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Correlation function approach for diffusion in confined geometries
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This paper describes a formalism for extracting spatially varying transport coefficients from simulations of a
molecular fluid in a nanochannel. This approach is applied to self-diffusion of a Lennard-Jones fluid confined
between two parallel surfaces. A numerical grid is laid over the domain confining the fluid, and fluid properties
are projected onto the grid cells. The time correlation functions between properties in different grid cells
are calculated and can be used as the basis for a fitting procedure for extracting spatially varying diffusion
coefficients from the simulation. Results for the Lennard-Jones system show that transport behavior varies
sharply near the liquid-solid boundary and that the changes depend on the details of the liquid-solid interaction. A
quantitative difference between the reduced and detailed models is discussed. It is found that the difference could
be associated with assumptions about the form of the transport equations at molecular scales in lieu of problems
with the method itself. The study suggests that this approach to fitting molecular simulations to continuum
equations may guide the development of appropriate coarse-grained equations to model transport phenomena at
nanometer scales.
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I. INTRODUCTION

The properties of fluids in confined geometries, such as
nanochannels, pores, or a lubricated region between two in-
terfaces, are of considerable scientific and technical interest.
Transport phenomena in geometries with dimensions that
are within an order of magnitude of the size of individual
molecules [i.e., ∼O(1) nm] are important in understanding
many biological [1], manufacturing [2], energy storage [3],
and environmental systems [4]. However, formidable theoret-
ical challenges remain in understanding transport behavior in
confined geometries. The conventional framework of molec-
ular simulation is limited by the challenge of establishing
experimentally relevant solution conditions and the represen-
tation of local chemical potentials in confined heterogeneous
environments [5–9]. A single simulation may require hun-
dreds of thousands of atoms to simulate the behavior of even
relatively simple systems. Furthermore, because the systems
are large, many slow timescales (i.e., collective phenomena)
begin to appear in them and these can require very long
simulations in order to obtain good statistics on their behavior.

Alternatively, continuum-based approaches can be more
attractive for simulating such confined geometries. These
methods rely on integrating out the fast timescales at the
molecular scale. However, under nanoconfinement many of
the timescales and length scales become coupled (e.g., the
fundamental assumption of infinitesimally small molecular
constituents breaks down) and molecular detail becomes sig-
nificant. Specifically, the notion that fluid properties such
as density and viscosity are uniform everywhere in the sys-
tem and that hydrodynamic fields are varying slowly over
dimensions that are large compared to individual molecules

are no longer valid assumptions. Nevertheless, continuum
approaches have the advantage that it would be possible, in
principle, to simulate systems that are clearly beyond the
capabilities of direct atomistic simulation, provided contin-
uum theories that are enhanced with molecular descriptors are
formulated.

Previous simulations of fluids in confined geometries have
indicated that behavior of the fluid will depart from the bulk
liquid when geometries approach the scale of a few molecules
[10–13]. Liquids are known to become more structured near
any surface. Additionally, the chemical properties of the
surface, such as the charge state, can further complicate the
coupling between the fluid and the surface at the molecular
scale and can be expected to alter the mechanical and transport
properties of the fluid over short distances. In a nanoconfined
geometry, where essentially all fluid molecules are influenced
by an interface, these altered properties will dominate the
behavior of the system. A large body of simulation work sup-
ports this notion [7,14–16]. Fluids near surfaces are markedly
different from the bulk and these differences can extend over
many molecular diameters [13,17–20]. Furthermore, charge
accumulation and other physicochemical properties of the
surface can alter the excess chemical potential of species in
the vicinity of the surface, resulting in vastly different macro-
scopic behavior than that experienced under bulk conditions.
To this end, completely unexpected dynamic behavior (e.g.,
viscoelasticity and diffusivity) that is dependent on surface
and solution chemistry has been observed for aqueous solu-
tions and hydrocarbons [18,21–25].

To date, most studies of the microscopic basis of transport
have focused on the properties of bulk fluids in a regime
where it is possible to define a fluid volume element that
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is much larger than the dimensions of individual molecules.
The original theories developing the correlation function ex-
pressions for transport coefficients, such as those of Green
[26,27] and later Kubo [28] and Zwanzig [29] relied on the
concept of using a plane-wave expansion of fluctuations and
taking the limit that the wave number goes to zero (i.e., an
infinite system). More recently, Gao and Limmer have used
large deviation functions to generate sampling protocols to
enhance convergence of transport coefficient calculations for
a system far from equilibrium [30,31]. This approach is based
on a generating functional that is used to construct biased
sequences of trajectories that can be used to extract transport
coefficient values. An advantage of this approach is that it can
be generalized to include nonlinear responses but at this time
the method is still restricted to uniform systems.

A different approach was taken by Español et al. [32–34],
who looked at projecting fluctuations onto finite element basis
functions. However, this work still required finite elements
that were large enough to minimize the effects of trouble-
some surface terms due to interactions at the boundary with
other grid cells. This condition is equivalent to a requirement
that the grid cells should be much larger than the scale of
individual molecules. Although the use of a numerical grid
opened up the possibility of incorporating spatial variability,
the approximations and assumptions required to achieve an
analytically tractable result limited its applicability to uniform
systems. Pu et al. [24] directly targeted nonuniform systems
and developed a theory for determining spatially varying
diffusion coefficients in confined geometries by evaluating
the mean square displacement of molecules in slabs parallel
to the surface. Unfortunately, their method relies heavily on
the connection between the mean square displacement and
diffusion coefficient (i.e., the Einstein relation), limiting its
applicability for other types of transport.

Transport phenomena at small scales have also been stud-
ied using fluctuating hydrodynamics, originally proposed
by Landau and Lifshitz [35]. This can be used to include
random fluctuations, associated with the discrete molecu-
lar nature of fluids, in dissipative contributions to fluxes.
The fluctuations are chosen so as to be consistent with the
fluctuation-dissipation theorem. While intriguing, fluctuating
hydrodynamics based approaches [36,37] that were applied
to confined geometries such as nanochannels or pores do not
reflect (i) the unique and anomalous physicochemical nature
of confined fluids and (ii) the relation between constitutive
relations and boundary conditions while maintaining a frame-
work similar to the continuum transport equations (i.e., a
partial differential equation form).

Previous work by one of us [38] looked at the use of
basis functions restricted to the cells of a numerical finite
volume grid to calculate localized transport properties. This
use of grid cells resembles the finite element approach taken
by Español et al., but unlike them we focused specifically on
situations where the conditions for the hydrodynamic limit
do not apply. As an illustrative calculation, the concentration
field of a diffusing species in a model one-dimensional (1D)
system was projected onto the cells of an evenly spaced
grid overlaying the simulation. Correlation functions of the
concentration in different grid cells were calculated from the
simulations and the correlation matrix formed by integrating

these functions over all time could be related to the spatially
varying diffusion operator for the system. This calculation was
shown to work for small systems but is probably not practical
for realistic atomic or molecular fluids in three dimensions
(3D). The extension of this work to realistic models of liquids
is the focus here.

This paper will look at fitting the diffusion operator directly
to the correlation functions instead of using their integrals.
This approach is more complicated but it eliminates some
major problems, the main one being the need for sufficiently
long simulations to ensure the complete decay of all correla-
tion functions. Fitting the time correlation functions directly
allows one to ignore the long time tails, which can reduce
the computational burden considerably. The general approach
proposed here can also be applied, at least in principle, to
more complicated transport and flow models as well as to
more complicated fluids. Important examples are electrolyte
solutions confined between mineral surfaces or in a porous
component of an energy storage device. Flow models might be
extended to contain nonlocal expressions for the constitutive
relations, electrostatic forces between dissolved species and
surface charges, and other couplings between hydrodynamic
fields such as concentration, velocity, and temperature.

