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Nonthermal vibrations in biased molecular junctions
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We study vibrational statistics in current-carrying model molecular junctions using a master equation
approach. In particular, we concentrate on the validity of using an effective temperature Teff to characterize the
nonequilibrium steady state of a vibrational mode. We identify cases in which a single Teff cannot fully describe
one vibrational state. In such cases, the probability distribution among different vibrational states does not follow
the Boltzmann type. Consequently, the actual entropy (free energy) of the vibrational mode is lower (higher)
than the corresponding thermal value given by Teff , indicating extra work can be extracted from these states. Our
results will be useful for the study of a nonthermal vibrational state in the thermodynamics of nanoscale systems,
and its usage in nanoscale heat engines.

DOI: 10.1103/PhysRevE.102.022127

I. INTRODUCTION

In recent years, electron transport through a single molec-
ular junction has received considerable attention both ex-
perimentally and theoretically in view of its importance in
molecular electronics [1–6]. Many techniques have been de-
veloped to couple a single molecule to two electrodes, and to
measure its electrical conductance [7–10]. The conductance
is not only affected by the molecule in the junction, but also
by the coupling between the molecule and the electrodes, the
electric structure of the electrodes, and the interaction between
electrons and molecular vibrations [11]. The vibrations can be
excited when the applied voltage bias exceeds the molecular
vibrational energy. Thus, energy transfer from the electronic
to the vibrational degrees of freedom takes place, resulting in
energy accumulation in the vibrational system and resultant
heat transport [12–17]. This is loosely termed Joule heating,
although deterministic energy transfer through work may take
place simultaneously [18–20]. This may in turn lead to the
conformation change and atomic rearrangements [21,22]. In
the extreme case, the molecular junction can be destroyed
through breaking of a chemical bond. On the other hand,
through specially designed electronic structure, one may use
the nonequilibrium effect to cool the molecular junctions,
leading to current-induced cooling [23–27].

The concept of effective temperature has been used both
theoretically and experimentally to describe the junction heat-
ing and cooling when it reaches the nonequilibrium steady
state under applied voltage bias [11,28–32]. The purpose of
this work is to show that this is not always the case. We
illustrate the nonthermal statistical properties of the vibrations
by considering two model systems that have been widely
used in previous studies. In the first model, we consider a
vibrational laser where one vibrational mode couples to two
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electronic states via the Su-Schrieffer-Heeger-like coupling
[25,33–35]. In the second model, we consider Holstein-type
on-site coupling between one electronic state with one vibra-
tional mode [36–38]. In both models, we find situations in
which one effective temperature is not enough to describe the
statistical properties of the vibrational mode.

II. MODELS AND METHODS

A. Model I: A two-level molecular junction

The first model we consider is a molecular junction con-
sisting of two levels coupled to electrodes as depicted in
Fig. 1(a). The vibrational mode can be excited by the inelastic
transitions between two electronic states. The corresponding
Hamiltonian is

H = Hm + Hel + Hep + Hp + Hb,

Hm =
∑
i=1,2

εini + U12n1n2,

Hel =
∑

α=L,R

∑
k

(εkα − μα )c†
kα

ckα

+
∑

α=L,R

∑
k

∑
i=1,2

(Vαk,ic
†
kα

di + H.c.),

Hep = mep(a†
pd†

1 d2 + apd†
2 d1),

Hp = h̄ωp

(
a†

pap + 1

2

)
,

Hb =
∑

α

h̄ωα

(
a†

αaα + 1

2

)
+

∑
α

tαp(a†
α + aα )(a†

p + ap),

(1)

where Hm is the Hamiltonian of the molecule, ni = d†
i di is the

electron number operator for state i, εi is the corresponding
energy, and U12 is the intersite Coulomb charging energy.
The two electrodes and their coupling with the molecule are
described by Hel. c†

kα
(ckα ) is the creation (annihilation)
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FIG. 1. (a) Schematic model of the transport in a bias-driven
single molecular junction. The molecule consisting of two levels
ε1 and ε2 is coupled to two electrodes (L and R) characterized by
energy-independent parameters �L2 and �R1. The vibrational mode
can be excited due to electron-vibration mep when the bias voltage
(eVbias = μL − μR) between electrodes is large than the energy of the
mode. The statistics of the vibrational mode can be obtained from
the bath with a dissipation ratio γp. (b) Schematic representation of
a single-level molecular junction similar to (a). Here, the vibrational
excitation is caused by the Holstein-type on-site coupling between
one electronic state ε0 with Coulomb interaction U .

