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Barriers, trapping times, and overlaps between local minima
in the dynamics of the disordered Ising p-spin model
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We study the low-temperature out-of-equilibrium Monte Carlo dynamics of the disordered Ising p-spin Model
with p = 3 and a small number of spin variables. We focus on sequences of configurations that are stable against
single spin flips obtained by instantaneous gradient descent from persistent ones. We analyze the statistics of
energy gaps, energy barriers, and trapping times on subsequences such that the overlap between consecutive
configurations does not overcome a threshold. We compare our results to the predictions of various trap models
finding the best agreement with the step model when the p-spin configurations are constrained to be uncorrelated.
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I. INTRODUCTION

The Ising model with disordered interactions between
groups of p spins, called the p-spin model, is one of the
best understood systems with quenched randomness [1–5].
Two paradigmatic models of spin glasses and glasses, the
Sherrington-Kirckpatrik (SK) model [6] and the random en-
ergy model (REM) [7,8], are limiting cases in which p = 2,
and p → ∞ taken after N → ∞, respectively.

When p � 3 many static and dynamic properties are in
striking analogy with the ones of glass forming liquids [9,10].
By rendering the spins continuous and imposing a global
spherical constraint, the equilibrium properties of the resulting
spherical p-spin model can be solved exactly in the thermo-
dynamic limit [11,12]. Furthermore, the long time dynamic
equations that couple correlations and linear response func-
tions have been shown to be equivalent to the mode coupling
theory (MCT) equations for supercooled liquids and glasses
also in the thermodynamic limit [13–15]. Both MCT equa-
tions and the spherical p-spin model exhibit a dynamical sin-
gularity at a temperature Td , where relaxation times diverge.
This singularity is an artifact of the mean-field character of
the MCT and p-spin models. In finite-dimensional systems
the dynamical transition should be in fact a crossover at Tg

[16] while the putative glass transition should happen at a
lower temperature TK . Moreover, the original MCT approach
has to be replaced by a refined one that allows one to deal
with the dynamics of finite systems, or infinite systems with
short-range interactions [17,18].

Further valuable information comes from studies of the
topological properties of the potential energy landscape (PEL)
of model systems. Analytic and numerical results for the
spherical and Ising p-spin models [19–24] and numerical
results for model glass formers [25–28] show that the number

of stationary states (saddles) of the PEL grows exponentially
with system size N . More importantly, when approaching
Td from above the number of unstable directions of typical
saddles decreases strongly, and evidence has been presented
that the MCT transition in finite-dimensional glass formers
corresponds to a localization transition of the unstable modes
[29]. At least in mean-field models, below Td , minima are
exponentially more numerous than higher-order saddles, and
activation over barriers should be the dominant mechanism for
relaxation. Nevertheless, because of the mean-field character
of the p-spin model, barrier heights diverge with N and
activation is suppressed, giving rise to the sharp dynamical
transition.

Describing the dynamical processes of finite range inter-
acting or finite size mean-field models below the crossover
temperature, Tg or Td (N ), is a great challenge. In the 1990s, the
analysis was initiated with studies of completely connected
(mean-field) models of small size, so as to have some control
over the barrier heights [30,31]. Interesting results were ob-
tained connecting the equilibrium behavior of these models
with the metabasin concept introduced in studies of glass
forming liquids [32–34].

Another route to study activated dynamics in disordered
systems came from the so-called trap models [35,36]. These
are toy models, whose stochastic dynamics can be exactly
solved, defined by a set of states with uncorrelated random
energy levels. In order to go from a trap to another the system
has to jump over a barrier, spending a trapping time to do it
that is given by an Arrhenius law. Given the distribution of
trap energies and trapping times for each trap, it is possible to
predict the form of the distribution of mean trapping times
and the exact form of two-times correlation functions, the
arcsin law [37,38]. The trap model has become a paradigm for
activated slow dynamics in disordered systems, due mainly
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to its simplicity and the qualitative resemblance with the
phenomenology of more realistic models, such as the p-spin
and other model glass formers [34,39–41]. Nevertheless, a
question that remains still open is to what extent the quantita-
tive predictions of the trap model are universal. In recent years
much progress has been made in this direction. In the context
of the p-spin family of models, a series of rigorous results
showed the validity of the arcsin law for the correlations in
the aging regime of the REM (p → ∞ after N → ∞) under
certain conditions on the time scales of observation [42–46].
These results rely strongly on the independence of the random
energy levels of the REM, which assures the renewal character
of the dynamics at each time step, similar to the updates in the
trap models. Extensions to finite p, where energies are cor-
related, though still within simplified microscopic dynamics,
have also been considered [47,48] confirming the universal
character of the trap model correlations. From the numerical
side, simulations of the single-spin-flip dynamics in the REM
showed evidence for the trap model scenario although they
proved to be tricky to interpret [49,50]. Further confirmation
of the validity of the arcsin law came from analytic and
numerical work on extensions of the original trap model
dynamical rules in which the transition rates depend both on
the initial and final states [40,51,52]. In particular, Glauber
[53,54] and Metropolis [55] microscopic updates were used
and lead to the so-called step model. This model shares the
distribution of random energies of the original trap model, but
the Glauber or Metropolis dynamics may lead to relaxation
without the need for activation over energy barriers. In fact, at
sufficiently low temperatures, the kind of entropic activation
promoted by the Metropolis rule is the only relevant one
for relaxation, leading to complex aging dynamics similar to
the ones of the trap models. Interestingly, subsequent work
showed that at intermediate temperatures energetic activation
is also at work, leading to a competition between energetic
and entropic mechanisms in the relaxation [54]. Furthermore,
detailed numerical studies showed that the arcsin law also
emerges in the dynamics of the step model after a suitable
coarse graining of the landscape, leading to a redefinition
of the traps as sets of configurations, or basins, rather than
single configurations [55]. It is important to note that all the
evidence obtained so far in favor of a trap model universality
for aging dynamics in disordered systems relies on a very
strong assumption, namely, that that the dynamics is a renewal
process. In such a process, the evolution in time does not
depend on the past history. This is a strong assumption, the
general validity of which is not guaranteed [56,57].