II. MATHEMATICAL FORMULATION

A. Fluctuation-based fitting formalism

This section will provide a brief review of a general method
for connecting correlation functions constructed from grid
cells to nanoscale hydrodynamic equations. This formalism
is similar to other approaches [39–41], although most of
these studies have focused on projecting fluids onto plane
waves [42–45]. Correlation functions can be constructed by
taking the projections of fluid properties onto the cells of a
structured grid, such as the ones used for finite volume or
finite element simulations of fluid flow, and then calculating
the correlations of different properties for different grid cells
at different times. Examples of fluid properties consist of the
density, velocity, temperature, and concentration. If the cells
are small enough, these properties will fluctuate significantly
as a function of time, even for a system in equilibrium, and
the correlation functions of these fluctuations can be used
to determine properties of the governing equations for the
system.

Assume that the fluctuations are small enough that the
hydrodynamic evolution operator describing the decay of
such fluctuations is linear and that it has no explicit time
dependence. The system obeys an equation of the form

∂X

∂t
= LX, (1)

where X is a collection of continuum fields and L is a linear
operator. The discretized form of Eq. (1) is

∂X

∂t
= L · X + B, (2)

where X is a vector of coefficients and L is a constant
matrix corresponding to the linearized operator describing the
behavior of the small fluctuations. The vector B is a constant
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vector that may appear after applying boundary conditions to
the discrete set of equations. Performing a Laplace transform
on Eq. (2) and solving for X (z) gives the algebraic equation

X (z) = 1

z − L
· X (t = 0) + 1

z(z − L)
· B. (3)

The real-time equivalent of Eq. (3) is

X (t ) = etL · X (t = 0) + (etL − 1) · L
−1 · B. (4)

The inverse of L in Eq. (4) can potentially cause problems

if the quantity represented by X is conserved. In this case, L
will contain a zero eigenvalue. However, in order for X to be
conserved, the fluxes into and out of the system must vanish
and this will mean that B is zero. Furthermore, as shown
below, even in the case that B is nonzero, the term will drop
out if X represents fluctuations about the mean.

Let Xi(t ) be the ith component of X (t ). If the Xi(t = 0) are
taken from an ensemble of fluctuations in the system, the time
correlation functions of the Xi have the form [38,41]

〈Xi(t )Xj (t = 0)〉 =
∑

k

[eLt ]ik〈Xk (t = 0)Xj (t = 0)〉

+
∑

k

[(eLt − 1) · L
−1

]ik〈BkXj (t = 0)〉.

(5)

Defining the equilibrium set of fluctuations as

�i j = 〈Xi(t = 0)Xj (t = 0)〉
and the time correlation functions as

Ci j (t ) = 〈Xi(t )Xj (t = 0)〉
then the time correlation functions, equilibrium fluctuations,

and the matrix L are all related via the expression

C(t ) = eLt · �. (6)

Since B is a constant, the last term in Eq. (5) drops out if the
fluctuations represented by X (t ) have zero mean.

The Laplace transform of this equation is

C(z) = 1

z − L
· �

and the limit of z → 0 gives

C(z = 0) = −L
−1 · �. (7)

The value of a Laplace transform at z = 0 is equivalent to the
integral from t = 0 to infinity of the corresponding real-time
function, so Eq. (7) provides a relation between the linear

evolution operator, the fluctuation matrix �, and the integral

over all time of the correlation matrix C. Both C and � can
be measured from simulations and so L could, in principle, be
calculated using Eq. (7). This was explored in our previous
work [38]. Because calculating all correlation functions accu-

rately enough to get reliable values for the matrix C(z = 0)
was not feasible, a fitting procedure using only correlation
functions between nearby grid cells was developed. These

correlation functions tended to have large amplitudes and
faster timescales so that values for the correlation with good
statistics could be obtained using relatively short simulations.
For the simple one-dimensional system investigated in the
previous work, this was sufficient to recover an accurate
representation of the spatially varying diffusion coefficient.

However, this approach had several features that made it
problematic for realistic simulations involving molecular flu-
ids. First, the original model problem consisted of a 1D cellu-
lar automata that could be easily simulated for extremely long
times, allowing accurate enough simulations of the correlation
functions to obtain reliable values for their time integrals.
Second, the need to obtain reliable values for the integrals
also implied that all measured correlation functions had to be
simulated for long enough periods that they had effectively
decayed to zero. Finally, the fitting procedure required the

evaluation of the inverse of the evolution operator L. For
conserved quantities, the evolution operator has a zero in its
eigenvalue spectrum that requires additional handling. All of

those features suggested that inferring L directly using Eq. (7)
would not be successful for a 3D system with molecular fluids.

To overcome these difficulties, we developed an approach
to make direct use of Eq. (6). The discrete evolution operator

L is assumed to depend on a collection of parameters, written

as a vector a, that will be determined by a fit of L to a set
of measured correlation functions. The objective function for
this fit has the form

χ (a) =
∑

s

∑
{i, j}

([eL(a)ts · �]i j − C̃i j (ts))2, (8)

where the index s runs over a set of time measurements, {i, j}
is a set of grid cell pairs (indexed by i and j), and the C̃i j are
measured correlation functions. The set {i, j} is a subset of all
possible cell pairs and is restricted in these studies to cells that
are close to each other. In this paper, the adjustable parameters
a in the evolution operator correspond to the values of the
diffusion coefficient matrix in each of the grid cells. For the
slit pore geometry, the grid cell indices are actually triples
i, j, k representing the indices along the x, y, z axes.

Fitting the real-time correlation functions has one major
advantage over the previous method based on integrals of
the Ci j (t ). It is no longer necessary to run the simulations
long enough to accurately simulate the tails of the correlation
functions in order to obtain reliable values for the integrals.
The set of correlation pairs can be cut off at some time value
even if not all correlation functions have decayed to zero;
this has a significant impact on the amount of time that must
be spent in the simulation for good statistics. The tradeoff is
that the simulation must still be run for a long enough period
of time to ensure that the fitted operator accurately reflects
the slower relaxations in the system. These slower timescales
reflect the hydrodynamic parts of the transport.

B. Discretized diffusion operator

The system that is modeled in this work consists of a
channel that is periodic in the x and y directions and bounded
in the z direction by two parallel surfaces. The channel is
rectangular and is overlaid with a regular grid with increments
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�x, �y, �z. Each grid cell has a volume V = �x�y�z and
the faces of the grid cell have areas Ax = �y�z, Ay = �x�z,
Az = �x�y. The most general diffusion equation describing
this system will contain a spatially varying diffusion tensor.
The system is assumed to have no directional variation in the
x and y directions, which implies that the diffusion tensor has
the form

D =
⎡
⎣α 0 0

0 α 0
0 0 β

⎤
⎦. (9)

The tensor is defined at the center of each grid cell, so
each grid cell has two diffusion parameters, αi jk and βi jk ,
associated with it.

The continuum diffusion equation governing this system is

∂c

∂t
= ∇ · D · ∇c

=
[

∂

∂x
α

∂

∂x
+ ∂

∂y
α

∂

∂y
+ ∂

∂z
β

∂

∂z

]
c (10)

with the corresponding time evolution operator

L = ∇ · D · ∇. (11)

The diffusion matrix D depends on position so it does not
commute with the spatial derivatives. The operator L is com-
bined with a zero-flux (i.e., Neumann) boundary condition, no
mass flux perpendicular to the boundary. This is equivalent to
an assumption that particles are neither absorbed nor emitted
by the boundary.

The discretized form of L is created using a finite volume
approach. Conservation of mass requires that the change in
concentration in a grid cell is equal to the sum of the fluxes
into and out of the grid cell through the cell faces. This can be
written as the expression

V [c(t + �t ) − c(t )] = −( fx+Ax + fx−Ax + fy+Ay

+ fy−Ay + fz+Az + fz−Az )�t,

where fx+ is defined as the flux out of the cell at time t through
the face perpendicular to the x axis and located on the + side
of the cell (the direction of increasing x). The remaining fluxes
are defined similarly. In the limit that �t → 0, this reduces to
the ordinary differential equation

V
dc

dt
=−( fx+Ax+ fx−Ax+ fy+Ay + fy−Ay + fz+Az + fz−Az ).