operator of an electron with the wave vector k in the electrode
α. εkα and μα are the corresponding energy and the chemical
potential, respectively. Vαk,i is the electrode-molecule cou-
pling parameter. The electronic states couple to a vibrational
mode, Hep is the corresponding Hamiltonian, and the vibra-
tional mode is described by Hp. The last term Hb describes
damping of the vibrational mode due to coupling to a vibra-
tional bath. a†

p (ap) and a†
α (aα ) are the creation (annihilation)

operators of the vibrational mode and the bath with angular
frequencies ωp and ωα , with tαp being their coupling.

To study the vibration statistics, we use the master equa-
tion approach of the Lindblad form. The molecule-electrode
coupling is regarded as a perturbation [39,40]. We further-
more consider the molecule system in the strong Coulomb
blockade regime (U12 → ∞), that is, only the occupation by
a single excess electron is allowed. Then, the effective Hilbert
space of the molecular system is spanned by three states,
which are |0〉 = |0, 0〉, |a〉 = |1, 0〉, and |b〉 = |0, 1〉. Mean-
while, we can define creation operators of the ground and
excited states for the molecule as d†

g = |a〉〈0| and d†
e = |b〉〈0|

with energies ε1 and ε2, respectively. The Hamiltonian in
Eq. (1) can be rewritten in such a representation. Under the

Born-Markov approximation, the reduced density matrix for
the electron-vibration system follows the following equation
of motion:

ρ̇ = 1

ih̄
[H0, ρ] + Lel[ρ] + Lp[ρ], (2)

with H0 = Hm + Hp + Hep. The first term on the right-hand
side describes the quantum coherent evolution of the electron-
vibration system. The last two terms correspond to the dissi-
pation of the system due to the interaction with electrodes and
the vibrational bath. We have

Lel[ρ] = 1

2

∑
α

�α1{ fα (εg)D[dg, ρ] + [1 − fα (εg)]D[d†
g , ρ]}

+ 1

2

∑
α

�α2{ fα (εe)D[de, ρ]

+ [1 − fα (εe)]D[d†
e , ρ]}, (3)

where �αi(ε) = 2π
∑

k |Vαk,i|2δ(ε − εkα ) is the level broaden-
ing function of the state i due to coupling with electrode α. We
have ignored its energy dependence here. The Lindblad super-
operators act according to D[A, ρ] = 2A†ρA − {AA†, ρ}.
For the vibration, Lp[ρ] can be written as

Lp[ρ] = γp

2
(1 + nB)D[a†

p, ρ] + γp

2
nBD[ap, ρ], (4)

where γp(ω) = 2π
∑

α |tαp|2δ(ω − ωα ) characterizes the cou-
pling to the vibrational bath. nB = [eh̄ωp/kBT − 1]−1 is the
average occupation of the vibrational mode ωp in equilibrium
state at temperature T .

Using the standard quantum master equation procedure,
the time evolution of the vibrational density matrix element
can be written as

d pm,n

dt
= −iωp(m − n)pm,n − imep

[√
m + 1ρ

ge
m+1,n

−√
n + 1ρ

eg
m,n+1 + √

mρ
eg
m−1,n − √

nρ
ge
m,n−1

]
+ γp

2
[2(nB + 1)

√
(m + 1)(n + 1)pm+1,n+1

− (nB + 1)(m + n)pm,n

+ 2nB
√

mnpm−1,n−1 − nB(m + n + 2)pm,n], (5)

where the combined density matrix elements ρ
ge
mn and ρ

eg
mn

are given in Appendix A. For m = n, pm,m describes the
probability of finding m vibrational quanta.

B. Model II: A single-level molecular junction

A single-level model in Fig. 1(b) is considered in this case.
The corresponding Hamiltonian is