Here, we wish to address whether the quantitative predic-
tions of the trap and step models can emerge in the dynamical
behavior of the standard p-spin Ising model. We consider
the latter with p = 3 and single-spin-flip Metropolis updates.
From its known properties, we may expect the p-spin model
to show some characteristics of both the trap and step models,
namely energetic and entropic relaxation mechanisms. A first
challenge is related to finite-size effects. In Ref. [41] we
showed that, in order to access the time scales relevant to
activation, it is necessary to consider rather small systems.
A second challenge is the very definition of trap in the
context of the p-spin model. In Ref. [41] we proposed an ad
hoc definition of trap, based on the observation of persistent

configurations in the low-temperature dynamics of the model.
That definition led to some interesting observations, such as
the emergence of an exponential regime for the trap energies
in the low-energy sector of the landscape and power-law
distributions of trapping times. Nevertheless, at a quantitative
level, we were unable to find a neat connection with the trap
model, nor with the step model predictions. In the present
work, we refine the definition of trap, relating them to the
presence of configurations stable against single spin flip,
which seem to be natural candidates for persistent states,
resembling the inherent structures classification in model
glass formers [31,58,59]. Furthermore, in order to tackle the
problem of the strongly correlated energy levels in the p-
spin model, we follow selected sequences of locally stable
configurations, which obey constraints in the mutual overlap.
In this way, we were able to consider sequences of config-
urations with different degree of correlation. We performed
a thorough characterization of the energy landscape visited
by the system during the Metropolis dynamics, and then used
this information to analyze the results for the distributions of
trap energies and trapping times. In order to conform more
closely with the definitions of the trap model, in this work we
defined traps as energy barriers between consecutive locally
stable configurations satisfying the overlap constraints. We
compared our results with the predictions of the original trap
model, with the trap model with generalized dynamics and
with the step model. We found qualitative similarities with all
three models of trap dynamics but, interestingly, the numerical
results are in quantitative agreement only with the step model
predictions in the limit of uncorrelated sequences of traps.

The structure of the paper is as follows. In Sec. II we
recall the definition of the Ising p-spin model. We present the
methodology in Sec. III. Section IV is devoted to the presenta-
tion of our numerical results and Sec. V to the comparison to
the predictions of the trap and step models. Finally, we close
the paper with a discussion presented in Sec. VI.

II. p-SPIN MODEL

The Ising spin glass with multispin interactions is defined
by the energy function:

E = − 1

p!

N∑
i1,i2,...,ip=1

Ji1,i2,...,ipSi1 Si2 · · · Sip, (1)

where {Si = ±1, i = 1 . . . N} are Ising spin variables and
the coupling constants Ji1,... ,ip are quenched Gaussian ran-
dom exchanges with zero mean and standard deviation σ =√

p!/2N p−1. The Hamiltonian (1) consists of p-spin interac-
tions between all possible groupings of different spins on p
sites. It is a fully connected model. The tensor of coupling
constants Ji1,... ,ip is symmetric under arbitrary permutations of
the indices {i1, i2, . . . , ip}.

The energies of single configurations are Gaussian random
variables with P(E ) ∼ exp (−E2/N ). Furthermore, the prob-
ability that two configurations S1 and S2 have energies E1 and
E2 is given by

P(E1, E2) ∼ exp

[
− (E1 + E2)2

2N (1 + qp)
− (E1 − E2)2

2N (1 − qp)

]
, (2)

022126-2



BARRIERS, TRAPPING TIMES, AND OVERLAPS … PHYSICAL REVIEW E 102, 022126 (2020)

at leading order in N [1]. Thus, pairs of configurations are cor-
related. As seen in Eq. (2) the degree of correlation depends
on their overlap

q(S1, S2) = 1

N

∑
i

S1
i S2

i , (3)

with |q| � 1. Having already taken the large N limit, one
can now take p → ∞ and find that different energy levels
(q < 1) become uncorrelated, P(E1, E2) ∼ P(E1)P(E2). This
limit corresponds to Derrida’s random energy model (REM)
[1] (see also a discussion in Ref. [50], relevant to the finite N
situation).