(12)
The concentration in each cell satisfies an equation of this
form. The diffusive flux is the diffusion coefficient times
the gradient of the concentration, where the concentration is
defined at the center of each grid cell. The gradient can be
calculated using a finite difference approach. The gradient
along the x axis can be written as

∂c

∂x
≈ ci+1, j,k − ci, j,k

�x
,

where i, j, k are the indices locating the cell in the grid. This
approximate formula represents the gradient at the midpoint
between the neighboring grid cells at i + 1, j, k and i, j, k.
To calculate the flux at the surface, we take the average of

the diffusion parameters at i + 1, j, k and i, j, k. The diffusive
flux out of the cell at i, j, k through the x+ face is therefore

f i, j,k
x+ = −ci+1, j,k − ci, j,k

�x

αi+1, j,k + αi, j,k

2
. (13)

Combining Eqs. (12) and (13) and expressing the areas of the
faces in terms of �x, �y, �z leads to the following equation:

dci, j,k

dt
= αi+1, j,k + αi, j,k

2

ci+1, j,k − ci, j,k

�x2

+ αi−1, j,k + αi, j,k

2

ci−1, j,k − ci, j,k

�x2

+ αi, j+1,k + αi, j,k

2

ci, j+1,k − ci, j,k

�y2

+ αi, j−1,k + αi, j,k

2

ci, j−1,k − ci, j,k

�y2

+ βi, j,k+1 + βi, j,k

2

ci, j,k+1 − ci, j,k

�z2 (1 − δkN )

+ βi, j,k−1 + βi, j,k

2

ci, j,k−1 − ci, j,k

�z2 (1 − δk1). (14)

The factors of (1 − δk1) and (1 − δkNz ) are included to indicate
which terms drop out due to the zero-flux boundary conditions
at the interfaces. The lack of any constant terms in this
equation confirms the statement in the previous section that
the vector B vanishes in the case of conserved quantities. The

elements of the matrix L can be read directly from Eq. (14).
The dimensions of the grid are assumed to be Nx, Ny, Nz.
Because any triple i, j, k can be mapped to a single index n
and vice versa, the matrix elements of the discretized version
of L can be expressed using the triples as indices. In this

formulation, an element of L can be written as Li, j,k:l,m,n,
where i, j, k maps to the row index and k, l, m maps to the
column index.

C. Problem size reduction

In order to evaluate the objective function, it is necessary
to calculate the matrix

eLt · � (15)

for different values of t . This can be done using the diagonal-
izing transform

� = R
† · L · R,

where � is the diagonal matrix of eigenvalues of L and R is the
corresponding matrix of eigenvectors. The superscript † indi-
cates a Hermitian transpose matrix. Using this transformation,
Eq. (15) becomes

eLt · � = R · e�t · R
† · �. (16)

Since � is diagonal, the exponential in Eq. (16) is easily
evaluated. For a grid consisting of NxNyNz cells, the matrix

R will consist of N2
x N2

y N2
z elements and it will take approx-

imately N3
x N3

y N3
z operations for the diagonalization. For the

calculations described below, the values of Nx, Ny, and Nz

are 30, 30, and 36, respectively, so the dimension of R is
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32 400. This is a large matrix and it is worth considering
how the problem size can be reduced. Fortunately, the slit
pore geometry can be exploited to produce a much smaller
calculation.

The main strategy for reducing the problem size is to make
use of the fact that the system is uniform in the plane parallel
to the solid surfaces. However, it is still important to treat
the system as having a realistic extent in the xy directions
since the behavior of the correlation functions will depend
on these dimensions. From a simulation point of view, it is
desirable that the system is of reasonable size in the xy plane
so that artifacts due to periodic boundary conditions can be
minimized.

The assumption of system translational invariance parallel
to the surface implies that the diffusion components only

depend on the cell index k in the z direction instead of all
three indices i, j, k. The concentrations in each grid cell, ci jk ,
can be written using a plane-wave expansion in the x and y
coordinates

ci jk =
Nx−1∑
l=0

Ny−1∑
m=0

γlmkeI2π il/Nx eI2π jm/Ny . (17)

The symbol I is used to represent
√−1 and γlmk are the

expansion coefficients of the ci jk . Combining Eq. (17) and
the equation of motion [i.e., Eq. (14)] and equating the coeffi-
cients of the exponentials gives the set of coupled equations

∂γlmk

∂t
= αk

�x2

[
2 cos

(
2π l

Nx

)
− 2

]
γlmk + αk

�y2

[
2 cos

(
2πm

Ny

)
− 2

]
γlmk

+ βk+1 + βk

2�z2
(γlm,k+1 − γlmk )(1 − δkNz ) + βk−1 + βk

2�z2
(γlm,k−1 − γlmk )(1 − δk1). (18)

There is no coupling between different values of l and m so this set of equations factorizes into a collection of Nx × Ny blocks
of equations. Each block contains Nz equations. The solution procedure is still based on diagonalizing each block, but instead of
diagonalizing a matrix of dimension NxNyNz the solution can be found by diagonalizing NxNy matrices, each of size Nz. This is
both substantially faster [i.e., O(NxNyN3

z ) vs O(N3
x N3

y N3
z ) operations] as well as requiring much less memory [i.e., O(NxNyN2

z )
vs O(N2

x N2
y N2

z ) values].
For a given l and m, the coupled equations can be written in matrix form as

∂γ lm

∂t
= �lm · γ lm, (19)

where �lm is the matrix of coefficients of the γlmk in Eq. (18). A separate matrix is generated for each set of indices lm. The
corresponding solution is

γlmk (t ) =
Nz∑

q=1

[e�lmt ]kqγlmq(0). (20)

The correlation functions for the concentration can then be written as

〈ci jk (t )clmn(0)〉 =
Nx−1∑
i′=0

Ny−1∑
j′=0

Nx−1∑
l ′=0

Ny−1∑
m′=0

Nz∑
q=1

[e�i′ j′ t ]kq〈γi′ j′qγl ′m′n〉eI2π i′i/Nx eI2π j′ j/Ny eI2π l ′l/Nx eI2πm′m/Ny . (21)

Further progress can be made by evaluating the equilibrium correlations 〈γi′ j′qγl ′m′n〉 in terms of the equilibrium fluctuation

matrix �. Because of the assumption that everything is uniform in the xy plane, the elements of �, �i, j,k:l,m,n, only depend on
the separations i − l and j − m. This implies that they satisfy the relation

�i jq:lmn = �11q:1+l−i,1+m− j,n

for all values of i, j, l, m. The selection of i = 1 and j = 1 as the reference cell is arbitrary and any column of cells could have
been used. The translation property can be used to simplify the expression for the 〈γi′ j′qγl ′m′n〉 in terms of the original matrix

elements of �. The γlmq can be written in terms of the ci jk using the inverse of the discrete Fourier transform. This leads to the
expression

〈γi′ j′qγl ′m′n〉 = 1

N2
x N2

y

Nx−1∑
a=0

Ny−1∑
b=0

Nx−1∑
c=0

Ny−1∑
d=0

�abq:cdne−I2πai′/Nx e−I2πb j′/Ny e−I2πcl ′/Nx e−I2πdm′/Ny

= 1

N2
x N2

y

Nx−1∑
a=0

Ny−1∑
b=0

Nx−1∑
c=0

Ny−1∑
d=0

�11q:1+(c−a),1+(d−b),ne−I2πa(i′+l ′ )/Nx e−I2πb( j′+m′ )/Ny e−I2π (c−a)l ′/Nx e−I2π (d−b)m′/Ny
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= 1