H = Hm + Hel + Hep + Hp + Hb,

Hm = ε0n + Un(n − 1),

Hel =
∑

α=L,R

∑
k

(εkα − μα )c†
kα

ckα

+
∑

α=L,R

∑
k

∑
i=↑,↓

(Vαk,ic
†
kα

di + H.c.),

Hep = mep(a†
p + ap)n, (6)
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FIG. 2. (a) The effective temperature Teff and the average population 〈n〉 as a function of the chemical potential of the right electrode
μR with μL = 0.8 h̄ωp. The inset shows two molecular levels ε1 and ε2 coupled to two electrodes with chemical potentials μL and μR,
where μR increases in the direction of the arrow. (b) Entropy Sth and SvN vs μR. (c) and (d) Vibration statistics at μR = 0.8 h̄ωp and
μR = 0 h̄ωp, respectively. The other parameters are �L2 = 0.01 h̄ωp, �R1 = 0.001 h̄ωp, ε2 = 0.5 h̄ωp, ε1 = −0.5 h̄ωp, mep = 5×10−4 h̄ωp,
γp = 1×10−6 h̄ωp, μL = 0.8 h̄ωp, and kBT = 0.1 h̄ωp. In our calculations, we set e = kB = h̄ = 1.

where n = ∑
i=↑,↓ d†

i di is the total electron occupation num-
ber operator on the molecule and it has a maximum 2, ε0 is
the on-site energy, U is the on-site Coulomb repulsion energy
between two electrons, and Vαk,i is the electrode-molecule
coupling parameter. The Hamiltonians for Hp and Hb are the
same as in model I.

To consider this model, a Lang-Firsov transformation to
the polaron representation can be performed [41]. Applying
the unitary operator D = e[λ(a†

p−ap)n] to the total Hamiltonian,
we obtain

H′ = DHD†,

H′
m = (

ε0 − m2
eph̄ωp

)
n + (

U − 2m2
eph̄ωp

)
n(n − 1),

H′
el =

∑
α=L,R

∑
k

(εkα − μα )c†
kα

ckα

+
∑

α=L,R

∑
k

∑
i=↑,↓

(Vαk,ie
−λmep(a†

p−ap)c†
kα

di + H.c.),

H′
p = h̄ωp

(
a†

pap + 1

2

)
,

H′
ep = 0,

H′
d = Hd . (7)

Thus in the polaron representation, for a state |lm〉 which
indicates l electrons on the molecule with m vibrations, we
get H′|lm〉 = Elm|lm〉 with eigenvalues

Elm = ε′l + U ′l (l − 1) + h̄ωp
(
m + 1

2

)
, (8)

where ε′ = ε0 − m2
eph̄ωp, U ′ = U − 2m2

eph̄ωp.
In fact, a generalized master equation in this case for

the reduced density operator of the electron-vibration system
within the Born-Markov approximation can be obtained, as
shown in Eq. (2). By using the secular approximation, we can
get the evolution of vibration populations (diagonal elements)
and coherence (off-diagonal elements), respectively. For our
case, we mainly focus on the former, resulting in a rate
equation

ṗ|lm〉 =
∑
l ′ 
=l

∑
m′ 
=m

[�(l ′m′ )(lm) p|l ′m′〉 − �(lm)(l ′m′ ) p|lm〉]

+ mγpnB p|l (m−1)〉 + (m + 1)γp(1 + nB)p|l (m+1)〉

− [(m + 1)γpnB + mγp(1 + nB)]p|lm〉, (9)

where p|lm〉 is the probability that the system is in the |lm〉
state, �(lm)(l ′m′ ) is the probability that the system evolves from
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|lm〉 to |l ′m′〉, and

�(l<m)(l>m′ ) = |Mmm′ |2
∑

α=L,R

�α fα (El>m′ − El<m)δl>−l<,1,

�(l>m)(l<m′ ) = |Mmm′ |2
∑

α=L,R

�α[1 − fα (El>m − El<m′ )]δl>−l<,1,

(10)

where l> > l<, and |Mmm′ |2 is the Franck-Condon matrix
element that is presented in Appendix B.

By applying the steady-state condition ṗlm = 0 to the rate
equations, we can calculate the probability p|lm〉. By calcu-
lating the net electron transition probability between the left
electrode and the molecule, we can obtain the steady-state
current

I = e
∑
l,m

∑
l ′ 
= l,
m′ 
= m

s�′
(lm)(l ′m′ ) p|lm〉, (11)

where the direction of the current is from the lower chemical
potential side to the higher side, e is the elementary charge,
and s = ±1 determined by the electronic tunneling direction
for a given electron transition. When an electron tunnels
from the higher chemical potential side to the lower side,
s = −1, otherwise s = 1. �′

(lm)(l ′m′ ) is a part of �(lm)(l ′m′ ), which
gives the probability of a state transition from |lm〉 to |l ′m′〉
induced by electron tunneling between the left electrode and
the molecule.