III. METHODOLOGY

We performed single-spin-flip Monte Carlo simulations
of the completely connected Ising p-spin model defined in
Eq. (1) with p = 3 [60]. We worked with the Metropolis
transition rates from configuration i to configuration j:

ri, j =
{
τ−1

s e−β�E �E > 0

τ−1
s otherwise

, (4)

where �E = Ej − Ei. As usual, the time step unit is set to
be the Monte Carlo step (MCs), N flip attempts. In all cases
the system was prepared in a disordered initial state and
suddenly quenched to a low temperature. Because time scales
for activation are expected to grow exponentially with system
size, we fixed N = 20, which implies a configuration space
of 2N ∼ 106 states. Typical simulations were run for a total
time of up to 107 MC steps. The temperature was fixed to
T = 0.2, much lower than both the dynamical temperature,
Td = 0.682, and the static critical temperature, Ts = 0.651, of
the infinite size system (although for N = 20 the transitions
are considerably rounded [61]). At this low temperature the
system remains relaxing out of equilibrium until the longest
simulation times considered here, t = 108 MCs. Statistics
were recorded for a number of disorder samples between
3 × 104 and 105.

As discussed in Ref. [41], during the evolution at low
temperature the system eventually remains trapped in single
configurations for a certain number of MCs, until thermal
fluctuations restore the evolution. Those configurations were
chosen as an essential part of the definition of dynamical
traps in our previous work [41]. Instead, in the present study
we followed sequences of configurations, which are stable
against single spin flips. These configurations are analogs of
the inherent structures defined as mechanically stable con-
figurations of the landscape in continuous models for the
glass transition [34,58]. Operationally, along the dynamics we
identify configurations, which persist for at least five MCs
[62] and we define the following quantities, which will be the
base for our analysis.

(i) Locally stable configurations (LSC). Once a persistent
configuration is identified, we perform a quench to zero
temperature to reach the nearest single-spin-flip-stable con-
figuration, i.e., a locally stable configuration.

(ii) Barriers. Barrier heights are defined as the difference
between the energy of a LSC and the maximum energy
reached along the dynamical path before arriving at the next
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FIG. 1. Sequence of locally stable configurations (LSC) and
the maxima separating them. Top: consecutive LSC restricted to
have overlap q < 1. Bottom: only consecutive LSC with q < 0.6
are shown. Two typical pairs and the corresponding overlaps are
highlighted. For reference, the equilibrium energy density is approx-
imately −0.69.

LSC. The configuration with the maximum energy between
two successive LSC is called a transition state [63].

(iii) Gaps. We define a gap as the energy difference be-
tween two consecutive LSCs.

(iv) Overlaps. Overlaps between two locally stable config-
urations, {S1}, {S2}, are defined as usual, q = N−1 ∑

i S1
i S2

i .
(v) Trapping times. The trapping time associated to a LSC

is the time lapse, in MCs, that the system takes to go from the
LSC to the maximum connecting it to the next LSC, i.e., the
time to surmount the barrier.

In Ref. [41] the aim was to compare results from the
single-spin-flip Monte Carlo dynamics in the p-spin model
with the predictions of Bouchaud’s trap model [36]. One of
the important differences between both models is the fact
that traps in the trap model are statically and dynamically
uncorrelated, while configuration energies in the p-spin model
are correlated random variables. Because of this, in this study
of the p = 3 model, besides considering the actual sequence
of LSC, we also considered sequences restricted to have a
maximum overlap qmax between consecutive pairs. Note that
in this way, a subset of the actual sequence of LSC is filtered.
Of particular interest is the case q = 0, with a strict equality, in
which consecutive pairs of LSC are uncorrelated. This choice
was done with the aim of approaching one of the defining
features of the trap model, that is, uncorrelated random traps.
In the other cases, some negative correlations are present, but
their weight is negligible.