NxNy

Nx−1∑
c=0

Ny−1∑
d=0

�11q:1+c,1+d,nδi′,−l ′δ j′,−m′e−I2πcl ′/Nx e−I2πdm′/Ny . (22)

Substituting Eq. (22) for the 〈γi′ j′qγl ′m′n〉 in the correlation functions [i.e., Eq. (21)] and summing over l ′ and m′ gives

〈ci jk (t )clmn(0)〉 = 1

NxNy

Nx−1∑
i′=0

Ny−1∑
j′=0

Nx−1∑
c=0

Ny−1∑
d=0

Nz∑
q=1

[e�i′ j′ t ]kq�11q:1+c,1+d,neI2π i′(i−l )/Nx eI2π j′( j−m)/Ny eI2π i′c/Nx eI2π j′d/Ny . (23)

Defining the quantity

Di′ j′qn = 1

NxNy

Nx−1∑
c=0

Ny−1∑
d=0

�11q:1+c,1+d,neI2π i′c/Nx eI2π j′d/Ny , (24)

Eq. (23) reduces to

〈ci jk (t )clmn(0)〉 =
Nx−1∑
i′=0

Ny−1∑
j′=0

Nz∑
q=1

[e�i′ j′ t ]kqDi′ j′qneI2π i′(i−l )/Nx eI2π j′( j−m)/Ny . (25)

For a given pair of i′ j′, the diagonalizing transform of �i′ j′ is denoted by R
i′ j′

and the corresponding matrix elements are Ri′ j′
kn .

Combining this definition with the transformation in Eq. (16), the expression for the correlation functions [i.e., Eq. (25)] becomes

〈ci jk (t )clmn(0)〉 =
Nx−1∑
i′=0

Ny−1∑
j′=0

Nz∑
q=1

Nz∑
p=1

Ri′ j′
kq eλ

i′ j′
q t R†i′ j′

qp Di′ j′ pneI2π i′(i−l )/Nx eI2π j′( j−m)/Ny , (26)

where the λ
i′ j′
q are the eigenvalues of the matrix �i′ j′ . This is

the final form of the correlation functions used for computa-
tions.

Equation (26) is the basis for fitting the diffusion parame-
ters using a least squares fitting procedure. The value of the
objective function [Eq. (8)] can be computed directly using
Eq. (26). However, most advanced optimization algorithms
require at least the gradients of the objective function with re-
spect to the fitting parameters. The gradients of the correlation
functions can be computed analytically and corresponding
formulas are given in Appendix A. However, using numerical
gradients was found to be substantially faster than analytic
gradients for the system sizes explored in this work.

The optimization solver used for fitting is based on the
limited memory, variable metric (LMVM) algorithm. This is
part of the TAO optimization package [46], which is supplied
as part of the PETSC suite of high performance numerical
solvers [47,48]. PETSCversion 3.11.1 was used for this work.
The LMVM algorithm requires evaluation of the objective
function and its gradients. Optimizations were performed
using both numerical finite difference gradients and analytic
gradients. For the numerical gradients, an increment of 10−7

was used. The optimization using numerical gradients was
done first and the results were used as a starting point for
an optimization using analytic gradients. In general, using
analytic gradients had only a minor effect on the fit relative
to numerical gradients.

The optimization calculations themselves were run by
parallelizing the evaluation of the objective function and,
when they are used, analytic gradients. The final values for
these quantities were replicated across all processes and the
optimizers were run serially. Most of the computationally
intensive calculations involve multiple nested loops. The par-

allelization strategy consisted of unwrapping the outer loops
into a single long loop, dividing this into equal segments
and assigning each segment to an individual processor, cal-
culating the contributions from each segment independently
and then recombining the contributions using either a call
to an Allreduce or an Allgather function. This is relatively
simple to implement and allows the calculation to be run in
parallel without too much difficulty. An optimization on 96
cores using 11 time points could be performed in a little under
2 h using numerical gradients and in about 7 h using analytic
gradients.

III. SIMULATION DETAILS

The Lennard-Jones fluid was chosen for testing this ap-
proach to extracting spatially dependent transport parameters
from a fluid simulation because (1) the Lennard-Jones fluid is
well characterized in terms of many of its properties and (2)
long simulations can be performed with relatively little effort.
The model and parameters used here are the same as those
used in a previous study of flow in a microchannel [13].

The nonbonding interaction potential for two Lennard-
Jones particles i and j is given by

ui j (ri j ) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

+ u0 if ri j < rc

= 0 otherwise,

where rc is a distance cutoff and the parameters εi j and σi j

are the well-depth and hard-sphere radius. The constant u0 is
chosen so that the potential vanishes at the cutoff distance.

For the simple wall-fluid model explored here, there are
two types of Lennard-Jones particles. The first represents the
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fluid and the second represents particles in the solid material
composing the walls. To form the solid, a bond stretching and
angle bending interaction are needed. Particles in the solid
only interact with each other via the bond stretching and angle
bending interactions, there is no Lennard-Jones interaction
between solid particles. The bond stretching potential has the
form

B(ri j ) = b(ri j − r0)2,

where b is the bond stretching parameter and r0 is the equi-
librium bond distance. The angle bending potential between
three particles i, j, k is

A(θi jk ) = a(θi jk − θ0)2,

where a is the angle bending parameter, θi jk is the angle
formed by particles i, j, k with j at the center of the angle, and
θ0 is the equilibrium bond angle (in this case it is chosen to be
90◦). The solid material is formed from a simple cubic lattice
and bonds only appear between nearest neighbor particles.
The angle bend only forms between two particles i and k that
are both bonded to particle j at a 90◦ angle. A particle in the
interior of the solid participates in 6 bonds and is the center
particle for 12 angle bends.

Lennard-Jones parameters are defined for fluid-fluid and
solid-fluid interactions. Two types of system were investi-
gated, a wetting system and a nonwetting system: these differ
from each other only in the strength of the solid-fluid interac-
tion. The fluid-fluid interaction was set to εFF = 1.0 and the
hard sphere radius for all particles was set to σFS = σFF =
σ = 1.0. For the wetting surface, the solid-fluid interaction
was set to εSF = 1.0 (the same as the fluid-fluid interaction)
and for the nonwetting system the solid-fluid interaction was
set to εSF = 0.25. The stretching and bending parameters
for all simulations were b = 200.0 and a = 10.0 and the
equilibrium bond distance was set to r0 = 1.0. The cutoff in
all simulations was rc = 2.5σ . All particles have the same
mass, m = 1.0.

The simulation size was chosen to consist of a solid slab
consisting of 30 × 30 × 9 particles located in a box of dimen-
sion 30.0 × 30.0 × 45.0 (all units are in terms of ε, σ , and
m). The simulation box extends from z = −22.5 to 22.5 and
the center of the solid slab is set at z = −22.5. Using periodic
boundary conditions, approximately half of the slab is located
on the other boundary at z = 22.5. A channel forms between
the two ends of the simulation cell and is filled with 24 276
fluid particles. Combined with the 8100 solid particles, this
gives a total of 32 376 particles in the simulation. A simulation
of 5 × 105 time steps can be done in a few hours on a system
of this size. For a time step of 0.01 in reduced units (

√
mσ 2/ε),

this corresponds to a simulation of 5 × 103 Lennard-Jones
time periods. If the Lennard-Jones fluid were modeling argon
[49], which would be expected to be a relatively slowly
relaxing liquid, the simulation would be 1078 ns long. This is
a long simulation for a realistic molecular fluid using classical
potentials (e.g., water between two mineral surfaces), but
still within the capabilities of modern simulation codes for a
comparable number of particles.