C. Characteristic vibrational quantities

We use several physical quantities to characterize the prop-
erties of a vibrational state, including the average popula-
tion, the effective temperature, the thermal entropy, the von
Neumann entropy, and the vibration second-order coherence
function. For this we write the probability of the system with
m vibrational quanta as pm, then pm = pm,m for model I, and
pm = ∑

l p|lm〉 for model II. The average population 〈n〉 can
be defined as

〈n〉 =
∑

m

mpm. (12)

Given 〈n〉, if we assume that the vibration is in thermal
equilibrium, we can define an effective temperature Teff as

Teff = h̄ωp/kB

ln(1/〈n〉 + 1)
. (13)

Consequently, we can define the effective thermal entropy
Sth as

Sth = kB[(〈n〉 + 1) ln(〈n〉 + 1) − 〈n〉 ln〈n〉]. (14)

By comparing Sth with the actual von Neumann entropy

SvN = −kB

∑
m

pm ln pm, (15)

we can characterize the deviation from the thermal state. Al-
ternatively, the Kullback-Leibler divergence can also measure
the deviation, which is defined as

DKL =
∑

m

qm ln

(
qm

pm

)
, (16)

FIG. 3. Entropy Sth and SvN as a function of the chemical poten-
tial of the right electrode μR with μL = 0.8 h̄ωp. The lines (black,
red, blue) are plotted for three different values of γp (10−6, 10−5,
10−4)h̄ωp. (b) The corresponding differential spectra of SvN in (a).

where qm represents the thermal distribution and has a Boltz-
mann form

qm = e−mh̄ωp/kBTeff (1 − e−h̄ωp/kBTeff ). (17)

Another quantity we can use to quantify the nonthermal
state is the vibrational second-order coherence function

g(2)(0) = 〈a†
pa†

papap〉
〈a†

pap〉2
=

∑
m m(m − 1)pm

(
∑

m mpm)2
. (18)

It has been widely used in quantum optics. One can easily ver-
ify that the vibration in thermal equilibrium yields g(2)(0) = 2.
When g(2)(0) < 1, the vibration is in the antibunching state,
while for g(2)(0) > 1 it is in the bunching state. Thus, vi-
brations are bunched in the thermal state due to its bosonic
statistics. Moreover, when g(2)(0) = 1 the vibration is in the
coherent state.

III. RESULTS AND DISCUSSIONS

A. Results for model I

Let us begin with the case of a two-level molecular junction
shown in Fig. 1(a). The higher level ε2 couples only to the
left electrode, and the lower level ε1 couples only to the right
electrode, that is, �R1 
= 0, �L2 
= 0, while �R2 = �L1 = 0.
Such a model has been used before to study resonant vibration
excitation [25,33–35,42–44]. The vibration in such a junction
is excited by the inelastic electron tunneling from level 2 to
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FIG. 4. Effect of temperature on vibration statistics for various values of mep at μR = −0.8 h̄ωp. (a) The entropy Sth and SvN, (b) the second-
order coherence function g(2)(0), (c) the effective temperature Teff = T , and (d) the average population 〈n〉 as a function of the temperature
kBT . The other parameters are the same as in Fig. 2.

level 1. We set the Coulomb repulsion inside the molecule
U12 = ∞. The Lindblad master equation in Sec. II A is used
to obtain the following results.

1. Bias dependence of the vibrational state

In Fig. 2(a), the effective temperature Teff and the average
population 〈n〉 are plotted as a function of the chemical poten-
tial of the right electrode μR with fixed μL = 0.8 h̄ωp. As we
can see, the magnitudes of Teff and 〈n〉 decrease with increas-
ing μR from −1.8 h̄ωp to 0.8 h̄ωp. The reason is as follows. By
adjusting μR [the inset in Fig. 2(a)], we can get two electron
transport regimes and vibration statistics. For μR < ε1, the
electron in the left electrode can tunnel to level 2 and relax to
level 1, accompanied by emission of a vibration. The electron
in level 1 can tunnel to the right electrode afterward. For μR >

ε1, the inelastic transition is blocked because level 1 is always
populated by one electron from the right electrode. Due to
the strong Coulomb interaction, no electron can be injected
from the left electrode to level 2, such that no vibration can be
excited. In such a case, Teff reduces to the temperature of the
vibration bath; see the dashed line in Fig. 2(a).

