
Newton International fellowship (NIF\R1\180386). A.K. ac-
knowledges support from a DST grant under Project No.
ECR/2017/000634. M.K. gratefully acknowledges the Ra-
manujan Fellowship (SB/S2/RJN-114/2016), Early Career
Research Award (ECR/2018/002085), and Matrics Grant
(MTR/2019/001101) from the Science and Engineering Re-
search Board (SERB), Department of Science and Technol-
ogy, Government of India. A.D. and A.K. would like to
acknowledge support from the project 5604-2 of the Indo-
French Centre for the Promotion of Advanced Research
(IFCPAR). A.D., A.K., and M.K. acknowledge support of
the Department of Atomic Energy, Government of India,
under Project No. 12-R&D-TFR-5.10-1100 and would also
like to acknowledge the ICTS program on “Thermaliza-
tion, Many body localization and Hydrodynamics (Code:
ICTS/hydrodynamics2019/11)” for enabling crucial discus-
sions related to this work. D.A.H. is supported in part by
a Simons Fellowship and by (USA) DOE Grant No. DE-
SC0016244. The numerical simulations were performed on
a Mario HPC at ICTS-TIFR and a Zeus HPC of Coventry
University.

APPENDIX A: NONEQUILIBRIUM STEADY STATE
OF THE HEAT CURRENT

For our one-dimensional system of N oscillators connected
to two heat baths at its end, the time derivative of energy εl
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FIG. 14. Energy current profiles, 〈 ji〉 versus i, of the system of
size N = 128 at � = 0.5, and T = 0.04. We plot these profiles for
different amounts of time t as specified in panels (a) to (d).
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FIG. 15. Analogous to Fig. 14, but for T = 0.02.

associated with lth particle or oscillator, in terms of current
jl,l−1 from l − 1 site to l , is given as [31]

ε̇1 = − j2,1 + j1,L,

ε̇l = − jl+1,l + jl,l−1 for l = 2, 3, · · · , N − 1,

ε̇N = jN,R + jN,N−1, (A1)
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FIG. 16. (a) The plot of 1/κN − 1/κ∞ versus 1/N (on a log-
log scale) for � < �c(T ), where �c(T = 0.01) � 0.2 and �c(T =
0.04) � 0.4. (b) The plot of κN − κ∞ versus N (on a log-linear scale)
for � > �c(T ). The point symbols are the simulated values for
κN (�, T ), which have been shown only for those N to which the
steady state is obtained. The solid lines are the fits of two different
forms, presented in Eqs. (3) and (4) for � < �c(T ) and � > �c(T ),
respectively.
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where jl,l−1 = 1/2(ẋl−1 + ẋl ) fl,l−1 with fl,l−1 =
−∂U (xl−1 − xl )/∂xl = (xl−1 − xl )3. j1,L and jN,R are the
instantaneous energy current from the left and right reservoirs
into the system, respectively. These are given as j1,L =
fLẋ1 = (−γ ẋ1 + ηL )ẋ1 and jN,R = fRẋN = (−γ ẋN + ηR)ẋN .

In the steady state, if we denote the time average as
〈· · · 〉, Eq. (A1) then demands the equality of current flowing
between any neighboring pair of particles, i.e.,

〈 j1,L〉 = 〈 j2,1〉 = 〈 j3,2〉 = · · · 〈 jN,N−1〉 = −〈 jN,R〉, (A2)

with 〈 jl,l−1〉 = 〈ẋl fl,l−1〉 upon using 〈ẋl−1 fl,l−1〉 = 〈ẋl fl,l−1〉.
Thus, in order to reach the steady state of the system, we
determine the energy current 〈 jl,l−1〉 between all neighboring
pairs of particles, and examine the behavior of 〈 jl,l−1〉 versus
l for different amounts of time. A nonequilibrium steady state
(NESS) is reached when Eq. (A2) holds, i.e., the current
profile of the system, for 〈 jl,l−1〉 or in simple notation 〈 jl〉
versus l , is showing essentially a flat behavior.

In Fig. 14, we show the current profiles of the system of
size N = 128 and for a particular disorder sample at � = 0.5,
and at T = 0.04. We compute these energy currents indepen-
dently for various values of time, as mentioned in panels (a)
to (d). Notice from Fig. 14 the scale of fluctuations in energy
current, flowing between each neighboring particle, which
decays as the time t is raised, and eventually a steady state
is reached in time t of the order of 108 as seen in panel (d).
In order to check the effect of changing the disorder sample
on relaxation, we repeated this same analysis for different
disorder realizations drawn from the same � value, and found
that a steady state is reached in typically the same order of
relaxation time teq. Therefore we emphasize that the relaxation
time does not depend upon a disorder sample. Instead, it
depends on parameters like N , �, and T .

With lowering T , teq increases rapidly as shown in a
Fig. 15, where we plotted the energy currents for the same
values of N = 128 and � = 0.5, but at T = 0.02. See panel
(d) of this figure, which is demonstrating the steady state in
t of O(109). Comparing Figs. 14 and 15, the relaxation time
teq increases about 10 times in lowering the temperature T =
0.04 to T = 0.02. Thus, it is the reason that at much lower
temperatures T � 0.01 we use teq � 1011. With this procedure
of reaching a steady state, we then started our measurement
to compute NESS averaged heat current and also averaged it
over several disorder samples.

APPENDIX B: FINITE-SIZE SCALING CORRECTIONS
OF THE THERMAL CONDUCTIVITY

To look for any dominant finite-size corrections in the
scaling of conductivity given in Eqs. (3) and (4), we replot
some of the data of Fig. 2 in different manners, as shown in
Fig. 16. In particular, we plotted the residual-like quantities
1/κN − 1/κ∞ against 1/N for the weak disorder � < �c(T ),
and κN − κ∞ against N (on a semilog scale) for the strong
disorder � > �c(T ). The point symbols denote the simulated
values, whereas solid lines are the fitting lines. In panel
(a) such lines are linear fits, representing 1/κN − 1/κ∞ ∼
1/N , while the lines in panel (b) are exponential fits of the
form κN − κ∞ ∼ exp(−N/ξ ). Clearly, the fits in both panels
agree very well to the simulated points, implying that our
data do not show the presence of any finite-size scaling
corrections. Hence, Eqs. (3) and (4), respectively, for � < �c

and � > �c precisely describe the system size scaling of
conductivity κN .
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