IV. RESULTS

In Fig. 1 we show the energies of a sequence of LSC
and maxima along a typical quench from a disordered initial
state to T = 0.2 in a system with N = 20. In the top panel
a sequence of LSC with q < qmax = 1 is shown. We note
that there are some energy levels that are repeatedly visited
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FIG. 2. Histogram of overlaps between consecutive locally sta-
ble configurations along a Monte Carlo trajectory. Consecutive states
with q = 1 were excluded and q = 0.9 is not allowed by the condi-
tion of single-spin-flip stability in a system with N = 20.

by the system. In the bottom panel only pairs of consecutive
LSC with q < qmax = 0.6 are shown for the same sequence
of random numbers. Two pairs of LSC with q = 0.2 and
q = 0.5 are highlighted. The maxima between them are the
transition states, one of which is indicated with a legend (as
already mentioned, not to be confused with the transition
states usually defined in the context of continuous energy
landscapes, in which they are saddles of index one connecting
two local minima). The trapping time τi of a pair of LSC is
also shown. These plots represent one-dimensional snapshots
of the p-spin energy landscape during the quench. We can note
several characteristics that are present in almost every instance
of the quench dynamics.

(i) The sequence of energies of the LSC along a trajectory
is not monotonically decreasing. In other words, the gaps can
be of either sign.

(ii) The sequence of maxima between pairs of LSC is also
nonmonotonic.

(iii) Lower energies do not always imply longer trapping
times.

(iv) The time of descent from a maximum to the next LSC
is not necessarily shorter than the trapping time, i.e., the time
to go up from the previous LSC to the maximum. This is in
sharp contrast with the usual relaxation over a simple barrier
in a double well potential, in which the time of decay from
the transition state is negligible in comparison to the time
needed to reach the transition point. It is a manifestation of
the roughness of the large-dimensional energy landscape of
the p-spin model.

Figure 2 displays the normalized distribution of overlaps
between consecutive pairs of LSC. Pairs with overlap q = 1
were discarded. This was motivated by the fact that there
are frequent situations in which the system visits repeatedly
a single LSC, with short excursions to higher-energy nearby
states. By excluding consecutive pairs with q = 1 we automat-
ically consider the whole sequence in these cases to be part
of the same trap. It can also be seen that pairs with q = 0.9
are absent too. This is not imposed, but is a consequence
of the definition of single-spin-flip-stable configurations. In
a system with N = 20, two configurations differing by a
single spin flip will have q = 0.9. Then, if a configuration is
stable against any single spin flip it cannot move to another
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FIG. 3. Probability densities of energies of locally stable config-
urations (red) and maxima between pairs of consecutive LSC (blue)
along a Monte Carlo trajectory. The vertical black lines indicate the
most probable values and in the bottom panel also the threshold
level in red (see text). Top: configurations with q < 1. Bottom:
configurations with q = 0.

stable configuration with one spin being different. The figure
shows an exponential growth of the probability with q. 90%
of the weight corresponds to highly correlated pairs with
q ∈ [0.7, 0.8].

Figure 3 shows distributions of energy densities of LSC
together with the distributions of maxima connecting pairs of
consecutive LSC. Two characteristic cases are shown. In the
top panel the distributions correspond to pairs satisfying q <

1, i.e., nearly all pairs in a trajectory are included, excepting
only those cases in which two consecutive LSC were the same.
The bottom panel shows the opposite case, in which q = 0,
i.e., sequences of uncorrelated LSC. With such a restriction
one picks a small subset of the actual sequence of LSC.
Sequences of uncorrelated traps are an essential ingredient of
Bouchaud’s trap model [36,37]. We note that the typical bar-
riers, i.e., the difference between the most probable minima
and the most probable maxima are larger in the q = 0 case.
In this case the system has to climb to higher energy levels
in the landscape in order to connect with an uncorrelated
state. Meanwhile, the small typical barriers in the case q < 1
reflect a flatter landscape, with mild undulations connecting
typical local minima. A third vertical line at eth ∼ −0.55 is
shown in the q = 0 panel. This is a finite-size threshold level,
computed for the system with N = 20 by a method proposed
in Ref. [64]. Note that it is in between the maximum of the
LSC energies and the maximum of the distribution of maxima.
Looking at the distribution of barriers in Fig. 5, for q = 0
we can see that the relevant energy densities lie in the range
[0.2; 0.25] (Eb between 4 and 5 in Fig. 5). Then, for getting
a barrier height in this range, the energies of the LSC and
corresponding maxima must be at the left and right of eth

respectively. In turn, this means that in order to reach the
next LSC along the dynamical path, the system must typically
overcome the threshold level.
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FIG. 4. Distributions of energy gaps between consecutive locally
stable configurations. Exponential fits shown in solid lines have the
same slope.

In Fig. 4 the distributions of gaps are shown. A first obser-
vation is that both positive and negative gaps are present in the
two cases studied. This means that the observed processes do
not necessarily imply a monotonic descent in energy along the
LSC sequences. One can also note qualitative differences in
the cases q < 1 and q = 0. In the q < 1 case, and for relatively
small gaps, the distribution is pretty symmetric, with similar
exponential regimes both for the positive and the negative
sides. This means that starting from a particular LSC it is
equally probable to end in another one at a higher or lower
energy level. A different regime with a slower exponential rate
can be seen at large negative gaps. Instead, the distribution
for q = 0 is asymmetric, with larger weight on the negative
gap side, meaning higher probability to go down in energy.
In this case an exponential tail is only seen on the negative
side of the distribution. Fits to the far negative sectors give the
same rate in both cases, signaling that the slower exponential
regime in the q < 1 case corresponds to q = 0 pairs, and that
this set of uncorrelated pairs behaves differently from all other
correlated cases.