A similar analysis using effective temperature has been
performed in previous studies [11,28,29,32,45–51]. Here, we

go one step further and compare the thermal Sth and the
von Neumann entropy SvN to characterize the deviation of
the vibration from the thermal state. The difference of the
entropy �S = Sth − SvN indicates the nonequilibrium nature
of the steady state. When they differ from each other, it is
not enough to describe the vibrational state with a single
effective temperature. As expected, we observe this situation
in Fig. 2(b). For example, when μR < ε1, the population
inversion between levels 2 and 1 leads to a vibrational lasing
situation. The lasing threshold is located at μR = ε1. Above
the threshold (μR < ε1), the vibration statistics obey Poisson
distribution and Sth 
= SvN [Fig. 2(c)]. Below the threshold
(μR > ε1), the vibration reaches the thermal state, where pm

follows a Boltzmann distribution [Fig. 2(d)] and Sth = SvN.
Therefore, a single effective temperature is only suitable for
describing thermal vibrations below the threshold.

It is worth pointing out that a kink near the lasing transition
in the red curve of Fig. 2(b) can be observed. To clarify this,
we plot entropy Sth and SvN as a function of the chemical
potential μR for more values of γp in Fig. 3(a). The curves
in Fig. 2(b) are reproduced. It seems that the kink is a charac-
teristic property of the lasing transition. It is more obvious for
small coupling to the vibrational bath and is broadened out for
larger coupling.
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FIG. 5. 3D plot of the current I (a), the second-order coherence function g(2)(0) (b), the effective temperature Teff (c), and the entropy
difference �S (d) as functions of the voltage bias Vbias and electron-vibration coupling constant mep (both units of h̄ωp). A symmetric
voltage drop is applied to the two electrodes. Other parameters are ε′ = 0, �L = �R = � = 1×10−3 h̄ωp, kBT = 0.06 h̄ωp, U ′ = ∞, and
γp = 0.01 h̄ωp.

2. Vibration thermalization

We now consider the effect of temperature on vibration
statistics; see Fig. 4. Above, we have analyzed the range
of kBT � h̄ωp. The difference between the thermal entropy
and the von Neumann entropy indicates that the effective
temperature is not applicable at μR < ε1 (above the threshold
of laser), while for kBT � h̄ωp and μR < ε1, one may expect
Sth = SvN, as shown in Fig. 4(a). This is a consequence of ther-
malization of the vibrational mode due to the coupling with a
high-temperature vibration bath. To show the crossover of the
vibration statistics from low temperature to high temperature
more explicitly, in Fig. 4(b) we present the temperature de-
pendence of the second-order coherence function g(2)(0). This
clearly shows the transitions of the vibration state from co-
herent to thermal, corresponding to g(2)(0) = 1 to g(2)(0) = 2.
This again shows that the effective temperature is suitable for
describing thermal vibrations, but not for coherent vibrations.

We notice that the entropy, the average population, and
the effective temperature do not change monotonically with
increasing temperature kBT when mep 
= 0. They drop down
in the region [0.1,1] kBT/h̄ωp. This nonmonotonous behavior
is due to the vibrational decay through inelastic electronic
excitation of electron-hole pairs. At zero temperature, the
upper level ε2 is filled and the lower level ε1 is empty. This
perfect population inversion prohibits vibrational decay to the

electronic system. With increasing temperature, due to the
broadening of the Fermi distribution, the population of level
ε2 is less than 1 and that of level ε1 is larger than zero.
Vibrational decay through electron excitation at level ε1 to
level ε2 becomes possible. This serves as a decay channel
for the vibrational mode, leading to an initial decrease in
Figs. 4(a), 4(c), and 4(d).

Figures 2–4 are the first main result of this work, showing
that the vibration coupled weakly to an electron can reach a
thermal or coherent state, and that one effective temperature
is not enough to describe such a state. A different way to
demonstrate the effective temperature is to consider the strong
electron-vibration coupling, which can excite nonthermal vi-
brations other than the coherent states. We will discuss the
nature and origin of such nonthermal vibrations in the next
section.