All liquid particles were labeled as belonging to either class
“0” or class “1” (the labels have no effect on the physical

FIG. 1. Snapshot of an MD simulation with overlaid grid. For
clarity, the linear dimensions of the grid cells are twice as big as those
used in the simulation. Fluid particles are colored purple (dark) and
white (light), representing the labels “0” and “1.”

properties of the particles) with half the particles assigned the
label “0” and the other half the label “1.” The labels do not ef-
fect the trajectories themselves but they provide a mechanism
for tracking particle self-diffusion. Concentrations represent
the total number of particles with label “1” in a grid cell.
All correlation functions represent fluctuations in the value
of this concentration variable between different grid cells.
A snapshot of the simulation with the overlaid grid and the
labeled fluid particles is shown in Fig. 1.

The simulations were prepared by equilibrating the system
using standard techniques for an extended period. The density
at the center of the channel after equilibration was 0.744
for the wetting system and 0.772 for the nonwetting system.
The target temperature for the simulations is 0.722. After
equilibration, the actual simulations used for collecting data
were run as constant energy simulations. For the first step
of each simulation, the velocities are randomly reset from a
Maxwell-Boltzmann distribution corresponding to the target
temperature of 0.722. The average temperature for the sim-
ulations was about 0.03 reduced units higher than the target
temperature.

The correlation matrix C̃i jk:lmn(t ) was calculated for all
adjacent pairs of grid cells (all cells sharing either a face, an
edge, or a corner). A list of cell pairs is provided in Table I.
Correlation functions for pairs are collected individually dur-
ing the simulation; these are then averaged in the xy plane
before performing the optimization. Displacements parallel
to the surfaces are assumed to be equivalent with respect to
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TABLE I. Listing of all index pairs used for calculating cor-
relation functions. NN is nearest neighbor, NNN is next-nearest
neighbor.

Description Index pairs

Autocorrelations {i jk : i jk}
NN, parallel {i jk : i ± 1, jk}, {i jk : i, j ± 1, k}
NN, perpendicular {i jk : i j, k ± 1}
NNN, parallel {i jk : i ± 1, j ± 1, k}
NNN, perpendicular {i jk : i ± 1, j, k ± 1}, {i jk : i, j ± 1, k ± 1}
Corner {i jk : i ± 1, j ± 1, k ± 1}

ordering, so that the correlation function corresponding to the
pair {i jk : i + 1, jk} is equivalent to {i + 1, jk : i + 2, jk}.
Pairs of correlation functions that can be mapped to each
other by 90◦ rotations in the xy plane were also considered
to be equivalent. Displacements in the z direction were not
considered to be equivalent and the functions Ci jk:i j,k+1 were
treated separately from Ci j,k+1:i jk . After averaging, this left
approximately 9Nz unique correlation functions. The in-plane
averaging implied that a minimum of NxNy functions con-
tribute to each average and this could potentially be increased
by a factor of 4 by rotational symmetry.

Because each correlation function used in the curve fits
is an average over many individual functions, the objective
function [i.e., Eq. (8)] was modified to

χ (a) =
∑

s

∑
{i, j}

wi j ([e
L(a)tτ · �]i j − C̃i j (ts))2, (27)

where the wi j are weights that reflect the relative number
of individual functions contributing to the averaged function.
The weights can easily be calculated as a part of the averaging
process.

The correlation functions were sampled once every 100
time steps or, equivalently, once per Lennard-Jones time unit.
The density profile for the fluid and solid was also calculated.
Based on a preliminary calculation of the density profile, the
interface between the solid and liquid phases was determined
to be at the values z = ±18.1125. The number of grid cells in
each dimension was chosen to be Nx = 30, Ny = 30, Nz = 36,
which leads to nearly cubic cells with all dimensions close to
1.0. The correlation functions were evaluated using a standard
sliding window scheme [50] to guarantee that maximal infor-
mation was extracted from the simulation. Correlation values
up to t = 100 were collected.

The equilibrium fluctuation matrix � is given by the value
of the correlation functions at time t = 0. However, since
not all correlation functions are measured, some parts of �

are unknown. If the fluctuating quantities are not conserved,
then it is likely that the unmeasured values can be set to
zero if the cell pairs are sufficiently far apart. However, for
conserved quantities, the equilibrium cross correlations have
finite values. This can be seen in a simple case consisting of
a box in which a fixed number of particles are distributed,
completely at random and with a uniform distribution, over
multiple trials. A uniform grid is laid over the box. The
total number of particles in the box is fixed, but the number
of particles in any grid cell may vary. If we designate the

deviation in the number of particles from the average value
for a grid cell i as δni, then the conservation of particles can
be written as ∑

i

δni = 0.

Taking the square of this expression and then averaging over
all realizations gives∑

i

〈δniδni〉 +
∑
i 
= j

〈δniδn j〉 = 0. (28)

Because the particles are distributed randomly with a uniform
distribution, it follows that the 〈δniδni〉 are all equal. In this
example, the particles are noninteracting so given that a grid
cell i holds Ni particles, the probability distribution of particles
in the remaining grid cells j is the same, no matter what the
separation distance is between i and j. It follows that the cross
terms in Eq. (28) are all equal. This leads to the relation

NT 〈δniδni〉 + NT (NT − 1)〈δniδn j〉 = 0, (29)

where NT is the total number of grid cells. Equation (29)
can be solved easily to write the equilibrium autocorrelations
in terms of the cross correlations. Since the autocorrelations
must be positive, the cross correlations are negative and
smaller by a factor of 1/(NT − 1).

Equation (29) suggests a way of approximating the un-

measured elements of �. The sum of all matrix elements in
� must be equal to zero. If the unmeasured values represent
grid cells that are separated from each other by a reasonable
amount, the value of the cross fluctuations can be assumed to
be the same for all unmeasured correlations and this value can
be determined by solving the equation∑

{i, j}
(�)i j + (NT − NM )〈δniδn j〉 = 0

for 〈δniδn j〉, where NM is the total number of measured values.
If the minimal separation distance of the unmeasured grid
cells is large enough, then it is likely that the effects of any
local structuring will have died out and the assumption that the
unmeasured values are the same will be increasingly accurate.
In these simulations, the minimal separation is one grid cell.

IV. RESULTS AND DISCUSSION

A. Density and diffusion coefficients

The wetting and nonwetting surfaces investigated in this
paper produce different profiles for the liquid density near
the walls. The density profiles are shown in Figs. 2 and
3. The wetting system (Fig. 2) shows a highly oscillatory
profile that is rapidly damped with increasing distance from
the solid surface, while the nonwetting system (Fig. 3) shows
much weaker oscillations that appear to be superimposed on a
monotonically increasing density profile. Both profiles show a
distinct gap between the fluid density and solid density where
the density is very close to zero, making it possible to define
the fluid-solid interface fairly precisely. The location of the
fluid-solid interface at z = ±18.1125 is based on this gap and
is limited in resolution by the size of the bins used to calculate
the density profile. The boundary region extends about 5σ
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FIG. 2. Density profile of liquid (red circles) and solid (blue
squares) phases as a function of z for a wetting surface. Position is
measured in units of σ . Only half of the channel is shown due to
symmetry.

from the wall for the wetting system and about 4σ for the
nonwetting system.

The correlation functions were calculated at intervals of 1.0
Lennard-Jones time units up to a maximum time of 100.0 but
not all points were used in the fit. Both low sampling fits, using
every 10th point, and high sampling fits, using every second
point, were performed. The low sampling fits required much
less computation to evaluate the objective function and also
appeared to weigh the short time behavior of the correlation
functions less heavily than the higher sampling fits. This is
important since the proposed functional form of the diffusion
operator, Eq. (11), does not show desirable performance in

FIG. 3. Density profile of liquid (red circles) and solid (blue
squares) phases as a function of z for a nonwetting surface. Position
is measured in units of σ . Only half of the channel is shown due to
symmetry.

FIG. 4. Diffusion parameters α (red circles) in the parallel di-
rection and β (blue squares) in the perpendicular direction for the
wetting system as a function of position z. The results of three
independent simulations are shown.

capturing the short time behavior of the correlation functions
seen in the simulations.