In Fig. 5 we show the corresponding distributions of barrier
heights (Eb = Neb) for three cases q < 1, q < 0.5 and q =
0. In all cases an exponential regime in the large barriers
sector is observed. Fits to this regime allow one to obtain the
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q < 1
8.7 - 4.03 Eb

FIG. 5. Distributions of barrier heights. The tails are ordered
from left to right: q < 1, q < 0.5 and q = 0. The straight lines are
exponential fits to the tails with parameters given in the key.

rate of the exponential decay, which will be considered later
when confronting these results with predictions from different
models. The fitting ranges were chosen considering the widest
interval on which the data points are almost perfectly aligned
at eye view. This criterium guarantees the minimum asymp-
totic standard error in the regression fits, shown in Table I
[65]. For the two correlated cases, q < 1 and q < 0.5, the rate
of the exponential decay is nearly the same, while a definitely
smaller rate was obtained in the uncorrelated case, q = 0. In
the next section we will analyze these results in connection
with trap models.

Figure 6 shows the distributions of trapping times. We note
that the slopes of the curves are slowly changing with the time
scale τ . We will be interested in the largest trapping times.
These are limited by the time span of the simulation. Then, it
is natural to expect finite-time effects for the longest times
due to insufficient statistics. We have run simulations with
different total Monte Carlo steps (not shown) and verified that,
because of the algebraic growth in the measuring times, the
last four or five points are affected by finite-time effects. In
Fig. 6, the last four points correspond to the second half of
the total time span of the simulation and, consequently, for
each disorder sample at most one such long trap time can be
observed. Because of this, we decided to discard the last four
points from the fitting ranges. The results for the fits together
with the corresponding asymptotic standard errors are shown
in Table I.

In the next section we will recall the definition of a few
well-known models of aging dynamics with activation mecha-
nisms, which we generically call trap models. They will be the
reference frame for analyzing the results on the p-spin model
that we have presented in this section.

V. TRAP MODELS

In the original Bouchaud’s trap model (BTM) the system
is defined by an infinite set of configurations, or traps, with
energies Ei that are i.i.d. random variables chosen from an
exponential probability distribution function (PDF) given by
[36,37]:

P(Ei ) = λ exp [λ (Ei − E0)], Ei � E0, (5)

where 1/λ is the mean and E0 is a reference energy level,
usually chosen to be zero. The system stays confined in a
trap of energy Ei during a trapping time, which is also an
exponentially distributed random variable with average τi =
τ0 exp [β (E0 − Ei )], where β ≡ 1/T is the inverse temper-
ature. After escaping from a trap the system can jump to
any other one with equal probability. This implies a renewal
character of the dynamical process: after escaping from a trap
the dynamics restarts anew and memory of the past history
is lost. This property allows the stochastic dynamics to be
solved exactly. One of the main outcomes of the solution is
the distribution of mean trapping times:

φ(τ ; x) = x
τ0

τ 1+x
, (6)

where x = λ/β = T/Tc. For T < Tc the average trapping time
diverges and the system ages forever. Another distinctive
characteristic of the BTM dynamics is the behavior of the
two-times correlation function C(tw, tw + t ), which is given
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TABLE I. Rates λ of the exponential regime of the barrier height distributions and power law exponents x of the trapping times pdfs from
fits to the results of Figs. 5 and 6, β = 1/T = 5, together with predictions for two variants of the Trap and step models. For the a-generalized
TM the numerical results were obtained for a = 1/2.

trap model a-generalized TM step model Fits

Fits λ 1 + x = 1 + λ

β
1 + x = 1 + λ

(1 − a)β
1 + x = 3 − β

λ
1 + x

q < 1.0 4.03 ± 0.04 1.81 ± 0.01 2.60 ± 0.01 1.76 ± 0.01 2.19 ± 0.02
q < 0.5 4.05 ± 0.08 1.81 ± 0.02 2.60 ± 0.02 1.77 ± 0.03 1.93 ± 0.02
q = 0 3.57 ± 0.08 1.71 ± 0.01 2.43 ± 0.01 1.60 ± 0.03 1.64 ± 0.03

for long tw and long t by the so-called arcsin law [37]. The
ubiquity of the arcsin law in different models related with the
BTM has been extensively studied, specially in connection
with the REM dynamics [40,42–46,49,55]. Note that in the
REM, as well as in the more general p-spin models, the
energies are Gaussian i.i.d. random variables. In particular, it
has been shown that the long time autocorrelation function of
the REM can be mapped exactly on the (exponential) BTM
arcsin law, provided the times of observation are scaled with
a factor that grows exponentially with system size. More
precisely,

lim
tw→∞

t/tw=ω

lim
N→∞

C(θ (N )tw, θ (N )(tw + t )) = Hx(ω), (7)

where

Hx(ω) = sin (πx)