B. Results for model II

Now we consider the single-level model in Fig. 1(b).
The rate equation is applied under the polaron representation
by using the Lang-Firsov transformation, as discussed in
Sec. II B. Figure 5 summarizes the dependence of Teff , the
difference between Sth and SvN [defined as �S = (Sth − SvN)]
and g(2)(0) on the voltage bias Vbias and mep. Figure 6 shows
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FIG. 6. The effective temperature Teff (units of h̄ωp/kB) [solid lines in (a)–(c)], the average vibration occupation 〈n〉 [dashed lines in
(a)–(c)], the effective thermal entropy SvN [solid lines in (d)–(f)], the von Neumann entropy Sth (units of kB) [dashed lines in (d)–(f)], and the
second-order coherence function g(2)(0) in (g)–(i) vs the voltage bias Vbias, where mep = 0.4 h̄ωp, mep = 1.4 h̄ωp, and mep = 3 h̄ωp is calculated
in the first, second, and third row. The other parameters are the same as in Fig. 5.

the line plots of their values for representative values of mep

for weak, medium, and strong couplings.
At low electron-vibration coupling (mep = 0.4 h̄ωp), the

single vibration emission process is dominant; see Teff and
〈n〉 in Fig. 6(a). There is no obvious difference between SvN

and Sth, especially in the low bias region [Fig. 6(c)]. Con-
sequently, the effective temperature works very well. When
the electron vibration is increased (mep = 1.4 h̄ωp), multivi-
bration excitation becomes possible and Franck-Condon steps
appear [Fig. 6(b)]. Antibunching among emitted vibrations
[g(2)(0) < 1] can be observed near the first Franck-Condon
step (eVbias = h̄ωp), which has been discussed in detail in
Ref. [52]. In this regime, single vibration emission domi-
nates. Thus, SvN and Sth still coincide with each other. The
difference between SvN and Sth becomes obvious at larger
bias [Fig. 6(e)]. Further increasing mep leads to larger de-
viation between the two entropies at high bias [Fig. 6(f)].
Comparing different cases, we find that the deviation from
the thermal state characterized by �S = Sth − SvN happens at
large Vbias and high mep, when the multivibration excitation
process becomes important. In this case, the vibrations show
superbunching with huge g2(0).

On the other hand, as shown in Fig. 5, the change of g(2)(0),
Teff , and η with mep is not monotonic. To further investigate
this effect, we show the mep dependence of these quantities
at a given bias eVbias = 7 h̄ωp in Fig. 7. This corresponds
to line cuts of the three-dimensional (3D) plot. In Fig. 7(a),
we can find that the current is significantly suppressed as
mep increases. This can be attributed to the Franck-Condon
blockade, which has been discussed in Ref. [53]. As shown

in Fig. 10 of Appendix B, when mep = 0.4 h̄ωp, maximum
of the Franck-Condon matrix elements is near the diagonal
part where the difference in vibrational occupation number
between initial and final states is small. As mep increases,
the maximum moves away from the diagonal. A higher oc-
cupation number difference needs higher excitation energy
and consequently larger voltage bias. For fixed voltage bias,
increasing mep results in current suppression. For Teff or
〈n〉 in Fig. 7(b), there exists a maximum at an intermediate
value of mep ∼ 1.4 h̄ωp. The reason is as follows. For one
limit mep = 0, there is no vibration excitation, such that
Teff = T and 〈n〉 ≈ 0. For the other limit with large mep, a
Franck-Condon blockade leads to the suppression of vibration
excitation, again resulting in Teff = T and 〈n〉 ≈ 0. Thus,
there exists a maximum between the two limits. Similar
behavior is found for the entropy [Fig. 7(c)]: SvN = Sth ≈ 0
for mep � h̄ωp and mep � h̄ωp, corresponding to thermal
vibrations [see also g(2)(0) in Fig. 7(d)]. The basic features
of �S are similar to those of Sth and SvN. The maximum of
�S moves to larger mep compared to Teff or 〈n〉. We also
calculate the Kullback-Leibler divergence DKL according to
Eq. (16), which can measure the degree to which the vibration
deviates from equilibrium. It is found that the changes of DKL

and �S with mep are consistent. Moreover, we present the
statistical distribution of different vibrational states when �S
takes the maximum value in Fig. 8, where deviation from the
Boltzmann distribution can be clearly seen.