Plots of the α and β components of the diffusion tensor as
a function of z from the low sampling fits are shown in Figs. 4
and 5 for the wetting and nonwetting systems. To demonstrate
the uncertainties, the results of three separate simulations are
shown. The curves should also be symmetric about z = 0 and
this can also be used to assess uncertainty. Both the wet-
ting and nonwetting systems show variations in the diffusion
tensor near the solid-liquid boundaries, although the curves
exhibit a significant amount of noise. For the wetting system,
both components of the diffusion tensor drop off substantially
near the boundary, with the perpendicular component (β)

FIG. 5. Diffusion parameters α (red circles) in the parallel di-
rection and β (blue squares) in the perpendicular direction for the
nonwetting system as a function of position z. The results of three
independent simulations are shown.
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showing a larger drop. This is in accord with the density plot in
Fig. 2, which suggests much more structuring of the fluid near
the boundary. This result is similar to what was seen in studies
by Simonnin et al. [18] and Marry et al. [25] that exhibited
lower values of the self-diffusion coefficient in the vicinity of
a clay-water boundary. Although no quantitative assessment
of ordering in the plane parallel to the surface was made in
our simulations, it is likely that such ordering is less extensive
than ordering perpendicular to the surface. This may account
for the asymmetry between the two components.

The results for the nonwetting system also show deviations
from bulk behavior near the boundary. However, these are
the opposite of the deviations seen for the wetting system.
Instead of decreasing near the boundary, both components of
the diffusion tensor increase. This can also be rationalized in
terms of the density profile; the decreased fluid density near
the solid would lead to the corresponding increase in the self-
diffusion constant (i.e., “rarefied” effects). Both components
of the diffusion tensor also have roughly the same values,
except for the cells immediately adjacent to the boundary,
which is compatible with the relatively minimal structuring
of the fluid near the boundary. This behavior is in accordance
with simulations of the vapor-liquid interface of water by Liu
et al. [24]; the vapor-liquid interface resembles the nonwetting
Lennard-Jones interface with respect to a decrease in fluid
density near the surface.

Although these plots are qualitatively appealing, they are
not quantitative. To check the accuracy of these fits, the self-
diffusion coefficient in the center of the system was calculated
by selecting all particles in a slab 1.0 σ units wide in the
center of the system at t = 0 and calculating their mean
square displacements for 20.0 Lennard-Jones time units. At
the end of this period, a new set of particles from this band
was selected and followed for another 20.0 time units. This
calculation was repeated until the end of the simulation and
results from all individual trajectories were combined into
single curves for diffusion in the parallel and perpendicular
directions. Only particles from the center of the system were
selected as these were expected to remain in a region of
uniform density over the 20.0 time unit interval.

The mean square displacements in the direction parallel
and perpendicular to the surface are shown in Fig. 6 for the
wetting and nonwetting systems. The plots are normalized so
that the slope is equal to the diffusion coefficient. Both the
parallel and perpendicular components of diffusion are almost
identical, which matches the observation that the density
profiles are quite flat in the center of the channel and hence
would be expected to be isotropic. The diffusion coefficient
for the wetting system (≈0.065) is a bit higher than for
the nonwetting system (≈0.056), which again matches the
observation that the density in the center of the nonwetting
system is slightly higher than for the wetting system. Because
the density at the center of the simulation cell is constant over
an extended region and the displacements measured over the
period of 20.0 time units are small (less than 2σ ), the displace-
ments are taken as representing the true value of the diffusion
coefficient in the center of the channel. The fitted values of
α and β in the center of the channel are about 0.09 and 0.08
for the wetting and nonwetting systems, respectively. This is
close to a 50% error relative to the previously noted values of

FIG. 6. Mean square displacement as a function of time in the
directions parallel and perpendicular to the surface for both the
wetting and nonwetting systems. The plots have been scaled so that
the slope is equal to the diffusion constant.

0.065 and 0.056. For comparison, previous work on the simple
1D problem [38] had the advantage that, by construction,
the proposed diffusion equation was an accurate description
of the underlying dynamics; the fit was able to reproduce
the spatially varying diffusion coefficient almost identically.
However, for the current system, it appears that a diffusion
equation with a spatially varying diffusion coefficient is not
sufficient.

B. Analysis of correlation functions

The errors in the diffusion coefficients can be better under-
stood by comparing the correlation functions measured from
the simulations with correlation functions generated from

Eq. (6) using the operator L based on the fitted values of the
α and β. The correlations coming from the simulation are of
interest in themselves and clearly show the influence of fluid
structure on transport in the neighborhood of the surface. Fig-
ure 7 compares grid cell autocorrelation functions from both
the simulation and the fits for grid cells immediately adjacent
to the boundary and at the center of the channel [note that
autocorrelation functions correspond to Ci jk:i jk (t )]. The relax-
ation of the grid cells close to the boundary is much slower
than for grid cells in the center of the system. It is also clear
that the fitted correlation functions, while qualitatively similar
to the simulations, have significant quantitative differences.
In particular, the fitted functions relax much more slowly than
the simulations at shorter times. Conversely, the simulations
appear to relax more slowly at longer times, at least near the
surface. The faster relaxation of the fitted correlation functions
at longer times is consistent with an overestimation of the
diffusion coefficient by the fitting procedure. The differences
between the fitted forms and the simulations appear to reflect
deficiencies in the assumed form of the diffusion equation at
short timescales and length scales and not a failure to capture
behavior due to confinement of the fluid. For comparison, the
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FIG. 7. Autocorrelation functions as function of time for a cell
at the edge (i.e., adjacent to the boundary) of the system and a cell
in the center. Plots for both original simulation data and calculations
from low sampling fits are shown.

simulation of a purely periodic system with no solid boundary
showed that the correlation functions for the periodic system
very closely match the correlation functions calculated at the
center of the confined channel.

Similar behavior is seen for correlation functions of the
nearest neighbors in the parallel and perpendicular directions.
Plots of these correlation functions are shown in Figs. 8 and
9. Note that the response for these cross-correlation functions
between different grid cells is about an order of magnitude
smaller than the response of corresponding autocorrelation
functions. Both plots show behavior that qualitatively resem-
bles Fig. 7 with respect to the comparison between simulation
and the fits. The short time response is faster for the simula-

FIG. 8. Correlation functions between nearest neighbors in the
direction parallel to the surface as a function of time for cells at the
edge of the system and cells in the center. Plots for both original
simulation data and calculations from low sampling fits are shown.

FIG. 9. Correlation functions between nearest neighbors in the
direction perpendicular to the surface as a function of time for cells
at the edge of the system and cells in the center. Plots for both original
simulation data and calculations from low sampling fits are shown.

tions and the longer time decay seems faster for the fits. This
suggests that the proposed evolution operator represented by
Eq. (11) lacks some essential physics despite the flexibility to
use different values of the diffusion tensor at each value of z.

For the low sampling fit, the first value of the correlation
function that actually influences the fit is at t = 10.0 (the
value at t = 0 is completely determined by the fluctuation

matrix �), so the short time behavior is not contributing to
the values of the diffusion tensor. For the higher sampling fits,
where the interval between sampling points is 2.0, the short
time behavior is expected to have a much bigger influence
on the optimization and this indeed appears to be the case.
Plots of the diffusion tensor for the wetting and nonwetting

FIG. 10. Diffusion parameters α (red circles) and β (blue
squares) for the wetting system as a function of position from high
sampling fits. Only the fit from a single simulation is shown.
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FIG. 11. Diffusion parameters α (circles) and β (squares) for the
nonwetting systems as a function of position from high sampling fits.
Only the fit from a single simulation is shown.

systems are shown in Figs. 10 and 11, respectively, for the
high sampling fits.