π

∫ ∞

ω

du

(1 + u) ux
, (8)

and θ (N ) = exp (γ N ) is the time rescaling factor. In a model
with M = 2N configurations, the dynamics can be seen as an
exploration of sets of 2ρN configurations, with 0 < ρ < 1. In
the context of the Gaussian trap model, a trap model with a
Gaussian density of states, it can be shown that x = √

ρ T/Tc,
and γ = x/T 2 [40,42,66]. As ρ grows with time, the previous
results imply that the x exponent in the distribution of trapping
times depends on the time scale of observation.

Coming back to the results presented in Sec. IV, and
with the aim of making a quantitative comparison with the
BTM predictions, we considered that the barrier heights in the
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FIG. 6. Distributions of times to reach the maximum between
consecutive locally stable configurations. From bottom to top: q < 1,
q < 0.5 and q = 0. The parameters of the exponential fits shown with
thin straight lines are given in the key.

p-spin model, and not the energies of the LSC, are the analogs
of the trap energies in the BTM. The reason for this is the
following: in the BTM, because there is a unique energy level
E0 = 0 to which the system has to arrive in order to jump
to another trap, the energy depths are in fact energy barriers.
At variance with this characteristic of the BTM, in the p-spin
model the transition states appear at different energy levels.
As seen before, the pdfs of Fig. 5 show an exponential regime
in the large barriers sector. The results of the fits for the
exponential rate λ are shown in Table I for T = 0.2. We note
that the result is the same for the two correlated cases while it
is different in the uncorrelated one.

Now, one can use these rates to obtain predictions for
the exponent 1 + x of the trapping times pdfs for different
models for which exact results are known. The results for
the BTM prediction 1 + x = 1 + λ/β are shown in the second
column of Table I. These values have to be compared with the
numerical results for the trapping times distributions. Looking
at the curves in Fig. 6 one notes a drift in the slope of the
distributions, meaning different time scales are probed by the
dynamics, in agreement with the observation in the context
of trap models with Gaussian distributed energies. The long
time regime, corresponding to the last two or three decades in
the figure, may be expected to correspond to the exponential
regime of large barriers in Fig. 5. The results of the fits for
the exponent 1 + x are shown in the last column of Table I.
The values from the fits do not match the BTM estimates
based solely on the distribution of barrier heights and the
temperature. Having said this, we also observe that the dis-
crepancy diminishes as the correlation between consecutive
LSC is reduced.

As discussed above, one of the differences between the
original BTM and more general models with rough energy
landscapes, is that in the BTM the system always has to jump
to a fixed energy level, a threshold Eth = E0, in order to escape
from any trap. This is usually referred to as a golf course trap
model landscape. Generalizations in which the trapping times
depend on both the initial Ei and final Ej energies have been
considered in Refs. [40,51,52,67]. For discrete dynamics on
the N-dimensional hypercube, as relevant to the p-spin model
single-spin-flip dynamics, the a-generalized transition rates
from an initial state with energy Ei to a final configuration
with energy Ej read [40,51,52]:

ri, j ∝ exp [β(1 − a)Ei − βaEj], (9)

where a ∈ [0, 1). In the case a = 0 the dynamics are equiva-
lent to those of the original BTM. In the case a = 1/2 both
levels have the same weight in the transition rate, similar to
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a Metropolis dynamics with a temperature that is double the
usual one. Within these a-generalized dynamics the average
trapping times for a threshold level E0 = 0 are given by τi =
τ0 exp [−β(1 − a)Ei]. Then, if the energies are exponentially
distributed with rate λ, the exponent of the trapping times PDF
should be generalized to 1 + x = 1 + λ/[(1 − a)β]. Applying
this reasoning to our results, with a = 1/2, gives 1 + x = 2.6
for the case q < 1 and q < 0.5, and 1 + x = 2.43 in the case
q = 0 (see Table I). These results are even farther away from
the naive trap model predictions. In particular, in the three
cases, x > 1, which is not compatible with a system in the
full aging regime. Nevertheless, as noted and discussed in
Ref. [40], the a-generalized dynamics differ from the single-
spin-flip Metropolis dynamics in a detail that implies a very
different nature of the exploration of the energy landscape.
Consider the case of interest here with a = 1/2. In this case,
Eq. (9) becomes ri, j ∝ exp (−β�E/2), with �E = Ej − Ei.
This form implies that even the rates of descent from higher
to lower energy levels are dominated by the transition from
the highest energy level Emax to the minimum one Emin. All
other downward transitions are exponentially smaller. On the
other hand, with the Metropolis rule, see Eq. (4), or with the
Glauber transition rates,