Up to this point, we considered the strong Coulomb in-
teraction with U ′ = ∞, where no more than one electron
can reside on the molecule. For U ′ < eVbias, one may expect

022127-7



TAO WANG, LEI-LEI NIAN, AND JING-TAO LÜ PHYSICAL REVIEW E 102, 022127 (2020)

FIG. 7. (a) The current I vs as a function of the electron-vibration coupling strength mep. (b) The effective temperature Teff and the average
vibration occupation 〈n〉 vs mep. (c) The effective thermal entropy SvN, the von Neumann entropy Sth, the entropy difference �S, and the
Kullback-Leibler divergence DKL vs mep. (d) The second-order coherence function g(2)(0) vs mep. The applied bias is taken as eVbias = 7 h̄ωp.
The other parameters are the same as in Fig. 5.

more than one electron to participate in the transport at the
same time. Therefore, we show the effect of the Coulomb
interaction on the vibration statistics in Fig. 9. We find

FIG. 8. Vibration statistics when �S reaches a maximum as in
Fig. 7(c). The red histogram is obtained from Eq. (17).

additional Coulomb blockade steps in the results. Although
�S changes at Coulomb blockade steps, the overall change is
quite small and does not change much with U ′ in the weak
electron-vibration coupling regime.

C. Discussions

Energy dissipation in molecular junction has received con-
siderable attention in the past years. It is normally termed
Joule heating, although subsequent studies show that, in addi-
tion to stochastic Joule heating, electrical current can also do
deterministic work on the nuclei. The effective temperature
has been widely used to quantify the nonequilibrium steady
state of vibrations. Our results in this work show that a
single effective temperature cannot always fully describe this
vibrational steady state. We show that the difference between
the effective thermal entropy Sth and the actual von Neumann
entropy SvN can be used to quantify the deviation from the
thermal state.

Since the thermal entropy is always larger than the actual
entropy, their difference �S can be used to characterize the
nonequilibrium nature of the vibrational steady state. More
importantly, �S > 0 implies that the nonequilibrium free
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FIG. 9. The current I (a), the average vibration occupation 〈n〉 (b), the effective temperature Teff (c), and entropy difference �S (d) as a
function of the bias Vbias for indicated values of the Coulomb interaction U ′ at mep = 0.2 h̄ωp. The other parameters are the same as in Fig. 5.

energy F = U − T SvN > Fth, where U is the internal energy
of the vibrational degrees of the system. Thus, this extra
free energy �F = U − Fth can be used, at least in principle,
freely in carefully designed thermodynamic processes. If one
were to use only the effective temperature to characterize the
vibrational state, one could get results that violate the second
law of thermodynamics, i.e., a Carnot engine with efficiency
larger than the Carnot efficiency. This, of course, does not
violate the second law, since the vibration is not in thermal
equilibrium. The nonthermal statistical distribution is an extra
resource that can be used to perform work.

IV. CONCLUSIONS

In conclusion, we have presented an analysis of the
vibration statistics in biased molecular junctions. By using
the Lindblad master equation, a two-level molecular system
with weak electron-vibration coupling was studied. It is found
that the vibrational steady states before and after the lasing
threshold bias are different in nature. The former can be well
described by a single effective temperature, while in the latter
case the vibration is in a coherent state, and an additional
quantity �S is needed to quantify its nonequilibrium property.
We also considered a single-level coupling to one vibrational
mode in the Holstein form. The rate equation with Lang-
Firsov transformation is used to study the vibration statistics.
The results indicate that for large electron-vibration coupling

and high bias, similar to the lasing situation in the two-level
model, multivibration emission leads to a nonequilibrium
state with lower entropy and thus higher free energy. These
results show that the vibration mode in biased molecular
junctions cannot always be characterized by a single effective
temperature. The nonequilibrium vibrations may be utilized
in carefully designed thermodynamic machines to achieve
higher efficiencies. We considered molecular junctions in this
work, but our model can be easily extended and applied to
artificial molecules, i.e., quantum dot systems.
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APPENDIX A: MATRIX ELEMENTS
OF THE DENSITY OPERATOR

The matrix elements of the electron-vibration density op-
erator ρ can be defined as

ρ i j
m,n := 〈m, i|ρ| j, n〉, (A1)
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where i, j = 0, g, e and m/n is the vibration Fock state. Then, we can get the matrix elements

ρ̇00
m,n = −iωp(m − n)ρ00

m,n − (
�

f
L1 + �

f
R1 + �

f
L2 + �

f
R2

)
ρ00

m,n + (
�

f o
L1 + �

f o
R1

)
ρgg

m,n + (
�

f o
L2 + �

f o
R2

)
ρee

m,n

+ γp

2
nB

[
2
√

m
√

nρ00
m−1,n−1 − (m + n + 2)ρ00

mn

] + γp

2
(nB + 1)

[
2
√

m + 1
√

n + 1ρ00
m+1,n+1 − (m + n)ρ00

mn

]
, (A2)