The most striking difference between the high and low
sampling fits is a sharp increase in the diffusion coefficients
at the center of the channel when more points are included.
There also appears to be a slight separation between the α and
β values in the center of the channel, particularly with respect
to the nonwetting system. Based on the mean square dis-
placement calculations, this would not be physical. Figure 12
compares the autocorrelation functions calculated from the
low and high sampling fits with the simulation results for the
wetting system. It can be seen that the high sampling fit results
in a faster response at short times but also appears to result in a
poorer fit at medium to longer times. Plots of other correlation

FIG. 12. Comparison of low and high sampling fits for the auto-
correlation functions for the wetting system. The original simulation
results are also included.

functions show similar behavior. This suggests that a good
functional form will be important in correctly modeling the
response over the entire range of timescales. The current form
does not handle the behavior at short timescales well and
probably distorts the fit to the longer times by trying to fit the
large amplitude responses at short times. The extent to which
this happens is controlled by the number of fitting points,
hence the variability between fits depending on the number
of sampling points. This would not be a critical problem if
the target function was capable of reproducing the observed
behavior more exactly and adding additional points would not
have a large effect on the results. An extreme case would be a
fitting form that can exactly match the data (which is assumed
to be noise free). In this case, additional points would fall on
the existing fit and their contribution to the objective function
would be zero.

C. Implementation of memory function

A simple extension was made to the diffusion model in
an attempt to improve the agreement between the fits and
simulation. The constitutive relation for the diffusive flux was
modified to include a memory function. The new constitutive
relation is of the form

�jc = −
∫ t

0
φ(t − t ′)D(�r) · ∇(�r)dt ′, (30)

where �jc is the concentration flux and φ(t ) is a position-
independent memory kernel. A simple exponential decay was
chosen for φ(t ),

φ(t ) = e−t/τ

τ
, (31)

where τ denotes a characteristic correlation time constant for
the memory kernel. Numerical details are given in Appendix
B, but the equations are only slightly more complicated than
the formalism described in Sec. II. The fits were modified
to include τ as an additional parameter and all fits were
performed using analytic gradients.

Although inclusion of a memory kernel has considerably
improved fits to correlation functions in other contexts, the
benefits were relatively minimal in this case. For both wetting
and nonwetting systems, changes resulting from inclusion of
the memory kernel are small, as shown in Figs. 13 and 14. The
only improvement is that the slight difference between α and
β in the center of the systems appears to be diminished. How-
ever, the differences between the fitted diffusion coefficients
in the center of the gap and the values measured from mean
square displacement still remain.

In addition, the effect of the memory kernel on the cor-
relation functions calculated from the fits is also small. A
comparison of the nearest neighbor correlation functions in
the perpendicular direction is shown in Fig. 15 for the wetting
system. The figure includes correlation functions calculated
from the high sampling fits with and without the memory
kernel, as well as the original simulation results. This set
of correlation functions was chosen because the differences
are large enough to be seen easily on a graph; for most
other curves the differences between functions calculated with
and without the memory kernel are minute. Both sets of
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FIG. 13. Comparison of diffusion parameters calculated with and
without the memory kernel for the wetting system. Both fits used a
high sampling of time points. Only the fits from a single simulation
are shown.

fitted curves are almost identical. The remaining correlation
functions for both wetting and nonwetting systems also show
very little change. The fitted values of the time constant τ

for the wetting and nonwetting systems are 0.108 and 0.157,
respectively, implying that the effect of the memory kernel
decays fairly quickly. In a prior study, the inclusion of the
memory kernel in fits to correlation functions used to calculate
the shear viscosity had two effects [44]. The first was that it
converted the fitting function from a pure exponential decay
into a function with zero slope at t = 0. The correlation
functions calculated from grid cells have a finite slope at
t = 0, most likely because the concentration in each grid cell

FIG. 14. Comparison of diffusion parameters calculated with and
without the memory kernel for the nonwetting system. Both fits used
a high sampling of time points. Only the fits from a single simulation
are shown.

FIG. 15. Comparison of the nearest neighbor correlation func-
tions in the direction perpendicular to the surface for the wetting
system calculated with and without the memory kernel. The original
simulation results are also included.

is a piecewise constant function of time instead of smoothly
varying. Forcing the slope to vanish at t = 0 has the result of
enhancing the correlation at short times, which is the opposite
of what is needed here. (On the scale of the plots shown
here, this effect is negligible.) The second effect of including
a memory kernel was to enable the possibility of creating
exponentially damped oscillations at longer times. Again, this
is not a behavior that is seen in the simulations in this study.

V. CONCLUSIONS

We investigated the utility of using correlation functions
formed by projecting hydrodynamic fields onto the cells of a
structured grid to determine spatially varying transport param-
eters. Correlation functions were calculated from simulations
of a simple Lennard-Jones fluid in a channel configuration
and used as the inputs to fits of a diffusion equation with a
spatially varying and nonisotropic diffusion tensor. The fitted
values of the diffusion tensor match qualitative expectations of
the behavior of the fluid based on the behavior of the density
profile but are not quantitative, based on comparison with
direct calculations of the diffusion constant in the center of the
channel. Nevertheless, the results demonstrate the following:

(i) The fits are possible and lead to physically plausible
results. The correlation functions can be calculated in a rea-
sonable amount of time and the fitted values themselves have
small enough uncertainties that physical behavior of interest
can be discerned. The method can be easily applied to more
complicated models of liquids (e.g., water confined by two
mineral interfaces). All that is needed is to label the liquid
molecules, evaluate the concentration of labeled molecules
in an overlaid grid, and calculate the correlation functions
between grid cells.

(ii) Generalizing the diffusion equation to include spatial
variation and anisotropy of the diffusion tensor is not suffi-
cient to fully model diffusive behavior in a small channel.
The primary support for this conclusion is the comparison of
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the correlation functions calculated from the fitted diffusion
equation and the correlation functions calculated directly from
the simulations. The inability to capture the full dynamics
results in relatively poor values for the diffusion parameters
compared to direct calculation from mean square displace-
ments.

(iii) Incorporating a simple memory kernel in the diffusion
constitutive relation results in some improvement but is not
sufficient to provide a quantitative model for transport in these
systems.

The second conclusion is important since it shows that
this approach to fitting molecular simulation behavior to
continuum equations may serve both to provide direction on
what kinds of coarse-grained equations are needed in order to
model flows at the nanometer scale while also giving guidance
on the failings of existing equations.

As noted, incorporating a simple memory kernel into the
constitutive relation does not result in a substantial improve-
ment in the fitted functions. Other potential improvements are
to generalize the constitutive equation for the diffusive flux
to a nonlocal form or to couple the diffusion equation to the
microscopic velocity field due to fluctuations. The diffusion
equation in the presence of a velocity field (�v) is

∂c

∂t
+ ∇ · (�vc) = ∇ · D · ∇c. (32)

Considering fluctuating terms for both velocity field and con-
centrations (i.e., �v = �v0 + δ�v and c = c0 + δc) and expanding
Eq. (32) to first order in fluctuating quantities leads to

∂δc

∂t
+ c0∇ · δ�v + �v0 · ∇δc = ∇ · D · ∇δc. (33)

For a system in equilibrium, �v0 vanishes, implying that only
divergent flows are capable of contributing to diffusive trans-
port. Divergent flows [i.e., compressible flows or ∇ · (ρ�v)


= 0] result in changes in the density (such as those for longitu-
dinal sound waves) and this further implies that, in addition to
modeling velocity fields at the nanoscale, the energy equation
also needs to be considered. The inclusion of both the energy
and momentum equations in the model represents a major
increase in complexity, but it also offers considerable oppor-
tunity for studying new behavior. Alternatively, the c0∇ · δ�v
term could be viewed as a random fluctuation driving the
diffusion equation, leading to a fluctuating hydrodynamics
expression. However, in this case the autocorrelation function
for the fluctuation is unlikely to be well represented by a delta
function, which is a typical assumption.