ri, j ∝ e−β�E

1 + e−β�E
, (10)

any downward transition is accepted with probability one. At
very low temperatures, this provides a microscopic mecha-
nism for lowering the energy without the need for activation.
This was first noted in the behavior of the step model (SM)
with Glauber dynamics [53], in which the set of M i.i.d.
random energy levels Ei are chosen with a probability P(Ei )
also given by Eq. (5). Similarly to what happens with the
Metropolis dynamics of the p-spin model, the dynamical rule
in the SM does not imply an activation mechanism as a
necessary condition for relaxation, at variance with the BTM.
Instead, at very low temperatures relaxation is governed by
an entropic mechanism, i.e., the search for favorable paths in
configuration space to go down in energy. Further work on
the SM noted that at intermediate temperatures activation over
barriers is also present, when the probability to go up in energy
becomes larger, and there appears a competition between
entropic relaxation and activation, leading to an effective
traplike phenomenology, but with a different set of exponents
for the distribution of trapping times [54]. Nevertheless, in
order to observe effective traplike exponents in simulations
of the SM with single-spin-flip dynamics, it is necessary to
look at coarse-grained time scales [55]. In fact, while at low
relative temperatures λ/β < 0.5 the probability to go down in
energy is higher than the probability to go up, leading to an
essentially entropic relaxation, in the regime 0.5 < λ/β < 1
the opposite relation holds. This induces explorations of high
energy levels in the landscape before relaxation to deep states
happens. Furthermore, an energy threshold level Eth can be
defined by the condition of equality between the probability to
go up and go down, which was used to set a coarse-grain time
scale in the SM [55]. Then, traps were redefined as portions
of the energy landscape (basins) visited by the Metropolis
dynamics while configuration energies obey E < Eth. When
E > Eth the system is considered to be in a transition state,

until it goes down below the threshold again and explores
a new basin. Redefining traps as basins and considering the
value of the exponent x = 2 − β/λ for the SM dynamics in
the intermediate regime 0.5 < λ/β < 1, it was possible to
verify the validity of the BTM paradigm for aging dynamics
also in this case where competition between activation and
entropic relaxation is at work [54,55]. It is then tempting
to compare our results on the Metropolis dynamics of the
p-spin model, with the predictions for the SM, although the
protocol used in the present work does not correspond to the
definition of basin in the SM. Note that basins in the SM are
equivalent to states or energy levels in the BTM. The relevant
piece of information to obtain the trapping times (and their
distribution), while it is associated to a basin or to a single
state, is a barrier height defined by a threshold level. In our
approach for the p-spin model we do not make reference to
a fixed threshold level. Instead, we considered as relevant the
fact that, in order to go from a LSC to a nearby one, the system
must climb a barrier, which depends not only on the static
landscape, as is the case in the BTM and SM, but on the actual
dynamical path. Because of this, we think that barrier heights
in the p-spin model play the role of energies of the BTM or
the SM.

For q < 1 and q < 0.5 we obtained the ratio λ/β = 0.8,
while for q = 0 it was λ/β = 0.71, both corresponding to
the intermediate regime of the SM, 0.5 < λ/β < 1. When
comparing the exponent of the trapping times distribution
using the results of the fits for the barrier heights we deduce
1 + x = 3 − β/λ = 1.75 for q < 1 and q < 0.5, which does
not agree with the values 1 + x ≈ 2.19 nor with 1 + x ≈ 1.93
inferred from the direct fit to the distribution of trapping
times for q < 1 and q < 0.5, respectively (see Table I). For
the case q = 0 we obtain 1 + x = 3 − β/λ ≈ 1.60 using the
value of the rate λ from the fit to the barriers distribution,
and 1 + x ≈ 1.64 from a direct fit to the trapping times PDF.
Interestingly, we observe a reasonable agreement, within nu-
merical uncertainties, between the prediction of the exponent
x for a SM with exponential energies and our p-spin results
based on sequences of uncorrelated LSC. Still, for the case of
correlated sequences, the results do not show agreement.

VI. DISCUSSION

We analyzed the dynamics of the Ising p-spin model with
single-spin-flip Metropolis updates from the perspective of the
trap model paradigm. The quantitative predictions of the BTM
rely on the static independence of the trap energies and also
on the dynamic independence between consecutive visited
traps. These two properties lead to the well-known power-law
distribution of mean trapping times and to the arcsin law for
the two-times correlation function in the aging regime, when
x = λ/β < 1. None of the previous two defining ingredients
of the BTM are present in the Ising p-spin with Metropolis
dynamics. Another difficulty for testing the predictions of trap
models against systems with single-spin-flip dynamics is the
very definition of trap. While traps in the original BTM are
single energy levels, in the p-spin and related models this has
proven not to be true.