ρ̇gg
m,n = −iωp(m − n)ρgg

m,n + (
�

f
L1 + �

f
R1

)
ρ00

m,n − (
�

f o
L1 + �

f o
R1

)
ρgg

m,n − imep
(√

mρ
eg
m−1,n − √

nρ
ge
m,n−1

)
+ γp

2
nB

[
2
√

m
√

nρ
gg
m−1,n−1 − (m + n + 2)ρgg

mn

] + γp

2
(nB + 1)

[
2
√

m + 1
√

n + 1ρ
gg
m+1,n+1 − (m + n)ρgg

mn

]
, (A3)

ρ̇ee
m,n = −iωp(m − n)ρee

m,n + (
�

f
L2 + �

f
R2

)
ρ00

m,n − (
�

f o
L2 + �

f o
R2

)
ρee

m,n − imep
(√

m + 1ρ
ge
m+1,n − √

n + 1ρ
eg
m,n+1

)
+ γp

2
nB

[
2
√

m
√

nρee
m−1,n−1 − (m + n + 2)ρee

mn

] + γp

2
(nB + 1)

[
2
√

m + 1
√

n + 1ρee
m+1,n+1 − (m + n)ρee

mn

]
, (A4)

ρ̇ge
m,n = −iωp(m − n)ρge

m,n − imep
(√

mρee
m−1,n − √

n + 1ρ
gg
m,n+1

) + i(εl − εh)ρge
m,n

−
(

1

2
�

f o
L1 + 1

2
�

f o
R1 + 1

2
�

f o
L2 + 1

2
�

f o
R2
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ρge

m,n + γp

2
nB
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2
√

m
√

nρ
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mn

]

+ γp

2
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[
2
√
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√

n + 1ρ
ge
m+1,n+1 − (m + n)ρge

mn

]
, (A5)

ρ̇eg
m,n = −iωp(m − n)ρeg

m,n − imep
(√

m + 1ρ
gg
m+1,n − √

nρee
m,n−1

) − i(εl − εh)ρeg
m,n

−
(

1

2
�

f o
L1 + 1

2
�
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2
�

f o
L2 + 1

2
�
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)
ρeg

m,n + γp

2
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√

m
√

nρ
eg
m−1,n−1 − (m + n + 2)ρeg

mn

]

+ γp

2
(nB + 1)

[
2
√

m + 1
√

n + 1ρ
eg
m+1,n+1 − (m + n)ρeg

mn

]
, (A6)

where

�
f
Li = �Li fL(εi ),

�
f
Ri = �Ri fR(εi ),

�
f o
Li = �Li[1 − fL(εi )],

�
f o
Ri = �Ri[1 − fL(εi )], i = 1, 2. (A7)

Here, fα (εi ) = 1/[e(εi−μα )/kBT + 1] is the Fermi-Dirac distri-
bution of electrode α with the chemical potential μα and the
temperature T . Note that we limit our study to the vibration
laser driven by the bias voltage, such that we take γp and
mep much smaller than the molecule-electrode coupling �αi

[43,54].

APPENDIX B: FRANCK-CONDON MATRIX ELEMENTS

The wave function of vibration state |n〉 is given by the nth
harmonic-oscillator wave function

φn(x) = (π1/22nn!losc)−1/2e−x2/(2l2
osc )Hn(x/losc), (B1)

in which losc =
√

h̄
mωp

is the oscillator length and Hn is the

Hermitian polynomials. Realizing the fact that e−λ(b†−b) =
ei

√
2λloscd/dx, which is the translation operator, and applying

the Fermi Golden rule, the Franck-Condon matrix elements
can be calculated as

Mm1m2 = 〈φm2 |e−λ(b†−b)|φm1〉
= 〈φm2 (x)|φm1 (x −

√
2λlosc)〉

= [sgn(m2 − m1)]m1−m2

× λM−me−λ2/2

(
m!

M!

)
1/2LM−m

m (λ2), (B2)

FIG. 10. The Franck-Condon elements Mmm′ with mep = 0.4 h̄ωp (a), mep = 1.4 h̄ωp (b), and mep = 3 h̄ωp (c).
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in which sgn(x) is the sign function, m = min(m1, m2), M =
max(m1, m2), and LM−m

m (λ2) is the generalized Laguerre poly-
nomials. To show that the current suppression in Fig. 7(a) is

caused by the Franck-Condon blockade, in Fig. 10, we plot
Mmm′ for vibration transitions from m to m′ with three different
values of mep.
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