It is also possible that at molecular length scales the
motion of particles is simply not diffusive or contains impor-
tant nondiffusive components. This could result in governing
equations containing integrodifferential operators or possibly
higher order terms, provided they can be added in a justifiable
way that does not violate basic consistency and conservation
conditions. Incorporating these kinds of terms will result in
more complicated theories, but also provides opportunities for
identifying new behavior.
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APPENDIX A: ANALYTIC GRADIENTS

Analytic gradients of the objective function can be obtained for the reduced problem formulation by making use of the
Laplace transform on the time evolution operators. For the systems investigated in this paper, the analytic gradients actually take
more time to calculate than numerical gradients (by a factor of about 4), but for completeness, the derivation of the gradients is
included here. For more complicated systems, it may prove that analytic gradients are more efficient.

The gradients of the operators �i j with respect to the parameters of the diffusion matrix can be written as

∂�
i j
kk

∂αm
=

{
1

�x2

[
2 cos

(
2π i

Nx

)
− 2

]
+ 1

�y2

[
2 cos

(
2π j

Ny

)
− 2

]}
δkm,

∂�
i j
kk

∂βm
= −(δm,k+1 + δmk )

1

2�z2
(1 − δkNz ) − (δm,k−1 + δmk )

1

2�z2
(1 − δk1),

∂�
i j
k,k+1

∂βm
= (δm,k+1 + δmk )

1

2�z2
(1 − δkNz ),

∂�
i j
k,k−1

∂βm
= (δm,k−1 + δmk )

1

2�z2
(1 − δk1).

022129-14



CORRELATION FUNCTION APPROACH FOR DIFFUSION … PHYSICAL REVIEW E 102, 022129 (2020)

All other pairs vanish. The remaining step is to calculate the gradients of the correlation functions in terms of the gradients of

�i j . From the expression for the correlation function, we can write

∂〈ci jk (ts)clmn(0)〉
∂a

=
Nx−1∑
i′=0

Ny−1∑
j′=0

Nz∑
q=1

∂

∂a
[e�i′ j′ ts ]kqDi′ j′qneI2π i′(i−l )/Nx eI2π j′( j−m)/Ny .

Applying a Laplace transform to the exponentiated operator leads to the expression [51]

∇ae�i′ j′ ts = 1

2π I

∮
Ri′ j′ · 1

z − ts�i′ j′
· R

†

i′ j′ts∇a · �i′ j′ · Ri′ j′ · 1

z − ts�i′ j′
· R

†

i′ j′e
zdz.

Explicitly writing this as a sum over indices gives the equation

[∇ae�i′ j′ ts ]kq = ts
2π I

∑
lmnopr

∮
Ri′ j′

kl

1

z − tsλm
δlmR†i′ j′

mn (∇a�i′ j′ )noRi′ j′
op

1

z − tsλ
i′ j′
p

δprRi′ j′
rq ezdz

= ts
2π I

∑
mnor

∮
Rkm

1

z − tsλ
i′ j′
m

R†i′ j′
mn (∇a�i′ j′ )noRi′ j′

or

1

z − tsλ
i′ j′
r

R†i′ j′
rq ezdz.

Define the matrix of contour integrals as

�i′ j′
mr (ts) = ts

2π I

∮
1(

z − tsλ
i′ j′
m

)(
z − tsλ

i′ j′
r

)ezts dz. (A1)

The contour integrals can be evaluated analytically to obtain [52]

1

2π I

∮
1

(z − tsλk )(z − tsλl )
ezdz = etsλk − etsλl

ts(λk − λl )
, λk 
= λl

= etsλk λk = λl .

The gradient of the evolution operator can now be written out explicitly as the multiple sum

[∇ae�i′ j′ ts ]kq =
∑
mnor

Ri′ j′
km R†i′ j′

mn �i′ j′
mr [∇a�i′ j′ ]noRi′ j′

or R†i′ j′
rq .

Further define the quantity

� i′ j′(a)
mr =

∑
no

R†i′ j′
mn

[
∇a�i′ j′

]
no

Ri′ j′
or

and the gradient reduces to

[∇ae�i′ j′ ts ]kq =
∑
mr

Ri′ j′
km�i′ j′

mr (ts)� i′ j′(a)
mr R†i′ j′

rq . (A2)

The largest array in this equation is �
i′ j′(a)
mr , which contains approximately 2N3

z NxNy elements. The computation of this structure

is of the same order since the gradients of �i′ j′ only contain a maximum of seven nonzero elements so the sum over n and o only
contains a few terms. The remaining arrays in Eq. (A2) are all smaller.

APPENDIX B: MEMORY KERNEL

Including the memory kernel in the constitutive relation for the diffusive flux modifies the discretized transport equation to

dX

dt
=

∫ t

0
φ(t − t ′)L · X dt ′. (B1)

The Laplace transform of Eq. (B1) is

X (z) = 1

z − φ(z)L
· X (t = 0). (B2)

The Laplace transform of the memory kernel [i.e., Eq. (31)] is

φ(z) = 1

zτ + 1
. (B3)
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Combining Eqs. (B2) and (B3) and making use of the diagonalization transform yields the expression

X (z) =
[

z + 1/τ

z2 + z/τ − L/τ

]
· X (t = 0)

= R ·
[

z + 1/τ

z2 + z/τ − �/τ

]
· R

† · X (t = 0). (B4)

The only modification needed to evaluate the real-time equivalent of this expression is to replace the exponentials of the
eigenvalues in expressions like Eq. (16) with the real-time equivalent of the term in square brackets in Eq. (B4). This can
be evaluated fairly easily.

For a given eigenvalue λi, define the two roots of the expression

z2 + z/τ − λi/τ

as λ±
i . The inverse Laplace transform of the function

z + 1/τ

z2 + z/τ − λi/τ

is the function [52]

φi(t ) = λ+
i eλ+

i t − λ−
i eλ−

i t

λ+
i − λ−

i

− 1

τ

eλ+
i t − eλ−

i t

λ−
i − λ+

i

. (B5)

Calculating the correlation functions with the memory kernel can be accomplished by substituting Eq. (B5) for the corresponding
exp(−λit ) in Eq. (26). The gradient of the correlation functions with respect to τ can be evaluated by taking the gradient of
Eq. (B5) with respect to τ and substituting ∂φi(t )/∂τ for the exp(−λit ) in Eq. (26). For the parameter τ , the numerical gradients
appeared to be particularly sensitive to the value of the increment, so analytic derivatives with respect to τ were used even if
numerical derivatives were used for α and β.

The analytic gradients of the correlation functions with the memory kernel with respect to the diffusion parameters can be
evaluated by replacing the right-hand side of the definition of the matrix �

i′ j′
mr (ts) in Eq. (A1) with the expression

ts
2π I

∮
1

τ

z + 1/τ(
z2 + z/τ − λ

i′ j′
m /τ

)(
z2 + z/τ − λ

i′ j′
r /τ

)ezts dz. (B6)

The inverse Laplace transforms for m 
= r can be evaluated by making use of identities of the form

z

(z − a)(z − b)(z − c)(z − d )
= A

z − a
+ B

z − b
+ C

z − c
+ D

z − d
.

Collecting all the terms on the right-hand side over a common denominator and equating the coefficients of the powers of z in
the numerator to the corresponding terms on the left-hand side yields a set of linear equations. These can then be solved for
A, B,C, D using a symbolic manipulation program such as MATHEMATICA [53]. The inverse Laplace transforms of the terms
on the right-hand side of Eq. (B6) are readily available and can be easily evaluated once the coefficients A, B,C, D are known.
The roots of the quadratic expressions appearing in Eq. (B6) can be mapped to the constants a, b, c, d . This approach is easily
extended to the other term appearing in Eq. (B6) by replacing z with 1. The case m = r can be evaluated similarly, except that
the identities are of the form

z

(z − a)2(z − b)2
= A

(z − a)2
+ B

z − a
+ C

(z − b)2
+ D

z − b
.

Again, the Laplace transforms of the terms on the right-hand side are readily available.
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