With these difficulties in mind, we decided to follow
trajectories of the p-spin model looking at sequences of
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configurations, which are stable against single spin flips, or
locally stable configurations (LSCs). Because they show some
degree of stability, they seem a priori good candidates to
act as trapping configurations of the dynamics. Nevertheless,
they are not statically nor dynamically independent in general.
Accordingly, we decided to study sequences of LSCs depend-
ing on the degree of correlation between pairs of successive
configurations. We have seen, as shown in Fig. 2, that most of
these configurations are strongly correlated. Then, we focused
on three representative situations, when pairs of successive
LSCs are restricted to have overlaps q < 1, q < 0.5 and q =
0, respectively, and we compared results for the distribution
of energy barriers (that we took as similar objects to the trap
energies in the BTM) and trapping times, with the predictions
from a set of models that, in recent studies, have been shown
to conform to the trap model paradigm.

A first outcome of our study is the fact that, at least at low
temperatures, the pdfs of barrier heights from LSCs show an
exponential regime for large barriers, seen in Fig. 5. A look at
the distribution of energies and maxima of Fig. 3 allows one
to point out that, although the energies of the LSCs visited by
the dynamics with q < 1 and q = 0 restrictions are similar, in
the latter case the system has to climb higher in the landscape
in order to decorrelate. The presence of an exponential regime
of the barrier heights at large values allows one to try a direct
comparison with different trap model expectations.

Our second piece of information comes from the pdfs of
trapping times. They show a slow decrease of slope for in-
creasing trapping time, which is compatible with the expected
behavior of Gaussian trap models. Then, one should compare
the results from the exponential regime of barrier heights
with the large times sector of the trapping times distributions.
As shown in Table I, the numerical results for 1 + x are
around 2.0 in the correlated cases, too large according to the
expectations of the naive BTM, and also different from the
result coming from the distribution of barrier heights, ≈1.8, in
both correlated cases. In the q = 0 case, the numerical values
1 + x ≈ 1.64 from the trapping times PDF, and 1 + x ≈ 1.71
from the barriers PDF are nearer to each other, although
it does not seem to be possible to get much more precise
numerical results. Comparison with the a-generalized trap
model predictions are still worse. Choosing a = 1/2, in order
to give equal weights to the initial and final states in the
dynamical rule, we obtain 1 + x exponents larger than two in
all correlated and uncorrelated cases, not compatible with an
aging dynamics.

Better results are obtained when comparing the numerical
ones with the predictions of the step model. In this case, while
the two correlated cases do not show quantitative agreement
between trapping times and barrier height predictions, in
the uncorrelated case surprisingly close results are obtained,
with 1 + x ≈ 1.64 from a fit to the trapping times PDF and
1 + x ≈ 1.60 using the analytic result 1 + x = 3 − β/λ, with
the λ value obtained from the barriers PDF. This is interesting,
because in principle it is unexpected. Although considering
uncorrelated sequences of configurations brings us a step
closer to one of the basic properties of the step model, as also
does the Metropolis dynamics, our present trap definition is
different from the one considered, e.g., in the numerical study
in Ref. [55]. As discussed above, in that study traps were
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FIG. 7. Scatter plot of barrier heights versus trapping times for
N = 20 and T = 0.2.

defined as sets of configurations, or basins, separated from
each other during the dynamics whenever the energy reached
a threshold level Eth, defined by the condition of equality
between the probability to go up or down in a single time step.
In the p-spin case, we have not been able to define a similar
threshold level for the small size systems considered in this
work (although a similar approach can be pursued following
the observations made when discussing relevant energy scales
in Fig. 3). Instead, we defined traps relying on pairs of config-
urations with restrictions on the overlap along the dynamical
path. On the other side, the closer correspondence between the
p-spin results and the step model does not come as a surprise
when one considers the physical mechanisms for relaxation.
In trap models relaxation is purely activated. There are no
downward dynamical paths without energy cost. Meanwhile,
the Glauber or Metropolis rules in the SM and in the p-spin
model induce an entropic mechanism for relaxation, together
with activation, depending on the temperature range. Further
evidence for the presence of a kind of entropic relaxation in
the p-spin model can be inferred from a scatter plot of raw data
showing barrier heights and corresponding trapping times,
shown in Fig. 7. Ideally, a BTM behavior should be seen
as a straight line, expressing a perfect exponential relation
between trapping times and energy. Instead, a dispersion of
the data is seen with a clear excess density below the ideal
straight line. Therefore, large trapping times can be observed
with no need to climb high-energy barriers, a typical entropic
behavior.

In the large N limit, it is well known that the p-spin model
has an exponential number of saddles of all indexes, even
below the dynamical threshold energy level below which min-
ima exponentially dominate over saddles of higher index. The
precise balance between activation and entropic relaxation
below the threshold level is still an open problem in glassy
relaxation. Controlled numerical studies of the p-spin model
with small N , instances in which barriers do not diverge in
height, may be a good starting point in this direction.
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